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Preface
SciPy has been an integral part of the computational environment of choice of 
many scientists for years. One of the challenges of our trade is to bring to a single 
workstation the production of professionals with different visions, techniques, tools, 
and software (from the pure mathematician, to the hardcore engineer).

We are required to produce scripts in which, for example, there are combinations 
of experiments written and performed in SciPy itself, C/C++, Fortran, R, or 
MATLAB®. We often receive extremely large amounts of raw data from some signal 
acquisition device. From all this heterogeneous material, we employ SciPy to retrieve 
this data, manipulate it, experiment it, analyze it, and once finished with the analysis, 
produce high-quality documentation with professional-looking diagrams and 
visualizations aids.

SciPy is the perfect way to coordinate everything in a smooth, reliable, and coherent 
way. It allows performing all these tasks with ease. This is partly because many 
dedicated software tools easily extend the core features of SciPy, and interfacing  
with non-Python-based packages and software is extremely easy.

In summary this book presents the most robust programming environment to date. 
We will show you how to use this system from basic training of manipulation of 
data, to a very detailed exposition through examples of state-of-the-art research in 
different branches of science and engineering.

What this book covers
Chapter 1, Introduction to SciPy, shows the benefits of using the combination of 
Python, NumPy, SciPy, and matplotlib as a programming environment for scientific 
purposes. We will learn how to install it, explore the environment, use it for some 
quick computations, and figure out a few good ways to search for help.
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Chapter 2, Top-level SciPy, explores in depth the creation and basic manipulation  
of the object array used by SciPy, as an overview of the NumPy libraries.

Chapter 3, SciPy for Linear Algebra, covers applications of SciPy to applications  
with large matrices, including solving systems or computation of eigenvalues  
and eigenvectors.

Chapter 4, SciPy for Numerical Analysis, is without a doubt one of the most interesting 
chapters in this book. It covers with great detail the definition and manipulation 
of functions (one or several variables), the extraction of their roots, extreme values 
(optimization), computation of derivatives, integration, interpolation, regression,  
and applications to the solution of ordinary differential equations.

Chapter 5, SciPy for Signal Processing, explores construction, acquisition, quality 
improvement, compression, and feature extraction of signals (in any dimension). It is 
covered with beautiful and interesting examples from the field of image processing.

Chapter 6, SciPy for Data Mining, covers applications of SciPy for collection, 
organization, analysis, and interpretation of data, with examples taken from  
statistics and clustering.

Chapter 7, SciPy for Computational Geometry, explores the construction of triangulation 
of points, convex hulls, Voronoi diagrams, and many applications. At this point in 
the book, it will be possible to combine techniques from all the previous chapters to 
show state-of-the-art research performed with ease with SciPy, and we will explore a 
few good examples from Material Sciences and Experimental Physics.

Chapter 8, Interaction with Other Languages, introduces one of the main strengths of 
SciPy – the ability to interact with other languages such as C/C++, Fortran, R, and 
MATLAB®/Octave.

What you need for this book
To work with the examples and try out the code in this book, all you need is a recent 
build of Python (2.7 or higher), with the libraries NumPy, SciPy, and matplotlib. 
Recipes to install all these are provided throughout the book.

Who this book is for
This book is for scientists, engineers, programmers, or analysts with knowledge of 
Python. For some of the sections, a decent command over linear algebra, calculus, 
and some statistics is needed to understand some of the concepts, but otherwise this 
book is mostly self contained.
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "Within a terminal session, change 
directories to the folder where the NumPy libraries are stored, that contains  
the setup.py file."

A block of code is set as follows:

import numpy
import matplotlib.pyplot
x=numpy.linspace(0,numpy.pi,32)
fig=matplotlib.pyplot.figure()
fig.plot(x, numpy.sin(x))
fig.savefig('sine.png')

Any command-line input or output is written as follows:

% python setup.py build –fcompiler=<compiler>

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we  
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Introduction to SciPy
There is no denying that the labor of scientists in the 21st century is so much easier 
than in previous generations. This is, among other reasons, because we have 
reinvented discovery into Networked Science; members of any scientific community 
with similar goals gather in large interdisciplinary teams and cooperate together 
to achieve complex mission-oriented goals. This new paradigm on the approach to 
research is also reflected in the computational resources employed by researchers. 
These are not restricted any more to a single piece of commercial software, 
created and maintained by a lone company, but libraries of code that sit on top 
of programming languages. The same professionals, who require fast and robust 
computational tools for their everyday work, get together and create these libraries 
in an open-source philosophy, in such a way that the resources are thoroughly 
tested, and improvements occur at faster pace than any commercial product  
could ever offer.

This book presents the most robust programming environment till date – a  
system based on two libraries of the computer language Python: NumPy and SciPy. 
In the following sections we wish to guide you on the usage of this system, through 
examples of state-of-the-art research in different branches of science and engineering.

What is SciPy?
The ideal programming environment for computational mathematics is one that 
enjoys the following characteristics: 

•	 It must be based on a computer language that allows the user to work 
quickly, and integrate many systems effectively. Ideally, the underlying 
computer language should run on all different platforms (Windows,  
Mac OS X, Linux, Unix, iOS, Android, and so on.). This is key to fostering 
cooperation among scientists with different resources, as well as accessibility.
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•	 It must contain a powerful set of libraries that allow the acquisition, storing, 
and handling of big datasets in a simple and effective way. This is key to 
allowing simulation and the employment of numerical computations at  
large scale.

•	 Smooth integration with other computer languages, as well as  
third-party software.

•	 Besides the usual running of compiled code, the programming  
environment should allow the possibility of interactive sessions,  
as well as scripting capabilities, for quick experimentation.

•	 Different coding paradigms should be supported; imperative,  
object-oriented, or functional coding styles should all be available to the user.

•	 It should be an open-source software; the user should be allowed to access 
the raw code of the libraries, and modify the basic algorithms if so desired. 
With commercial software, the inclusion of the improved algorithms is 
applied at the discretion of the seller, and it usually comes at a cost of the 
user. In the open-source universe, someone in the community usually 
performs these improvements, as they are published—at no cost.

•	 The set of applications should not be restricted to mere numerical 
computations; it should be powerful enough to allow symbolic  
computations as well.

Among the best-known environments for numerical computations used by  
the scientific community, we have the powerful MATLAB® and Scilab® systems 
(although both of them are commercial, expensive, and do not allow any tampering 
with the code). Maple® and Mathematica® are more geared towards symbolic 
computation, although they can match many of the numerical computations from 
MATLAB®. As the previous two, these are also commercial, expensive, and closed 
to modifications. A decent alternative to MATLAB®, based on similar mathematical 
engine, is the GNU Octave system. Most of the MATLAB® code is easily portable 
in Octave. It also has the advantage of being open source. Unfortunately, the 
underlying programming environment is not very user friendly. It is also  
restricted to numerical computations.
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The one environment that combines the best of all worlds is indeed the combination 
of Python with the NumPy and SciPy libraries. The first property that attracts the 
user to Python is, without a doubt, its code readability. The syntax is extremely 
clear and expressive. It has the advantage of supporting code written in different 
paradigms – object oriented, functional, or old school imperative. It allows the 
compilation of code for running standalone executable programs, but it can also be 
used interactively, or as a scripting language. This is a great advantage if the user 
needs to develop tools for symbolic computation. Python has been used in this sense 
as the basis of a firm competitor to Maple® and Mathematica®: the open-source 
mathematics software Sage (System for Algebra and Geometry Experimentation).

NumPy is an open-source extension to Python that adds support for 
multidimensional arrays of large sizes. This support allows the desired  
acquisition, storage, and complex manipulation of data mentioned previously. 
NumPy alone is a great tool to solve many numerical computations.

On top of NumPy, we have yet another open-source library, SciPy. This library 
contains algorithms and mathematical tools to manipulate NumPy objects, with  
very definite scientific and engineering objectives.

The combination of Python, NumPy, and SciPy (which henceforth should 
be coined "SciPy" for brevity) has been the environment of choice of many 
applied mathematicians for years; we work on a daily basis with both the pure 
mathematicians and with the hard-core engineers. One of the challenges of this  
trade is to bring to a single workstation the scientific production of professionals 
with different visions, techniques, tools, and software. SciPy is the perfect solution 
for coordinating everything together in a smooth, reliable, and coherent way.

Any day of the week, we are required to produce scripts in which, for example, 
there are combinations of experiments written and performed in SciPy itself, C/C++, 
Fortran, or MATLAB®. We often receive extremely large amounts of data from some 
signal acquisition devices. From all this heterogeneous material, we employ Python 
to retrieve the data, manipulate and, once finished with the analysis, produce high-
quality documentation with professional-looking diagrams and visualization aids. 
SciPy allows performing all these tasks with ease.
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This is partly because many dedicated software tools easily extend the core features 
of SciPy. For example, although any graphing and plotting is usually done with the 
Python libraries of matplotlib, there are also other packages, such as Biggles (biggles.
sourceforge.net), Chaco (pypi.python.org/pypi/chaco), HippoDraw (github.
com/plasmodic/hippodraw), MayaVi for 3D rendering (mayavi.sourceforge.net), 
or the Python Imaging Library or PIL (pythonware.com/products/pil).

Interfacing with non-Python packages is also possible. For example, the interaction 
of SciPy with the R statistical package can be done with RPy (rpy.sourceforge.
net/rpy2.html). This allows for much more robust data analysis.

How to install SciPy
At the time when this book was written, the latest versions of Python are 2.7.3 and 
3.2.3. They are both stable production releases, although the Python 2 versions are 
more convenient if the user needs to communicate with third-party applications. No 
new releases are done for Python 2, and that is why Python 3 is considered "the present 
and the future of Python". For the purposes of SciPy applications, we do recommend to 
stay with the 2.7.3 version. The language can be downloaded from the official Python 
site (www.python.org/download) and installed on all major systems such as Windows, 
Mac OS X, Linux, and Unix. It has also been ported to other platforms, including Palm 
OS, iOS, PlayStation, PSP, Psion, and so on. The following screenshot shows two 
popular options for coding in Python on an iPad – PythonMath and Sage Math. While 
the first application allows only the use of simple math libraries, the second permits 
the user to load and use both NumPy and SciPy remotely.
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PythonMath and Sage Math bring Python coding to iOS devices. Sage Math allows 
importing NumPy and SciPy.

We shall not go into detail about the installation of Python on your system, since 
we already assume familiarity with this language. In case of doubt, we advise 
browsing the excellent book Expert Python Programming: Best practices for designing, 
coding, and distributing your Python software, Tarek Ziadé, Packt Publishing, where 
detailed explanations are given for installing any of the different implementations 
on different systems. It is usually a good idea to follow the directions given on the 
official Python website, as well. We will also assume familiarity with carrying out 
interactive sessions in Python, as well as writing standalone scripts.

The latest libraries for both NumPy and SciPy can be downloaded from the official 
SciPy site, scipy.org/Download. They both require a Python Version 2.4 or newer, 
so we should be in good shape at this point. We may choose to do the download 
from sourceforge (sourceforge.net/projects/scipy), or from Git repositories  
(for instance, the superpack from fonnesbeck.github.com/ScipySuperpack).  
It is also possible in some systems to use pre-packaged executable bundles that 
simplify the process. We will show here how to download and install in the  
most common cases.

For instance, in Mac OS X, if macports is installed, the process could not be easier. 
Open a terminal as superuser and, at the prompt (%), issue the following command:

% port search scipy

This presents a list of all ports that either install SciPy or use SciPy as a requirement. 
On that list, the one we require for Python 2.7 is the py27-scipy port. We install it 
(again as a superuser) by issuing the following command at prompt:

% port install py27-scipy

A few minutes later, the libraries are properly installed and ready to use. Note 
how macports also installs all needed requirements for us (including the NumPy 
libraries) without any extra effort from our part.

Under any other Unix/Linux system, if either no ports are available or if the user 
prefers to install from the packages downloaded from either sourceforge or Git,  
it is enough to perform the following steps:

1.	 Unzip the NumPy and SciPy packages following the recommendation  
of the official pages. This creates two folders, one for each library.
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2.	 Within a terminal session, change directories to the folder where the NumPy 
libraries are stored, that contains the setup.py file. Find out which Fortran 
compiler you are using (one of gnu, gnu95, or fcompiler), and at prompt, 
issue the following command:
% python setup.py build –fcompiler=<compiler>

3.	 Once built, and on the same folder, issue the installation command.  
This should be all.

% python setup.py install

Under Microsoft Windows, we recommend you install from the binary installers 
provided by the Enthought Python Distribution. Download and double-click!

The procedure for the installation of the SciPy libraries is exactly the same, that is, 
downloading and building before installing under Unix/Linux, or downloading and 
double-clicking under Microsoft Windows. Note that different implementations of 
Python might have different requirements before installing NumPy and SciPy.

SciPy organization
SciPy is organized as a family of modules. We like to think of each module as a 
different field of mathematics. And as such, each has its own particular techniques 
and tools. The following is an exhaustive list of the different modules in SciPy:

scipy.
constants

scipy.cluster scipy.fftpack scipy.
integrate

scipy.
interpolate

scipy.io scipy.lib scipy.linalg

scipy.misc scipy.optimize scipy.signal scipy.sparse

scipy.spatial scipy.special scipy.stats scipy.weave

The names of the modules are mostly self explanatory. For instance, the field of 
statistics deals with the study of the collection, organization, analysis, interpretation, 
and presentation of data. The objects with which statisticians deal for their research 
are usually represented as arrays of multiple dimensions. The result of certain 
operations on these arrays then offers information about the objects they represent 
(for example, the mean and standard deviation of a dataset). A well-known set 
of applications is based upon these operations; confidence intervals for the mean, 
hypothesis testing, or data mining, for instance. When facing any research problem 
that needs any tool of this branch of mathematics, we access the corresponding 
functions from the scipy.stats module.
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Let us use some of its functions to solve a simple problem.

The following table shows the IQ test scores of 31 individuals:

114 100 104 89 102 91 114 114
103 105 108 130 120 132 111 128
118 119 86 72 111 103 74 112
107 103 98 96 112 112 93

A stem plot of the distribution of these 31 scores shows that there are no major 
departures from normality, and thus we assume the distribution of the scores  
to be close to normal. Estimate the mean IQ score for this population, using a 99 
percent confidence interval.

We start by loading the data into memory, as follows:

>>> scores=numpy.array([114, 100, 104, 89, 102, 91, 114, 114, 103, 105, 
108, 130, 120, 132, 111, 128, 118, 119, 86, 72, 111, 103, 74, 112, 107, 
103, 98, 96, 112, 112, 93])

At this point, if we type scores followed by a dot [.], and press the Tab key, the 
system offers us all possible methods inherited by the data from the NumPy library, 
as it is customary in Python. Technically, we could compute at this point the required 
mean, xmean, and corresponding confidence interval according to the formula, 
xmean ± zcrit * sigma / sqrt(n), where sigma and n are respectively the 
standard deviation and size of the data, and zcrit is the critical value corresponding 
to the confidence. In this case, we could look up a table on any statistics book to 
obtain a crude approximation to its value, zcrit = 2.576. The remaining values  
may be computed in our session and properly combined, as follows:

>>>xmean = numpy.mean(scores)

>>> sigma = numpy.std(scores)

>>> n = numpy.size(scores)

>>>xmean, xmean - 2.576*sigma /numpy.sqrt(n), \

... xmean + 2.756*sigma / numpy.sqrt(n)

(105.83870967741936, 99.343223715529746, 112.78807276397517)

We have thus computed the estimated mean IQ score (with value 
105.83870967741936) and the interval of confidence (from about 99.34 to 
approximately 112.79). We have done so using purely NumPy-based operations, 
while following a known formula. But instead of making all these computations  
by hand, and looking for critical values on tables, we could directly ask SciPy  
for assistance. 
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Note how the scipy.stats module needs to be loaded before we use any of its 
functions, or request any help on them:

>>> from scipy import stats

>>> result=scipy.stats.bayes_mvs(scores)

The variable result contains the solution of our problem, and some more information. 
Note first that result is a tuple with three entries, as the help documentation suggests 
the following:

>>> help(scipy.stats.bayes_mvs)

This gives us the following output:

The solution to our problem is then the first entry of the tuple result. To show the 
contents of this entry, we request it as usual:

>>> result[0]

(105.83870967741936, (98.789863768428674, 112.88755558641004))

Note how this output gives us the same average, but a slightly different  
confidence interval. This is, of course, more accurate than the one we  
computed in the previous steps.
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How to find documentation
There is a wealth of information online, either from the official pages of SciPy 
(although its reference guides are somehow incomplete, as it is still a work in 
progress), or from many other contributors that present tutorials in forums, personal 
pages. There are other sources; many authors publish examples of their work with 
great detail online.

It is also possible to obtain help from within an interactive Python session, as we 
saw in the previous example. The code for the algorithms of the NumPy and SciPy 
libraries are written with docstrings, and this makes trivial requesting help for usage 
and recommendations, with the usual Python help system. For example, if in doubt 
of the usage of the bayes_mvs routine, the user can issue the following command at 
the command line:

>>>help(scipy.stats.bayes_mvs)

After executing this command, the system provides with the necessary information. 
Equivalently, both NumPy and SciPy come bundled with their own help system, 
info. For instance, look at the following command:

>>>numpy.info('random')

This will offer on screen a summary of all information parsed from the contents of 
all docstrings from the NumPy library associated with the given keyword (note it 
must be quoted). The user may navigate the output scrolling up and down, without 
possibility of further interaction.

This is convenient, provided we do already know the function we want to use, if 
we are unsure of its usage. But, what should we do if we don't know about the 
existence of this procedure, and suspect that it may exist? The usual Python way is 
to invoke the dir() command on a module, which offers a list of strings containing 
all possible names within. Interactive Python sessions make it easier to search for 
such information, with the possibility of navigating and performing further searches 
inside the output of help sessions. For instance, type in the following command  
at prompt:

>>>help(scipy.stats)
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The results are shown as follows:

Note the colon (:) at the end of the screen—this is an old-school prompt. The system 
is in stand-by mode, expecting the user to issue a command (in the form of a single 
key). This also indicates that there are a few more pages of help following the given 
text. If we intend to read the rest of the help file, we may press Space bar to visit the 
next page. In this way we can visit the following manual pages on this topic. It is also 
possible to navigate the manual pages scrolling one line of text at a time, by using 
the up and down arrow keys. When we are ready to quit the help session, we simply 
press Q.

It is also possible to search the help contents for a given string. In that case, at the 
prompt, we press the (/) slash key. The prompt changes from a colon into a slash,  
and we proceed to input the keyword we would like to search for.
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For example, is there a SciPy function that computes the Pearson kurtosis of a given 
dataset? At the slash prompt, we type in kurtosis and press enter. The help system 
takes us to the first occurrence of that string. To access successive occurrences of the 
string kurtosis, we press the N key (for next) until we find what we require. At 
that stage, we proceed to quit this help session (by pressing Q), and request more 
information on the function itself.

>>> help(scipy.stats.kurtosis)

The result is shown in the following screenshot:
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Scientific visualization
At this point we would like to introduce you to another resource, which we will 
be using to generate graphs for the examples – the matplotlib libraries. It may be 
downloaded from its official web page, matplotlib.org, and installed following 
the usual Python motions. There is a good online documentation in the official web 
page, and we encourage the reader to dig deeper than the few commands that we 
will use in this book. For instance, the excellent monograph Matplotlib for Python 
Developers, Sandro Tosi, Packt Publishing, provides all we shall need and more. Other 
plotting libraries are available (commercial or otherwise), which aim to very different 
and specific applications. The degree of sophistication and ease of use of matplotlib 
makes it one of the best options for generation of graphics in scientific computing.

Once installed, it may be imported as usual, with import matplotlib. Among all  
its modules, we will focus on pyplot, which provides a comfortable interface with 
the plotting libraries. For example, if we desire to plot at this point a cycle of the  
sine function, we could execute the following code snippet:

import numpy
import matplotlib.pyplot
x=numpy.linspace(0,numpy.pi,32)
fig=matplotlib.pyplot.figure()
fig.plot(x, numpy.sin(x))
fig.savefig('sine.png')

We obtain the following plot:
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Let us explain each command from the previous session. The first two commands 
are used to import numpy and matplotlib.pyplot as usual. We define an array 
x of 32 uniformly spaced floating point values from 0 to π, and define y to be the 
array containing the sine of the values from x. The command figure creates space 
in memory to store the subsequent plots, and puts in place an object of the form 
matplotlib.figure.Figure. The command plot(x, numpy.sin(x)) creates an 
object of the form matplotlib.lines.Line2D, containing data with the plot of x 
against numpy.sin(x), together with a set of axes attached to it, labeled according 
to the ranges of the variables. This object is stored in the previous Figure object. The 
last command in the session, savefig, saves the Figure object to whatever valid 
image format we desire (in this case, a Portable Network Graphics [PNG] image). If 
instead of saving to a file we desire to show on screen the result of the plot, we issue 
the fig.show() command. From now on, in any code that deals with matplotlib 
commands, we will leave the option of showing/saving open.

There are, of course, commands that control the style of axes, aspect ratio between 
axes, labeling, colors, the possibility of managing several figures at the same time 
(subplots), and many more options to display all sort of data. We will be discovering 
these as we progress with examples through the book.

Summary
In this chapter we have learned the benefits of using the combination of Python, 
NumPy, SciPy, and matplotlib as a programming environment for any scientific 
endeavor that requires mathematics; in particular, anything related to numerical 
computations. We have explored the environment, learned how to download and 
install the required libraries, used them for some quick computations, and figured 
out a few good ways to search for help. 

In the next chapter we will guide you through basic object creation in SciPy, 
including the best methods to manipulate data, or obtain information from it.





Top-level SciPy
At the top level, SciPy is basically NumPy, since both the object creation and basic 
manipulation of these objects are performed by functions of the latter library. This 
assures much faster computations, since the memory handling is done internally in 
an optimal way. For instance, if an operation must be made on the elements of a big 
multidimensional array, a novice user might be tempted to go over columns and 
rows with as many for loops as necessary. Loops run much faster when they access 
each consecutive element in the same order in which they are stored in memory. We 
should not be bothered with considerations of this kind when coding. The NumPy/
SciPy operations assure that this is the case. As an added advantage, the names of 
operations in NumPy/SciPy are intuitive and self explanatory. Code written in this 
fashion is extremely easy to understand and maintain; faster to correct or change in 
case of need. Let us illustrate this point with one introductory example.
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The scipy.misc library contains a classical image used in the image processing 
community for testing and comparison purposes – scipy.misc.lena. This is the 
name given to a 512 x 512 pixel standard test image, which has been in use since 
1973, and was originally cropped from the centerfold of November 1972 issue of 
Playboy magazine. It is a picture of Lena Söderberg, a Swedish model, shot by 
photographer Dwight Hooker. The image is probably the most widely used test 
image for all sorts of image processing algorithms (such as compression and  
noise reduction) and related scientific publications.

This image is stored as a two-dimensional array. The nth column and mth row  
entry of this array is a number that measures the grayscale value at the pixel in 
position (n+1, m+1) of the image. We access these numerical contents and store  
them in the img variable, by issuing the following command:

>>>img=scipy.misc.lena()

We may peek on some of these values, say the 7 x 3 upper corner of the  
image (7 columns, 3 rows). Instead of issuing a couple of for loops, we slice  
the corresponding portion of the image. The img[0:3,0:7] command gives  
us the following:

array([[162, 162, 162, 161, 162, 157, 163],
       [162, 162, 162, 161, 162, 157, 163],
       [162, 162, 162, 161, 162, 157, 163]])

We can use the same strategy to populate arrays, or change some of their values. For 
instance, in the next session, we change all entries of the second row of the previous 
array, between rows 2 and 6, to hold zeros, as follows:

>>>img[1,1:6]=0

>>> print img[0:3,0:7]

[[162 162 162 161 162 157 163]

 [162   0   0   0   0   0 163]

 [162 162 162 161 162 157 163]]

Object essentials
We have been introduced to the basic object – the multidimensional array (which in 
NumPy jargon is referred to as ndarray). All elements of the array are casted to the 
same datatype. We obtain this datatype by issuing the dtype command. We are able 
to access the value of any of its elements, as well as its dimension (shape), size, and 
many other properties of the array. The following session illustrates how to obtain 
some of that information:

>>>img.dtype, img.shape, img.size
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(dtype('int64'), (512, 512), 262144)

>>>img[32,67]

87

Let us interpret the outputs. The entries of img are 64-bit integer values ('int64'). 
This is essentially different on different systems, and depends on both the Python 
installation and our computer specifications. The shape of the array (note it comes 
as a Python tuple) is 512 x 512, and consequently it has 262144 entries. The grayscale 
value of the image at the 33rd column and 68th row is 87 (note that in NumPy, as in 
Python or C, all indices are zero based).

We will now introduce the basic property and methods of NumPy/SciPy  
objects – datatype and indexing.

Datatype
There are several formulae to impose the datatype. For instance, if we want all 
entries of an already-created array to be 32-bit floating point values, we may cast  
it as follows:

>>> img=scipy.misc.lena().astype('float32')

A second way is done by using the optional argument, dtype= on any array  
creation command:

>>> scores = numpy.array([101,103,84], dtype='float32')

This can be simplified even further with a third clever method (although this  
practice offers codes that are not so easy to interpret):

>>> scores = numpy.float32([101,103,84])

array([ 101.,  103.,   84.], dtype=float32)

The choice of datatypes for NumPy arrays is extremely flexible; we may choose  
the basic Python types (including bool, dict, list, set, tuple, str, and unicode), 
although for numerical computations we mainly focus on int, float, long,  
and complex.

NumPy has its own datatypes optimized for using them with ndarray instances, 
with the same precision as the previously given native types. We distinguish them 
with a trailing underscore (_) after the name. For instance, ndarray of strings could 
be initialized, as follows:

>>> a=numpy.array(['Cleese', 'Idle', 'Gilliam'], dtype='str_')

>>>a.dtype

dtype('|S7')
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Note two things; unlike its purely Python counterpart, the usage of the 'str_' 
datatype requires the name to be quoted. We could use the longer unquoted version, 
numpy.str_, instead. Also, when prompted for datatype, the system returns its 
C-derived equivalent name instead; '|S7' ('|S for strings, and 7' to indicate the 
largest size of any of its elements).

The most common way to address the usual numerical types is with the bit width 
nomenclature – boolXX, intXX, uintXX, floatXX, or complexXX, where XX indicates 
the bit size (for example, uint32 for 32-bit unsigned integers).

It is also possible to design our own datatypes, and this is where the full potential 
of the flexibility of NumPy datatypes arise. For instance, a datatype to indicate the 
name and grades of a student could be created, as follows:

>>> dt=numpy.dtype([ ('name', numpy.str_, 16), 'grades', numpy.float64, 
(2,)) ])

This means that the dt datatype has two parts – the first part is a name, that must be 
a 16 characters, numpy.str_ string. The second part, the grades, is a subarray of 
dimension 2 with scores as 64-bit floating point values. A valid array with elements 
in this datatype would then look like the following:

>>> MA141 = numpy.array([ ('Cleese', (7.0,8.0)), ('Gilliam', (9.0,10.0)) 
], dtype=dt)

Indexing
There are two basic methods to access the data in a NumPy array A, both of them 
with the same syntax, A[obj], where obj is a Python object that performs the 
selection. We are already familiar with the basic method of record access for a single 
entry. The second method is the objective of this subsection, slicing. This concept is 
what makes NumPy and SciPy so incredibly easy to manage.

The basic slice is a Python object of the form slice(start,stop,step), or in a more 
compact notation, start:stop:step. Initially, the three variables start, stop, and 
step are non-negative integer values, with start less than or equal to stop. This 
represents the sequence of indices start + (k * step), for indices k from 0 to the largest 
integer smaller or equal to the value given by (stop - start) / step. When a slice is 
placed on any of the dimensions of ndarray, it selects all entries in that dimension 
indexed by the corresponding sequence of indices. The simple examples given next 
illustrate this point:

>>> A=numpy.array([[1,2,3,4,5,6,7,8],[2,4,6,8,10,12,14,16]])

>>> print A[0:2, 0:8:2]
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[[ 1  3  5  7]

 [ 2  6 10 14]]

If start is greater than stop, a negative value of step is used to traverse the 
sequence backwards.

>>> print A[0:2, 8:0:-2]

[[ 8,  6,  4,  2]

 [16, 12,  8,  4]]

Negative values of start and stop are interpreted as n-start and n-stop 
(respectively), where n is the size of the corresponding dimension. The A[0:2,-
1:0:-2] command gives exactly the same output as the previous example.

The slice objects can be shortened by absence of start (which implies a zero if step 
is positive, or the size of the dimension if step is negative), absence of stop (which 
implies the size of the corresponding dimension in case of positive step, or zero in 
case of negative step). Absence of step implies step is equal to 1. The :: object can 
be shortened simply as :, for an easier syntax. The A[:,::-2] command then offers 
yet again the same output as the previous two.

The first nonbasic method of accessing data from an array is based on the idea of 
collecting several indices, and requesting the elements in array with those indices. 
For example, from our previous array A we would like to construct a new array  
with the elements on locations (0, 0), (0, 3), (1, 2), and (1, 5). We do so by gathering 
the x and y values of the indices in respective lists – [0,0,1,1], [0,3,2,5], and 
feeding these lists to A as an indexing object, as follows:

>>> print A[ [0,0,1,1], [0,3,2,5] ]

[ 1  4  6 12]

Note how the result loses the dimension of the primitive array, and offers a  
one-dimensional array. If we desire to capture a subarray of A with indices in  
the Cartesian product of two sets of indices, respecting the row and column choice 
and creating a new array with the dimensions of the Cartesian product, we use the 
comfortable ix_ command. For instance, if in our previous array we would like 
to obtain the subarray of dimension 2 x 2 with indices in the Cartesian product of 
indices (0, 1) by (0,3) (these are the locations (0, 0), (0, 3), (1, 0), and (1, 3)), we do  
so as follows:

>>> print A[ numpy.ix_( [0,1], [0,3] )]

[[1 4]

 [2 8]]
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The array object
At this point we are ready for a thorough study of all interesting attributes of 
ndarray for Scientific computing purposes. We have already covered a few, such as 
dtype, shape, and size. Other useful attributes are ndim (to compute the number of 
dimensions in the array), real and imag (to obtain the real and imaginary parts of 
the data, should this be formed by complex numbers), or flat (which creates a  
one-dimensional indexable iterator from the data).

For instance, if we desired to add all the values of an array together, we could 
use the flat attribute to run over all the elements sequentially, and accumulate 
all the values in a variable. A possible code to perform this task should look like 
the following code snippet (compare this code with the ndarray.sum() method 
explained in object calculation ahead):

>>> value=0; img=scipy.misc.lena()

>>> for item in img.flat: value+=item

>>> value

32518120

We have also explored some of the methods applied to arrays. These are the tools 
used to modify these objects; let it be their datatypes, their shape, or converting them 
to a different structure. We classify these methods in three big categories – array 
conversion, shape selection/manipulation, and object calculation.

Array conversion is used to cast data to different types (astype), copy arrays to  
store them under another variables (copy), fill whole arrays with scalar values 
(fill), or dump the array to a file, list, or string (tofile, tolist, tostring).

For instance, to write the contents of the img array to a text file, making sure that 
each entry of the array is printed as an integer, and that every two integers are 
separated by a white space, we could issue the following command:

>>> img.tofile("lena.txt",sep=" ",format="%i")

Note how the formatting string follows C conventions.

Shape selection/manipulation is usually employed when we require some kind 
of rearranging (swapaxes, transpose), including sorting (argsort, sort). We 
also use these methods when we need reshaping (reshape), resizing (flatten, 
ravel, resize, squeeze) or selecting (choose, compress, diagonal, nonzero, 
searchsorted, take). These methods are very powerful when used in cooperation  
with slicing operations; as a matter of fact, many of them can be used instead  
of slicing to offer our users more readable code.
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We need to say a word about the differences between flat, ravel, and flatten, 
which offer very similar outputs, since they make a huge difference of usage in terms 
of memory management. The first one, flat, creates an iterator to the elements of the 
array. Once used, it disappears from memory. The second one, ravel, returns a view 
of the one-dimensional flattened array when it can, and copies of it when requested. 
The last one, flatten, creates a copy of the flattened one-dimensional array, and 
always allocates memory for it. We use it only when we need to change the values  
of flattened arrays.

Notice also the power of the sorting methods in the session given next.  
We create an array of integers. If these values were sorted, what would be the  
order of their indices? We may obtain this information with the argsort method.  
We may even impose the sorting algorithm to be used (rather than coding it 
ourselves) – quicksort, mergesort, or heapsort. We can even sort the array  
in place, using the sort method, as follows:

>>> A=numpy.array([11,13,15,17,19,18,16,14,12,10])

>>>A.argsort(kind='mergesort')

array([9, 0, 8, 1, 7, 2, 6, 3, 5, 4])

>>>A.sort()

>>> print A

[10 11 12 13 14 15 16 17 18 19]

Array calculation methods are used to perform computations or extract information 
about our data. We have a set of methods of statistical nature that help us compute, 
for instance, maximum or minimum values of the data (max, min), as well as their 
corresponding indices (argmax, argmin). We have methods to compute the sum, 
cumulative sums, product, or cumulative products (sum, cumsum, prod, cumprod). 
It is possible to extract the average (mean), point spread (ptp), variance (var), or 
standard deviation (std). Further nonstatistical calculation methods allow us to 
compute complex conjugate of complex-valued arrays (conj), the trace of the array 
(trace, the sum of the elements in the diagonal), or even clipping the matrix (clip) 
by forcing a minimum and maximum value below and above certain thresholds.

Note how most of these methods can act on the whole array, or over each  
of its dimensions:

>>> A=numpy.array([[1,1,1],[2,2,2],[3,3,3]])

>>>A.mean()

2

>>>A.mean(axis=0)

array([ 2.,  2.,  2.])

>>>A.mean(axis=1)

array([ 1.,  2.,  3.])
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Let us also illustrate the clip command with an easy exercise based on the  
Lena image.

Compute the maximum and minimum values of Lena (img), and contrast them  
with the point spread (it should be equal to the difference between those two values). 
Create a new array A by clipping Lena so that the minimum is maintained, but the 
point spread is reduced to only 100 values.

>>>img.min(), img.max(), img.ptp()

(25, 245, 220)

>>> A=img.clip(img.min(),img.min()+100)

>>>A.min(), A.max(), A.ptp()

(25, 125, 100)

Array routines
In this section we will deal with most operations with arrays. We will classify  
them in four main categories, as follows:

•	 Routines for the creation of new arrays
•	 Routines for the manipulation of a single array
•	 Routines for the combination of two or more arrays
•	 Routines to extract information from arrays

The reader will surely realize that some operations of this kind can be carried out  
by methods, which once again shows the flexibility of Python and NumPy.

Routines for array creation
We have seen the basic command that brings an array to memory and stores it to a 
variable – A=numpy.array([[1,2],[2,1]]). The complete syntax is as follows:

array(object=,dtype=None,copy=True,order=None,subox=False,ndim=0)

Let us go over the options; object is simply the data we use to initialize the array. 
In the previous example, that object is a small 2 x 2 square matrix; we may impose 
a determinate datatype with the dtype option. The result is stored in the variable 
A; if copy is false, the returned object will be a copy of the array only if dtype is 
not equivalent to the datatype of object. The arrays are stored following a C-style 
ordering of rows and columns. If the user prefers to store the array following the 
memory style of Fortran, the order='Fortran' option should be used. The subok 
option is very subtle; if true, the array may be passed as a subclass of the object. 
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If false, then only ndarray arrays are passed. And finally, the ndim option indicates 
the smallest dimension returned by the array. If not offered, this is computed  
from object.

A set of special arrays can be obtained with the commands such as zeros, ones, 
identity, and eye. The names of these commands are quite informative, as 
mentioned next:

•	 zeros creates an array filled with zeros
•	 ones creates an array filled with ones
•	 The identity command creates a square matrix with dimension indicated 

by a single positive integer n. The entries are filled with zeros, except along 
the main diagonal ((k, k) for k from 0 to n-1), which is filled with ones.

•	 Very similar to identity is the eye command, which also constructs 
diagonal arrays. Unlike identity, eye allows specifying diagonals off the 
main one, and nonsquare arrays.

>>> Z=numpy.zeros((5,5), dtype=int)

>>> U=numpy.ones((2,2), dtype=int)

>>> I=numpy.identity(3, dtype=int)

In the first two cases, we indicated the shape of the array (as a Python tuple of 
positive integers), and the optional datatype imposition.

The syntax for eye is as follows:

numpy.eye(N,M=None,k=0,dtype=float)

The integers, N and M indicate the shape of the array, and the integer k indicates  
the index of the diagonal to populate. An index k=0 (the default) points to the  
main diagonal, a positive index refers to upper diagonals, and negative value  
refer to lower diagonals.

>>> D=numpy.eye(4,k=1) + numpy.eye(4,k=-1)

>>> print D

[[ 0.  1.  0.  0.]

 [ 1.  0.  1.  0.]

 [ 0.  1.  0.  1.]

 [ 0.  0.  1.  0.]]

With the aid of only the previous four commands and basic slicing, it is possible to 
create more complex arrays in simple ways. We propose the following challenge.
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Use exclusively the previous definitions of U and I, together with an eye array.  
How would the reader create a 5 x 5 array A of floating values with "fives" at the  
four entries (0, 0), (0, 1), (1, 0), (1, 1); "sixes" along the remaining entries of the 
diagonal; and "threes" in the two other corners?

>>> A=3.0*(numpy.eye(5,k=4) + numpy.eye(5,k=-4))

>>> A[0:2,0:2]=5*U; A[2:5,2:5]=6*I

>>> print A

[[ 5.  5.  0.  0.  3.]

 [ 5.  5.  0.  0.  0.]

 [ 0.  0.  6.  0.  0.]

 [ 0.  0.  0.  6.  0.]

 [ 3.  0.  0.  0.  6.]]

The flexibility of array creation in NumPy is even more apparent with the 
fromfunction command. For instance, if we require a 4 x 4 array where each entry 
reflects the product of its indices, we use the lambda function, (lambda i,j: i*j) 
in the fromfunction command, as follows:

>>> B=numpy.fromfunction( (lambda i,j: i*j), (4,4), dtype=int)

>>> print B

[[0 0 0 0]

 [0 1 2 3]

 [0 2 4 6]

 [0 3 6 9]]

Of great importance are the array creation commands that deal with the concept  
of masking. This is one of the most reliable methods to manipulate large arrays 
of data, and it is based on the idea of gathering those indices for which their 
corresponding entries satisfy a given condition. For example, in the array B  
shown in the preceding code snippet, we can mask all zero-valued entries  
with the B==0 command, as follows:

>>> print B==0

[[ True  True  True  True]

 [ True False False False]

 [ True False False False]

 [ True False False False]]

How would the reader update B so that those zero entries can be replaced by the  
sum of the squares of their corresponding indices?
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Multiplying a mask by a second array of the same shape offers a new array in which 
each entry is either zero (if the corresponding entry in the mask is false) or the entry 
of the second array (if the corresponding entry in the mask is true).

>>> B += numpy.fromfunction((lambda i,j:i*i+j*j), (4,4))*(B==0)

>>> print B

[[0 1 4 9]

 [1 1 2 3]

 [4 2 4 6]

 [9 3 6 9]]

But note that, in this process, we have created in each step a new array in memory 
with as many Boolean values as the size of the original array. In these toy examples 
it is not a big deal. But when handling large datasets, allocating too much memory 
could seriously slow down our computations and exhaust the memory of our 
system. Among the creation commands presented in the table, there are two  
in particular, such as putmask and where, which facilitate the management  
of resources internally, thus speeding up the process.

Note, for example, when we look for all odd-valued entries in B, the resulting  
mask has size of 16, although the interesting entries are only eight.

>>> print B%2!=0

[[False  True False  True]

 [ True  True False  True]

 [False False False False]

 [ True  True False  True]]

The numpy.where() command helps us gather precisely those entries in a more 
efficient way.

>>>numpy.where(B%2!=0)

(array([0, 0, 1, 1, 1, 3, 3, 3]), array([1, 3, 0, 1, 3, 0, 1, 3]))

If we desire to change those odd entries to, say their squares plus one, we can use  
the numpy.putmask() command instead, for a better management of memory.

>>>numpy.putmask( B, B%2!=0, B^2+1)

>>> print B

[[ 0  2  4 82]

 [ 2  2  2 10]

 [ 4  2  4  6]

 [82 10  6 82]]



Top-level SciPy

[ 30 ]

Note how the putmask procedure does update the values of B, without the explicit 
need to make an assignment.

There are three more interesting commands that create arrays in the form of meshes. 
The arange and linspace commands create uniformly spaced values between  
two numbers. In arange we specify the spacing between elements; in linspace  
we specify the desired number of elements in the mesh. The logspace command 
creates uniformly spaced values in a logarithmic scale between the logarithm of  
two numbers to the base 10. The user could think of these outputs as the support  
of univariate functions.

>>> L1=numpy.arange(-1,1,0.3)

>>> print L1

[-1.  -0.7 -0.4 -0.1  0.2  0.5  0.8]

>>>L2=numpy.linspace(-1,1,4)

>>> print L2

[-1.         -0.33333333  0.33333333  1.        ]

>>>L3= numpy.logspace(-1,1,4)

>>> print L3

[  0.1          0.46415888   2.15443469  10.        ]

>>> L3

Finally, meshgrid, mgrid, and ogrid create two two-dimensional arrays of 
dimensions n x m, containing the elements of two given one-dimensional arrays  
of dimensions n and m. It accomplished this by repeating the values of each array  
as necessary. The user could think of these outputs as the support of functions of  
two variables.

The first of these routines, meshgrid, accepts only arrays as input. The other two 
routines, mgrid and ogrid, accept only indexing objects (for example, slices). The 
difference between these last two is a matter of memory allocation; while mgrid 
allocates full arrays with all the data, ogrid only creates enough sets so that the 
corresponding mgrid command could be obtained by a proper Cartesian product,  
as follows:

>>> print numpy.meshgrid(L2,L3)

(array([[-1.        , -0.33333333,  0.33333333,  1.        ],

       [-1.        , -0.33333333,  0.33333333,  1.        ],

       [-1.        , -0.33333333,  0.33333333,  1.        ],

       [-1.        , -0.33333333,  0.33333333,  1.        ]]), array([[  
0.1       ,   0.1       ,   0.1       ,   0.1       ],
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       [  0.46415888,   0.46415888,   0.46415888,   0.46415888],

       [  2.15443469,   2.15443469,   2.15443469,   2.15443469],

       [ 10.        ,  10.        ,  10.        ,  10.        ]]))

>>> print numpy.mgrid[0:5,0:5]

[[[0 0 0 0 0]

  [1 1 1 1 1]

  [2 2 2 2 2]

  [3 3 3 3 3]

  [4 4 4 4 4]]

 [[0 1 2 3 4]

  [0 1 2 3 4]

  [0 1 2 3 4]

  [0 1 2 3 4]

  [0 1 2 3 4]]]

>>> print numpy.ogrid[0:5,0:5]

[array([[0],

       [1],

       [2],

       [3],

       [4]]), array([[0, 1, 2, 3, 4]])]

We would like to finish the subsection on array creation by showing one of the most 
useful routines for image processing and differential equations – the tile command. 
Its syntax is very simple, and is shown as follows:

tile(A, reps)

This routine presents a very effective way of tiling an array A following some 
repetition pattern reps (a tuple, a list, or another array) to create larger arrays.  
The following checkerboards exercise shows its potential.

Start with two small binary arrays – B=numpy.ones((3,3)) and 
checker2by2=numpy.zeros((6,6)), and create a checkerboard using tile  
and as few operations as possible.

The following is a possible solution:

>>>checker2by2[0:3,0:3]=checker2by2[3:6,3:6]=B

>>> numpy.tile(checker2by2,(4,4))
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Routines for the combination of two or more 
arrays
On occasion we need to combine the data of two or more arrays together to solve 
a specific problem. The core NumPy libraries contain extremely efficient routines 
to carry out these computations, and we urge the reader to get familiar with them. 
They are constructed with state-of-the-art algorithms, and they make sure that usage 
of memory is minimum and complexity is optimal. The most relevant in this set 
of routines are those that operate on arrays as if they were matrices. We then have 
matrix products (outer, inner, dot, vdot, tensordot, cross, and kron), array 
correlations (correlate, convolve), array stacking (concatenate, vstack, hstack, 
column_stack, row_stack, and dstack), and array comparison (allclose).

The reader versed in linear algebra will surely enjoy the matrix products included in 
NumPy. We postpone their usage and analysis until we cover the SciPy module on 
linear algebra in Chapter 3, SciPy for Linear Algebra.

An excellent use for correlation of arrays is, for example, for basic pattern  
matching. For instance, the image in the following example represents a binary  
array (it contains only ones and zeros). We visualize it by assigning to each location 
in the array a white pixel if the corresponding value is one, and a black pixel to zero 
values. The first array, text, contains an image of a paragraph extracted from the 
wikipedia page on Don Quixote, while a second array, letterE, contains an image 
of the letter "e". This letterE array is actually a subarray of dimension 6 x 6 obtained 
from the text array:

>>>letterE=text[14:20,169:175]

The maximum value of the correlation of both arrays offers the location of all the "e" 
letters contained in the array text:

>>> print letterE

[[0 1 1 1 1 0]

 [1 0 0 0 0 1]

 [1 1 1 1 1 1]

 [1 0 0 0 0 0]

 [1 0 0 0 0 0]

 [0 1 1 1 1 1]]

>>>corr = scipy.ndimage.correlate(text,letterE)

>>> eLocations = (corr == corr.max())
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This results in the following screenshot:

A few words about stacking operations; we have a basic concatenation routine, 
concatenate, which joins a sequence of arrays together along a pre-determined axis. 
Of course, all arrays in the sequence must have the same dimensions, otherwise it 
doesn't work. The rest of the stack operations are syntactic sugar for special cases of 
concatenate – vstack to glue arrays vertically, hstack to glue arrays horizontally, 
dstack to glue arrays in the third dimension, and so on.

Another impressive set of routines for array combination are the set operations. 
They allow the user to handle one-dimensional arrays as if they were sets, and 
perform with easiness, the Boolean operations of intersection (intersect1d), union 
(union1d), set difference (setdiff1d), or set exclusive or (setxor1d). The results of 
any of these set operations on arrays always return sorted arrays. It is also possible  
to test whether all the elements in one array belong to a second array (in1d).
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Routines for array manipulation
There is a sequence of splitting routines, designed to break up arrays into smaller 
arrays, in any given dimension – array_split, split (both basic splitting in the 
indicated axis), hsplit (horizontal split), vsplit (vertical split), and dsplit  
(in the third axis). Let us illustrate these with a simple example:

>>> print checker2by2

[[ 1.  1.  1.  0.  0.  0.]

 [ 1.  1.  1.  0.  0.  0.]

 [ 1.  1.  1.  0.  0.  0.]

 [ 0.  0.  0.  1.  1.  1.]

 [ 0.  0.  0.  1.  1.  1.]

 [ 0.  0.  0.  1.  1.  1.]]

>>>numpy.vsplit(checker2by2,3)

[array([[ 1.,  1.,  1.,  0.,  0.,  0.],

       [ 1.,  1.,  1.,  0.,  0.,  0.]]),

 array([[ 1.,  1.,  1.,  0.,  0.,  0.],

       [ 0.,  0.,  0.,  1.,  1.,  1.]]),

 array([[ 0.,  0.,  0.,  1.,  1.,  1.],

       [ 0.,  0.,  0.,  1.,  1.,  1.]])]

The behavior of a Python function on an array is usually the application of the 
function to each of the elements of the array. Note for example how the NumPy 
function sin works on an array:

>>> a=numpy.array([-numpy.pi, numpy.pi])

>>> print numpy.vstack((a, numpy.sin(a)))

[[ -3.14159265e+00   3.14159265e+00]

 [ -1.22464680e-16   1.22464680e-16]]

This happens provided the function has been properly vectorized (which is the case 
with numpy.sin). Notice the behavior with nonvectorized Python functions. Let 
us define one that computes, for each value of x, the maximum between x and 100 
without using any routine from the NumPy libraries.

# function max100
defmax100(x):
    return max(x,100)
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If we try to apply this function to the preceding array, the system raises an error,  
as follows:

>>> max100(a)

ValueError: The truth value of an array with more than one element is 
ambiguous. Use a.any() or a.all()

We need to explicitly indicate to the system when we desire to apply one of  
our functions to arrays, as well as scalars. We do that with the vectorize  
routine, as follows:

>>>numpy.vectorize(max100)(a)

array([100, 100])

For our benefit, the NumPy libraries provide a great deal of already-vectorized 
mathematical functions. Some examples are round_, fix (to round the elements of 
an array to a desired number of decimal places), angle (to provide the angle of the 
elements of an array, provided they are complex numbers), any basic trigonometric 
(sin, cos, tan, sic), exponential (exp, exp2, sinh, cosh), and logarithmic functions 
(log, log10, log2).

We also have mathematical functions that treat the array as output of 
multidimensional functions, and offer relevant computations. Some useful examples 
are diff (to emulate differentiation along any specified dimension, by performing 
discrete differences), gradient (to compute the gradient of the corresponding 
function), or cov (for the covariance of the array). Sorting the whole array according to 
the values of the first axis is also possible with the msort and sort_complex routines.

Routines to extract information from arrays
Most of the routines to extract information are statistical in nature, which include 
average (which acts exactly as the mean method), median (to compute the 
statistical median of the array on any of its dimensions, or the array as a whole), 
and computation of histograms (histogram, histogram2d, and histogramdd, 
depending on the dimensions of the array). The other important set of routines 
in this category deal with the concept of bins for arrays of dimension one. 
This is more easily explained by means of examples. Take the array A=numpy.
array([5,1,1,2,1,1,2,2,10,3,3,4,5]). The unique command finds the  
different values in any array, and presents them as sorted:

>>>numpy.unique(A)

array([ 1, 2, 3, 4, 5, 10])
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For arrays such as A, in which all the entries are nonnegative integers, we can 
visualize the array A as a sequence of eleven bins labeled with numbers from 0 to 10 
(the maximum value in the array). Each bin with label n contains the number of n's in 
the array:

>>>numpy.bincount(A)

array([0, 4, 3, 2, 1, 2, 0, 0, 0, 0, 1])

For arrays where some of the elements are not numbers (nan), NumPy has a set of 
routines that mimic methods to extract information, but disregard the conflicting 
elements – nanmax, nanmin, nanargmax, nanargmin, nansum, and so on.

>>> A=numpy.fromfunction((lambda i,j: (i+1)*(-1)**(i*j)), (4,4))

>>> print A

[[ 1.  1.  1.  1.]

 [ 2. -2.  2. -2.]

 [ 3.  3.  3.  3.]

 [ 4. -4.  4. -4.]]

>>> B=numpy.log2(A)

>>> print B

[[ 0.         0.         0.         0.       ]

 [ 1.               nan  1.               nan]

 [ 1.5849625  1.5849625  1.5849625  1.5849625]

 [ 2.               nan  2.               nan]]

>>>numpy.sum(B), numpy.nansum(B)

(nan, 12.339850002884624)
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Summary
In this chapter we have explored in depth the creation and basic manipulation of 
the object array used by SciPy, as an overview of the NumPy libraries. In particular, 
we have seen the principles of slicing and masking, which simplify the coding of 
algorithms to the point of transforming an otherwise unreadable sequence of loops 
and primitive commands, into an intuitive and self-explanatory set of object calls and 
methods. We have also learned that the nonbasic modules in NumPy are replicated 
as modules in SciPy itself. The chapter roughly followed the same structure as the 
official NumPy reference (which the reader can access at the SciPy pages at docs.
scipy.org/doc/numpy/reference). There are other good sources that cover 
NumPy with rigor, and we refer you to any of that other material for a more  
detailed coverage of this topic.

In the next five chapters we will be accessing the commands that make SciPy a 
powerful tool in numerical computing. The structure of those chapters is basically  
a reflection of the different SciPy modules, structured in an order that allows 
building applications on top of each other.





SciPy for Linear Algebra
In the following chapters, we will continue exploring the different SciPy modules 
through meaningful examples. We will start with the treatment of matrices (whether 
normal or sparse) with the modules on Linear Algebra – linalg and sparse.linalg 
– which expand and improve the NumPy module with the same name.

This discipline of mathematics mainly studies vector spaces and the linear  
mappings among them. Matrices represent objects in this field naturally, in such 
a way that any property of the underlying objects may be obtained by performing 
some operation on the representing matrices. We assume at this point that you are 
familiar with at least the basics of linear algebra, in particular with the notion of 
matrix multiplication, finding the determinant and inverse of a matrix, as well as 
their immediate applications in vector calculus.

Matrix creation
In SciPy, a matrix structure is given to any one- or two-dimensional ndarray,  
with either the matrix or mat command. The complete syntax is as follows:

numpy.matrix(data=object, dtype=None, copy=True)

In the creation of matrices, the data may be given as a string or as ndarray, which is 
very convenient. When using strings, the semicolon denotes change of row, and the 
comma denotes change of column:

>>> A=numpy.matrix("1,2,3;4,5,6")

>>> A

matrix([[1, 2, 3],

        [4, 5, 6]])
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>>> A=numpy.matrix([[1,2,3],[4,5,6]])

>>> A

matrix([[1, 2, 3],

        [4, 5, 6]])

Another way of creating a matrix from a two-dimensional array is by enforcing  
the matrix structure on a new object, copying the data of the former with the 
asmatrix routine.

We say that a matrix is sparse if most of its entries are zeros. It is a waste of memory 
to input such matrices in the usual way, especially if the dimensions are large, 
and SciPy contemplates different procedures to store such matrices effectively in 
memory. Most of the usual methods to input sparse matrices are contemplated in 
SciPy as routines in the scipy.sparse module. Some of those methods are block 
sparse row (bsr_matrix), coordinate format (coo_matrix), compressed sparse 
column or row (csc_matrix, csr_matrix), sparse matrix with diagonal storage 
(dia_matrix), dictionary with keys-based sorting (dok_matrix), and row-based 
linked list (lil_matrix).

At this point, we would like to present at least one of them: the coordinate format.  
In this format, given a sparse matrix A, we identify the coordinates of the nonzero 
elements, say n of them, and we create two n-dimensional ndarray arrays containing 
in order, the columns and rows of those entries, and a third ndarray containing the 
values of the corresponding entries. For instance, notice the following sparse matrix:

One of the nonzero entries is at the second column and first row (this is the location 
(1, 0) in Python) and has the value, 10. Another nonzero entry is at (2, 1) and has 
the value, 20. A third nonzero entry, with the value 30, is located at (3, 2). The last 
nonzero entry of A is located at (4, 3), and has the value, 40.

We then have  ndarray of rows, another ndarray of columns, and another ndarray 
of values:

>>> rows=numpy.array([0,1,2,3])

>>> cols=numpy.array([1,2,3,4])

>>> vals=numpy.array([10,20,30,40]) 
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We create the matrix A as follows:

>>> import scipy.sparse

>>> A=scipy.sparse.coo_matrix( (vals,(rows,cols)) )

>>> print A; print A.todense()

  (0, 1)  10.0

  (1, 2)  20.0

  (2, 3)  30.0

  (3, 4)  40.0

[[  0.  10.   0.   0.   0.]

 [  0.   0.  20.   0.   0.]

 [  0.   0.   0.  30.   0.]

 [  0.   0.   0.   0.  40.]]

Notice how the todense method turns sparse matrices into full matrices. Also note 
that it obviates any row or column of full zeros following the last nonzero element.

Associated to each input method, we have functions that identify sparse matrices 
of each kind. For instance, if we suspect that A is a sparse matrix in the coo_matrix 
format, we may use the following command:

>>> scipy.sparse.isspmatrix_coo(A)

True

All the array routines cast to matrices, provided the input is a matrix. This is very 
convenient for matrix creation, especially thanks to stacking commands (hstack, 
vstack, tile). Besides these, matrices enjoy one more amazing stacking command, 
bmat. This routine allows the stacking of matrices by means of strings, making use  
of the convention "semicolon for change of row, comma for change of column",  
and allowing matrix names inside of the string to be evaluated. The following 
example is enlightening:

>>> B=numpy.mat(numpy.ones((3,3)))

>>> W=numpy.mat(numpy.zeros((3,3)))

>>> print numpy.bmat('B,W;W,B')

[[ 1.  1.  1.  0.  0.  0.]

 [ 1.  1.  1.  0.  0.  0.]

 [ 1.  1.  1.  0.  0.  0.]

 [ 0.  0.  0.  1.  1.  1.]

 [ 0.  0.  0.  1.  1.  1.]

 [ 0.  0.  0.  1.  1.  1.]]
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The main difference between arrays and matrices is in regards to the behavior of  
the product of two objects of the same type. For example, multiplication between  
two arrays means "element-wise multiplication of the entries of the two arrays",  
and requires two objects of the same shape.

>>> a=numpy.array([[1,2],[3,4]])

>>> a*a

array([[ 1,  4],

       [ 9, 16]])

On the other hand, matrix multiplication requires a first matrix with shape (m, n), 
and a second matrix with shape (n, p)—the number of columns in the first matrix 
must be the same as the number of rows in the second matrix. This operation offers  
a new matrix of shape (m, p), as shown in the following diagram:

The following is the code snippet:

>>> A=numpy.mat(a)

>>> A*A

matrix([[ 7, 10],

        [15, 22]])

If we desire to perform an element-wise multiplication of the elements of two 
matrices, we may do so with the versatile numpy.multiply command, as follows:

>>> numpy.multiply(A,A)

matrix([[ 1,  4],

        [ 9, 16]])

The other notable difference between arrays and matrices is in regards to their 
shapes. While we allow one-dimensional arrays, their corresponding matrices  
must have two dimensions. This is very important to have in mind when we 
transpose either object.

>>> a=numpy.arange(5); A=numpy.mat(a)

>>> a.shape, A.shape, a.transpose().shape, A.transpose().shape

((5,), (1, 5), (5,), (5, 1))
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SciPy extends the basic applications that we access by offering interesting matrix 
creation commands, and many related methods. It also allows us the opportunity  
to speed up computations in the cases where special matrices are used.

The scipy.linalg module allows the creation of the special matrices such as, 
block diagonal matrices from provided arrays (block_diag), circulant matrices 
(circulant), companion matrices (companion), Hadamard matrices (hadamard), 
Hankel matrices (hankel), Hilbert and inverse Hilbert matrices (hilbert, 
invhilbert), Leslie matrices (leslie), square Pascal matrices (pascal),  
Toeplitz matrices (toeplitz), and lower-triangular matrices (tri).

Let's see an example on optimal weightings.

Suppose we are given p objects to be weighed in n weighings with a two-pan 
balance. We create an n x p matrix of plus-minus ones, where a positive value in the 
position (i, j) indicates that the jth object is placed in the left pan of the balance in the 
ith weighing, and a negative value indicates that the jth object is placed in the right 
pan of the balance in the ith weighing.

It is known that optimal weighings are designed by submatrices of Hadamard 
matrices. For the problem of designing an optimal weighing for eight objects 
with three weighings, we could then explore different choices of three rows of 
a Hadamard matrix of order eight. The only requirement is that the sum of the 
elements on the row of the matrix is zero (so that the same number of objects is 
placed on each pan). With some smart slicing, we can accomplish just that:

>>> A=scipy.linalg.hadamard(8)

>>> zero_sum_rows = (numpy.sum(A,0)==0)

>>> B=A[zero_sum_rows,:]

>>> print B[0:3,:]

[[ 1 -1  1 -1  1 -1  1 -1]

 [ 1  1 -1 -1  1  1 -1 -1]

 [ 1 -1 -1  1  1 -1 -1  1]]

The scipy.sparse module has its own set of special matrices. The most common  
are matrices of ones along diagonals (eye), identity matrices (identity), matrices 
from diagonals (diags, spdiags), block diagonal matrices from sparse matrices 
(block_diag), matrices from sparse sub-blocks (bmat), column-wise and row-wise 
stacks (hstack, vstack), and random matrices of given shape and density with 
uniformly distributed values (rand).
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Matrix methods
Besides inheriting all the array methods, matrices enjoy four extra attributes – T  
for transpose, H for conjugate transpose, I for inverse, and A to cast as ndarray.

>>> A = numpy.matrix("1+1j, 2-1j; 3-1j, 4+1j")

>>> print A.T; print A.H

[[ 1.+1.j  3.-1.j]

 [ 2.-1.j  4.+1.j]]

[[ 1.-1.j  3.+1.j]

 [ 2.+1.j  4.-1.j]]

Operations between matrices
We have briefly covered the most basic operation between two matrices, the matrix 
product. For any other kind of product we resort to the basic utilities in the NumPy 
libraries – dot product for arrays or vectors (dot, vdot), inner and outer products of 
two arrays (inner, outer), tensor dot product along specified axes (tensordot), or 
the Kronecker product of two arrays (kron).

Let's see an example on creation of orthonormal bases.

Create an orthonormal basis of the nine-dimensional real space from an  
orthonormal basis of the three-dimensional real space.

For example, we choose the orthonormal basis formed by the vectors.

We compute the desired basis by collecting these vectors in a matrix and using  
a Kronecker product, as follows:

>>> mu=1/numpy.sqrt(2)

>>> A=numpy.matrix([[mu,0,mu],[0,1,0],[mu,0,-mu]])

>>> B=scipy.linalg.kron(A,A)
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The columns of the matrix B shown previously, give us an orthonormal basis 
directly. For instance, the vectors with odd indices would be the columns of  
the following submatrix:

>>> print B[:,0:-1:2]

[[ 0.5  0.5  0.   0.5]

 [ 0.   0.   0.   0. ]

 [ 0.5 -0.5  0.   0.5]

 [ 0.   0.   0.   0. ]

 [ 0.   0.   1.   0. ]

 [ 0.  -0.   0.   0. ]

 [ 0.5  0.5  0.  -0.5]

 [ 0.   0.   0.  -0. ]

 [ 0.5 -0.5  0.  -0.5]]

Functions on matrices
The scipy.linalg module offers a useful set of functions on matrices. The basic two 
commands on square matrices are inv (for the inverse of a matrix) and det (for the 
determinant). The power of a square matrix is given by the normal exponentiation; 
that is, if A is a square matrix, then A**2 indicates the matrix product A*A.

>>> A=numpy.matrix("1,1j;21,3")

>>> print A**2; print numpy.asarray(A)**2

[[-1.+0.j  0.+4.j]

 [ 0.+8.j  7.+0.j]]

[[ 1.+0.j -1.+0.j]

 [-4.+0.j  9.+0.j]]

More advanced commands compute matrix functions that rely on power series 
representation of expressions involving matrix powers, such as the matrix 
exponential (for which there are three possibilities – expm, expm2, and expm3), the 
matrix logarithm (logm), matrix trigonometric functions (cosm, sinm, tanm), matrix 
hyperbolic trigonometric functions (coshm, sinhm, tanhm), the matrix sign function 
(signm), or the matrix square root (sqrtm).



SciPy for Linear Algebra

[ 46 ]

Notice the difference between the application of the normal exponential function on a 
matrix, and the result of a matrix exponential function. In the former case, we obtain 
the application of numpy.exp to each entry of the matrix; in the latter, we actually 
compute the exponential of the matrix following the power series representation:

The following is the code snippet:

>>> a=numpy.arange(0,2*numpy.pi,1.6)

>>> A = scipy.linalg.toeplitz(a)

>>> print A

[[ 0.   1.6  3.2  4.8]

 [ 1.6  0.   1.6  3.2]

 [ 3.2  1.6  0.   1.6]

 [ 4.8  3.2  1.6  0. ]]

>>> print numpy.exp(A)

[[   1.            4.95303242   24.5325302   121.51041752]

 [   4.95303242    1.            4.95303242   24.5325302 ]

 [  24.5325302     4.95303242    1.            4.95303242]

 [ 121.51041752   24.5325302     4.95303242    1.        ]]

>>> print scipy.linalg.expm(A)

[[ 1271.76972856   916.49316549   916.63015271  1271.70874469]

 [  916.49316549   660.86560972   660.5306514    916.63015271]

 [  916.63015271   660.5306514    660.86560972   916.49316549]

 [ 1271.70874469   916.63015271   916.49316549  1271.76972856]]

For sparse square matrices, we have an optimized inverse function, as well as a 
matrix exponential – scipy.sparse.linalg.inv, scipy.sparse.linalg.expm.

For general matrices, we have the basic norm function (norm), as well as two versions 
of the Moore-Penrose pseudoinverse (pinv and pinv2).

Once again, we need to emphasize how important it is to rely on these functions, 
rather than coding their equivalent expressions manually. For instance, note the norm 
computation of vectors or matrices, scipy.linalg.norm. Let us show, by example, the 
two-norm of a two-dimensional vector v=numpy.matrix([x,y]), where at least one of 
the x and y values is extremely large—large enough so that x*x overflows.
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>>> x=10**100; y=9; v=numpy.matrix([x,y])

>>> scipy.linalg.norm(v,2)    # the right method

9.9999999999999982e+99

>>> numpy.sqrt(x*x+y*y)       # the wrong method

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

AttributeError: sqrt

Eigenvalue problems and matrix 
decompositions
Another set of operations required on matrices is related to the computation and 
handling of eigenvalues and eigenvectors of square matrices. These two problems 
rank among the most complex operations that we can perform on square matrices, 
and extensive research has been put to obtaining good algorithms with low 
complexity and optimal usage of memory resources. Scipy has state-of-the-art  
code for implementing these ideas.

For the computation of eigenvalues, the scipy.linalg module provides with  
the three routines, such as eigvals (for any ordinary or general eigenvalue 
problem), eigvalsh (if the matrix is symmetric of complex Hermitian), and 
eigvals_banded (if the matrix is banded). To compute the eigenvectors,  
we also have three corresponding choices – eig, eigh, and eigh_banded.

The syntax in all cases is very similar. For example, for the general case of 
eigenvalues, we use the following line of code:

eigvals(A, B=None, overwrite_a=False)

The matrix A must be square, of course. It should be the only parameter passed to the 
routine if we wish to solve an ordinary eigenvalue problem. If we wish to generalize 
it, we may provide with an extra square matrix (of the same dimensions as matrix A). 
This is passed in the B parameter.

The module also offers an extensive collection of functions that compute different 
decompositions of matrices, as follows:

•	 Pivoted LU decomposition: We can use the lu and lufactor commands.
•	 Singular value decomposition: We can use the svd command. To compute 

the singular values, we issue svdvals. If we wish to compose the sigma 
matrix in the singular value decomposition from its singular values, we do so 
with the diagsvd routine. If we wish to compute an orthogonal basis for the 
range of a matrix using SVD, we can do so with the orth command.
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•	 Cholesky decomposition: We can use cholesky, cholesky_banded,  
cho_factor.

•	 QR and QZ decompositions: We can use the qr and qz commands.  
If we wish to multiply a matrix with the matrix Q of a decomposition,  
we use the syntactic sugar qr_multiply, rather than performing this 
procedure in two steps.

•	 Schur and Hessenberg decompositions: We can use schur and  
Hessenberg. If we wish to convert a real Schur form to complex,  
we have the rsf2csf routine.

At this point we have an interesting application, which makes use of some of the 
routines explained so far, image compression.

Image compression via the singular value 
decomposition
This is a very simple application where a square image A of size n x n, stored as 
ndarray is regarded as a matrix, and singular value decomposition (SVD) is 
performed on it.

From all the singular values of s we choose a fraction, together with their 
corresponding left and right singular vectors u, v. We compute a new matrix  
by collecting them according to the formula given in the following diagram:

Note, for example, how much alike are the original (512 singular values)  
and an approximation using only 32 singular values:

import scipy
from scipy.linalg import svd
import matplotlib.pyplot as plt
img=scipy.misc.lena()
U,s,Vh=svd(img)      # Singular Value Decomposition
A = numpy.dot( U[:,0:32],  # use only 32 singular values
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          numpy.dot( numpy.diag(s[0:32]),
                     Vh[0:32,:]))
plt.subplot(121,aspect='equal'); plt.imshow(img); plt.gray()
plt.subplot(122,aspect='equal'); plt.imshow(A)

This produces the following images, of which the left one is the original image  
and the right one shows the approximation via 32 singular values:

The obvious advantage comes upon the realization that for the full image we  
need 512 times 512 coefficients (that is 262,144 floating point units), whereas for  
this approximation via SVD, we only need 32,800 ((2 * 32 * 512) + 32) coefficients.  
This is one-eighth of the original information.

Solvers
One of the main applications of linear algebra is to the solution of large systems  
of linear equations. For the basic systems of the form Ax=b, for any square matrix  
A and a general matrix b (with as many rows as columns in A), we have two generic 
methods to find x (solve for dense matrices and spsolve for sparse matrices), with 
the following syntax:

solve(A, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_
b=False, debug=False)
spsolve(A, b[, permc_spec, use_umfpack])

There are solvers that are more sophisticated in SciPy, with enhanced performance 
for situations in which the structure of the matrix A is known. For dense matrices  
we have three commands in the scipy.linalg module – solve_banded  
(for banded matrices), solveh_banded (if besides banded, A is Hermitian),  
and solve_triangular (for triangular matrices).
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When a solution is not possible (for example, if A is a singular matrix), it is still 
possible to obtain a matrix x that minimizes the norm of b-Ax in the least-squares 
sense. We can compute such a matrix with the lstsq command, which has the 
following syntax:

lstsq(A, b, cond=None, overwrite_a=False, overwrite_b=False)

The output of this function is a tuple that contains the following:

•	 The solution found (as ndarray)
•	 The sum of residues (as another ndarray)
•	 The effective rank of the matrix A
•	 The singular values of the matrix A (as another ndarray)

Let us illustrate this routine with a simple example, to solve the following system:

The following is the code snippet:

>>> A=numpy.mat(numpy.eye(3,k=1))

>>> b=numpy.mat(numpy.arange(3)).T

>>> xinfo=scipy.linalg.lstsq(A,b)

>>> print xinfo[0].T      # output the solution

[[ 0.  0.  1.]]

The overwrite_ options are designed to enhance performance of the algorithms, 
and should be used carefully, since they destroy the original data.

The truly fastest solvers coded in SciPy are based upon decomposition of  
matrices. Reducing the system into something simpler easily solves huge and  
really complicated systems of linear equations. We may do so at this point using the 
decompositions presented in the previous section, but of course the SciPy philosophy 
is to help us deal with all the nuisances of memory and resources internally. We then 
have the extra solvers coded in this module, such as lu_solve (for solutions based 
on LU decompositions), and cho_solve, cho_solve_banded (for solutions based on 
Cholesky decompositions).
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There are also solvers for more complex matrix equations – the Sylvester equation 
(solve_sylvester), both the continuous and discrete algebraic Riccati equations 
(solve_continuous_are, solve_discrete_are); and both the continuous and 
discrete Lyapunov equations (solve_discrete_lyapunov, solve_lyapunov).

Most of the matrix decompositions and solutions to eigenvalue problems are 
contemplated for sparse matrices in the scipy.sparse.linalg module, with  
a similar naming convention but much more robust use of computer resources  
and error control.

Summary
This chapter explored the treatment of matrices (whether normal or sparse) with 
the modules on linear algebra – linalg and sparse.linalg, which expand and 
improve the NumPy module with the same name.





SciPy for Numerical Analysis
All the different areas of numerical analysis are contemplated in some SciPy module. 
For example, in order to compute values of special functions we use the scipy.
special module. The scipy.interpolate module takes care of interpolation, 
extrapolation, and regression. For optimization, we have the scipy.optimize 
module, and finally, for numerical evaluation of integrals, we have the scipy.
integrate module. This last module serves as the interface to perform numerical 
solutions of ordinary differential equations as well.

Evaluation of special functions
The scipy.special module contains numerically stable definitions of useful 
functions. We would like to point out that often the straightforward evaluation 
of a function at a single value is not very efficient. For instance, we would rather 
use a Horner scheme to find the value of a polynomial at a point, instead of the 
raw formula. NumPy and SciPy modules ensure that this optimization is always 
guaranteed with the definition of all its functions, whether by means of Horner 
schemes or with more advanced techniques.

Convenience and test functions
All the convenience functions are designed to facilitate a computational environment 
where the user does not need to worry about relative errors. The functions seem to 
be pointless at first sight, but behind their codes, there are state-of-the-art ideas that 
offer faster and more reliable results.

We have convenience functions beyond the ones defined in the NumPy libraries to 
deal with trigonometric functions in degrees (cosdg, sindg, tandg, cotdg); to compute 
angles in radians from their expressions in degrees, minutes and seconds (radian); 
common powers (exp2 for 2**x, and exp10 for 10**x); and common functions for small 
values of the variable (log1p for log(1 + x), expm1 for exp(x)-1, and cosm1 for cos(x)-1).
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For instance, in the following code snippet, the log1p function computes the  
natural logarithm of 1 + x. Why not simply add 1 to the value of x, and then  
take the logarithm instead? Let us compare:

>>> a=scipy.special.exp10(-16)

>>> numpy.log(1+a)

0.0

>>> scipy.special.log1p(a)

9.9999999999999998e-17

While the absolute error of the first computation is small, the relative error  
is 100 percent.

In the same way as Lena image is regarded as the performance test in image 
processing, we have a few functions that are used to test different algorithms in 
different scenarios. For instance, it is customary to test minimization codes against 
the Rosenbrock's banana function:

The corresponding optimization module, scipy.optimize has a routine to 
accurately evaluate this function (rosen), its derivative (rosen_der), its Hessian 
matrix (rosen_hess), or the product of the latter with a vector (rosen_hess_prod).

Univariate polynomials
Polynomials are defined in SciPy as a NumPy class, poly1d. This class has a handful 
of methods associated to compute the coefficients of the polynomial (coeffs or 
simply c), to compute the roots of the polynomial (r), to compute its derivative 
(deriv), to compute the symbolic integral (integ), to obtain the degree (order or 
simply o), and a method (variable) that provides with a string holding the name  
of the variable used in the proper definition.

In order to define a polynomial, we must indicate either its coefficients or its roots:

>>> P1=numpy.poly1d([1,0,1])           # using coefficients

>>> print P1

   2

1 x + 1
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>>> print P1.r; print P1.o; P1.deriv() # roots,order,derivative

[ 0.+1.j  0.-1.j]

2

poly1d([2, 0])

>>> P2=numpy.poly1d([1,1,1], True)     # using roots

>>> print P2

   3     2

1 x - 3 x + 3 x - 1

We may evaluate polynomials by treating them either as (vectorized) functions,  
or with the __call__ method:

>>> P1( numpy.arange(10) )           # evaluate at 0,1,...,9

array([ 1,  2,  5, 10, 17, 26, 37, 50, 65, 82])

>>> P1.__call__(numpy.arange(10))    # same evaluation

array([ 1,  2,  5, 10, 17, 26, 37, 50, 65, 82])

There are also a handful of routines associated to polynomials – roots (to compute 
zeros), polyder (to compute derivatives), polyint (to compute integrals), polyadd 
(to add polynomials), polysub (to subtract polynomials), polymul (to multiply 
polynomials), polydiv (to perform polynomial division), polyval (to evaluate 
polynomials), and polyfit (to compute the best fit polynomial of certain order  
for two given arrays of data).

The usual binary operators +, -, *, and / perform the corresponding operations 
with polynomials. In addition, once a polynomial is created, any list of values that 
interacts with them is immediately casted to a polynomial. Therefore, the following 
four commands are equivalent:

•	 numpy.polyadd(P1, numpy.poly1d([2,1]))

•	 numpy.polyadd(P1, [2,1])

•	 P1 + numpy.poly1d([2,1])

•	 P1 + [2,1]

Note how the polynomial division offers both quotient and reminder. For example:

>>> P1/[2,1]

(poly1d([ 0.5 , -0.25]), poly1d([ 1.25]))
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This reads as follows:

A family of polynomials is said to be orthogonal with respect to an inner product 
if for any two polynomials in the family, their inner product is zero. Sequences of 
these functions are used as the backbone of extremely fast algorithms of quadrature 
(for numerical integration of general functions). The scipy.special module 
contains both poly1d definitions, and fast evaluation of the families of orthogonal 
polynomials, such as Legendre (legendre), all Chebyshev polynomials (chebyt, 
chebyu, chebyc, chebys), Jacobi (jacobi), Laguerre and its generalized version 
(laguerre and genlaguerre), Hermite and its normalized version (hermite and 
hermitenorm), and Gegenbauer (gegenbauer). There are also shifted versions of 
some of them (sh_legendre, sh_chebyt, and so on).

The usual evaluation of polynomials can be improved for orthogonal polynomials; 
thanks to their rich mathematical structure. In these cases, we never evaluate them 
with the generic call methods presented previously. Instead, we employ the eval_ 
syntax. For example, for Jacobi polynomials, we use the following:

eval_jacobi(n, alpha, beta, x)

In order to obtain the graph of the Jacobi polynomial of order n = 3, for alpha = 0, 
beta = 1, for a thousand values of x uniformly spaced from -1 to 1, we could issue 
the following command (output not shown):

>>> x=numpy.linspace(-1,1,1000)

>>> matplotlib.pyplot.plot(x,eval_jacobi(3,0,1,x))

The gamma function
The gamma function is a logarithmic, convex, smooth function operating on complex 
numbers, which interpolates the factorial function for all nonnegative integers. 
It is not defined at zero or any negative integer. This is the most common special 
function, and is widely used in many different applications, either by itself or as the 
main ingredient in the definition of many other functions. Concrete applications of 
the gamma function spread to such diverse fields as quantum physics, astrophysics, 
statistics, or fluid dynamics.
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The gamma function is defined by the improper integral, shown as follows:

Evaluation of gamma at integer values gives shifted factorials, and actually, that is 
precisely how the factorials are coded in SciPy.

The scipy.special module has algorithms to obtain fast evaluation of the  
gamma function at any other permissible values. It also contains routines to  
perform evaluation of the most common compositions of the gamma functions 
appearing in the literature – gammaln for the natural logarithm of the absolute  
value of gamma, rgamma for the value one over gamma, beta for quotients, and 
betaln for the natural logarithm of the latter. We also have implementations of  
the logarithm of its derivative (psi).

An obvious application of gamma functions is the ability to access computations that 
are virtually impossible for a computer if approached in a direct way. For instance, 
in statistical applications we often work with ratios of factorials. If these factorials are 
too large for the precision of the computer, we resort to expressions involving their 
logarithms instead. But still, computing ln(a! / b!) may prove an impossible task (try, 
for example with a = 10**15 and b = a-10**10). An elegant solution uses the digamma 
function psi by an application of the mean value theorem on the ln(gamma(x)) 
function and proper estimation, we obtain the excellent approximation (for this  
case of choice of a and b).

The following is the code:

>>> 10^10*scipy.special.psi(10**15)

345387763949.10681

The Riemann zeta function
Of huge impact in analytic number theory, and with applications to physics and 
probability theory, we have the Riemann zeta function, which computes p-series  
for any complex value p:
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The definition coded in SciPy allows a more flexible generalization of this function, 
as follows:

Airy (and Bairy) functions
These are the solutions to the Stokes equation, as shown in the following diagram:

This equation has two linearly independent solutions, both of them defined as an 
improper integral for real values of the independent variable. The airy command 
computes both functions (Ai and Bi) as well as their corresponding derivatives 
(Aip, Bip). In the following code, we take advantage of the contourf command in 
matplotlib.pyplot, to present an image of the real part of the output of the Bairy 
function Bi, for an array of 801 x 801 complex values uniformly spaced in the square 
from -4-4j to 4+4j. We also offer this graph as a surface plot using the mplot3d 
module of mpl_toolkits:

import mpl_toolkits.mplot3d
x=numpy.mgrid[-4:4:100j,-4:4:100j]
z=x[0]+1j*x[1]
(Ai, Aip, Bi, Bip) = scipy.special.airy(z)
steps = range(int(Bi.real.min()), int(Bi.real.max()),6)
fig=matplotlib.pyplot.figure()
subplot1=fig.add_subplot(121,aspect='equal')
subplot1.contourf(x[0], x[1], Bi.real, steps)
subplot2=fig.add_subplot(122,projection='3d')
subplot2.plot_surface(x[0],x[1],Bi.real)
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The output is as follows:

Bessel and Struve functions
Bessel functions are both of the canonical solutions to Bessel's homogeneous 
differential equations.

These equations arise naturally in the solution of Laplace's equation in cylindrical 
coordinates. The solutions of the non-homogeneous Bessel differential equation 
shown in the following diagram are called Struve functions:

In either case, the order of the equation is the complex number alpha, and acts as a 
parameter. Depending on the canonical solution and the order, the Bessel and Struve 
functions are addressed (and computed) differently.
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For Bessel functions, we have algorithms to produce the first kind (jv), the second 
kind (yn, yv), Hankel functions of the first and second kind (hankel1, hankel2),  
and the modified Bessel functions of the first and second kind (iv, kn, kv). Their 
syntax is similar in all cases – first parameter is the order, and second parameter  
the independent variable. n in the definition indicates that an integer is to be used  
as the order (since they are optimally coded for that situation).

>>>scipy.special.jn(5,numpy.pi)

0.71044976796351567

The module also contains fast versions of the most common Bessel functions (those 
of orders 0 and 1) – j0(x), j1(x)—first kind—y0(x), y1(x)—second kind, and so 
on. There are definitions of the spherical Bessel functions such as sph_jn(n,z), sph_
yn(z); the Riccati-Bessel functions such as riccati_jn(n,x) and riccati_yn(n,x); 
and derivatives of all the basic ones such as jvp, yvp, kvp, ivp, h1vp, and h2vp.

For Struve functions, we have fast algorithms to compute solutions of the differential 
equation of order v – (struve(v,x), modstruve(v,x)).

Other special functions
There are more special functions included in this module, of great use in many 
applications to both pure and applied mathematics. An exhaustive list would be too 
large for the scope of this chapter, and we encourage exploring the different utilities 
for each set of special functions. Among the most interesting ones we have elliptic 
functions, Gauss' hypergeometric functions, parabolic cylinder functions, Mathieu 
functions, spheroidal wave functions, and Kelvin functions.

Interpolation and regression
Interpolation is a basic method in numerical computation that is obtained from a 
discrete set of data points, some higher order structure that contains the previous 
data. The best known example is the interpolation of a sequence of points (x_k, y_k) 
in a plane to obtain a curve that goes through all the points in the order dictated 
by the sequence. If the points in the previous sequence are in the right position and 
order, it is possible to find a univariate function, y = f(x) for which y_k = f(x_k). It 
is often reasonable to request this interpolating function to be a polynomial, or a 
rational function, or a more complex functional object. Interpolation is also possible 
in higher dimensions, of course. The objective of the scipy.interpolate module 
is precisely to offer a complete set of optimally coded applications to address this 
problem in different settings.
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Let us address the most naïve way of interpolating data to obtain a polynomial, 
Lagrange interpolation. Given a sequence of different x values of size n, and a 
sequence of arbitrary real values y, of the same size n, we seek a polynomial p(x)  
of the degree of n-1 at the most that satisfies the n constraints p(x[k])=y[k] for all k 
from 0 to n-1. The following code illustrates how to obtain a polynomial of degree 9 
that interpolates the 10 uniformly spaced values of sine in the interval [-1,1]:

import scipy.interpolate
x=numpy.linspace(-1,1,10); xn=numpy.linspace(-1,1,1000)
y=numpy.sin(x)
polynomial=scipy.interpolate.lagrange(x, numpy.sin(x))
matplotlib.pyplot.plot(xn,polynomial(xn),x,y,'or')

We will obtain the following plot showing Lagrange interpolation:

The issues with Lagrange interpolation are numerous. The first obvious drawback 
arises since the user cannot specify the degree of the interpolation; this depends 
solely on the data. The procedure is also highly unstable numerically, especially 
for datasets with sizes over 20 points. This issue can be addressed by allowing the 
algorithm to depend on different properties of the dataset, rather than just the size 
and location of the points.
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Another inconvenience occurs if we need to update the dataset by adding a few more 
instances; the procedure needs to be repeated again from the beginning. This proves 
impractical if the datasets are increasing in size, and the updating is frequent. To 
address this issue, BarycentricInterpolator has the add_xi and set_yi methods. 
For example, in the next session we start by interpolating 10 uniformly spaced 
values of the sine function between 1 and 10. Once done, we update the interpolating 
polynomial with 10 more uniformly spaced values between 1.5 and 10.5:

>>> x=numpy.linspace(1,10,10); y=numpy.sin(x)

>>> Polynomial=scipy.interpolate.BarycentricInterpolator(x,y)

>>> x=numpy.linspace(1.5,10.5,10); y=numpy.sin(x)

>>> Polynomial.add_xi(x,y)

It is also possible to interpolate data not only by point location, but also with 
derivatives at those locations. The KrogInterpolator command allows it, by 
including repeated x values, and indicating on the corresponding y values, the 
location and successive derivatives in order. For instance, if we desire to construct a 
polynomial that is zero at the origin, one at x = 1, two at x = 2, and has horizontal 
tangent lines at each of these three locations, we issue the following commands:

x=numpy.array([0,0,1,1,2,2]); y=numpy.aray([0,0,1,0,2,0])
interp=scipy.interpolate.KrogInterpolator(x,y)
xn=numpy.linspace(0,2,20)   # evaluate the polynomial in a larger set
matplotlib.pyplot.plot(x,y,'o',xn,interp(xn),'r')

This renders the following graph:
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More advanced one-dimensional interpolation is possible with piecewise 
polynomials (PiecewisePolynomial). This allows control over the degrees of 
different pieces, as well as the derivatives at their intersections. Other interpolation 
options in the scipy.interpolate module are PCHIP monotonic cubic interpolation 
(pchip), or even univariate splines (InterpolatedUnivariateSpline).

Let us examine an example with the latter. Its syntax is as follows:

InterpolatedUnivariateSpline(x, y, w=None, bbox=[None, None], k=3)

The arrays x and y contain the dependent and independent data, respectively. The 
array w contains positive weights for spline fitting. The two-sequence bbox specifies 
the boundary of the approximation interval. The last option indicates the degree of 
the smoothing polynomials (k).

For instance, we desire to interpolate five points as shown in the following session. 
These points are ordered by strictly increasing x values. We need to perform this 
interpolation with four cubic polynomials (one for every two consecutive points),  
in such a way that at least the first derivative of each two consecutive pieces agree  
on their intersection. We will proceed as follows:

x=numpy.arange(5); y=numpy.sin(x)
xn=numpy.linspace(0,4,40)
interp=scipy.interpolate.InterpolatedUnivariateSpline(x,y)
matplotlib.pyplot.plot(x,y,'.',xn,interp(xn))

This offers the following plot showing interpolation with univariate splines:
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SciPy excels at interpolating in two-dimensional grids as well. It performs well with 
simple piecewise polynomials (LinearNDInterpolator), with piecewise constants 
(NearestNDInterpolator), or with more advanced splines (BivariateSpline). 
It is capable of carrying spline interpolation on rectangular meshes in a plane 
(RectBivariateSpline) or on the surface of a sphere (RectSphereBivariateSpline). 
For unstructured data, besides basic BivariateSpline, it is capable of computing 
smooth approximations (SmoothBivariateSpline) or more involved weighted  
least-squares splines (LSQBivariateSpline).

The following code creates a 10 x 10 grid of uniformly spaced points in the square 
from (0, 0) to (9, 9), and evaluates the function, sin(x) * cos(y) on them. We use 
these points to create a BivariateSpline, and evaluate the resulting function on the 
square for all values.

x=y=numpy.arange(10)
f=(lambda i,j: numpy.sin(i)*numpy.cos(j))  # function to interpolate
A=numpy.fromfunction(f, (10,10))           # generate samples
spline=scipy.interpolate.RectBivariateSpline(x,y,A)
fig=matplotlib.pyplot.figure()
subplot=fig.add_subplot(111,projection='3d')
xx=numpy.mgrid[0:9:100j, 0:9:100j]         # larger grid for plotting
A=spline(numpy.linspace(0,9,100), numpy.linspace(0,9,100))
subplot.plot_surface(xx[0],xx[1],A)

The output is as follows, which shows interpolation of 2D data with bivariate splines:
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Regression is similar to interpolation. In this case, we assume that the data is 
imprecise, and we require an object of pre-determined structure to fit the data as 
closely as possible. The most basic example is univariate polynomial regression 
to a sequence of points. We obtain that with the polyfit command, which we 
introduced before briefly. For instance, we would like to compute the regression  
line in the least-squares sense, to a sequence of 10 uniformly spaced points on the 
interval from 0 to π/2 and their values under the sine function.

x=numpy.linspace(0,1,10)
y=numpy.sin(x*numpy.pi/2)
line=numpy.polyfit(x,y,deg=1)
matplotlib.pyplot.plot(x,y,'.'.x,numpy.polyval(line,x),'r')

This gives the following plot showing linear regression with polyfit:

Curve fitting is possible also with splines, by using the parameters wisely. For 
example, with univariate spline fitting that we introduced before, we can play 
around with the weights, smoothing factor, the degree of the smoothing spline,  
and so on. On the same data as the previous example, if we desire to fit to for 
example, a parabolic spline, we could issue the following code:

spline=scipy.interpolate.UnivariateSpline(x,y,k=2)
xn=numpy.linspace(0,1,100)
matplotlib.pyplot.plot(x,y,'.', xn, spline(xn))
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This gives the following graph showing curve fitting with splines:

For regression, with the point of view of curve fitting, there is a generic routine, 
curve_fit in the scipy.optimize module. This routine minimizes the sum of 
squares of a set of equations using the Levenberg-Marquardt algorithm, and offers 
a best fit from any kind of functions (not only polynomials or splines). The syntax is 
simple as follows:

curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw)

The f parameter is a callable function that represents the function we seek; xdata 
and ydata are arrays of the same length, containing the x and y coordinates of the 
points to be fit. The tuple p0 holds an initial guess for the values to be found, and 
sigma is a vector of weights that could be used instead of the standard deviation of 
the data, if needed. We will show its usage with an enlightening example. We will 
start by generating some points on a section of a sine wave with amplitude A=18, 
angular frequency w=3π, and phase h=0.5. We corrupt the data in the array y with 
some small noise:

A=18; w=3*numpy.pi; h=0.5
x=numpy.linspace(0,1,100); y=A*numpy.sin(w*x+h)
y += 4*((0.5-scipy.rand(100))*numpy.exp(2*scipy.rand(100)**2))
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We desire now to estimate the values of A, w, and h from the corrupted data, hence 
technically finding a curve fit from the set of sine waves. We start by gathering the 
three parameters in a list, and initializing them to some values, say A = 20, w = 2π, 
and h = 1. We also construct a callable expression of the target function:

p0 = [20, 2*numpy.pi, 1]
target_function = lambda x,AA,ww,hh: AA*numpy.sin(ww*x+hh)

We feed these, together with the fitting data to curve_fit, in order to find the 
required values:

pF,pVar = scipy.optimize.curve_fit(target_function, x, y, p0)

A sample of pF run on any of our experiments should give an accurate result for  
the three requested values:

>>> print pF

[ 18.28142231   9.41943219   0.46405985]

This means that A was estimated to about 18.28, w was estimated very close to 3π, 
and h to about 0.46. The output of the initial data together with a computation of the 
corresponding sine wave is as follows, in which original data (left, in blue), corrupted 
(left and right, in red), and computed sine wave (right, in black) are shown:
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Optimization
The field of optimization deals with finding extreme values of functions or their 
roots. We have seen the power of optimization already in the curve-fitting arena, 
but it does not stop here. There are applications to virtually every single branch 
of engineering, and robust algorithms to perform these tasks are a must in every 
scientist toolbox.

The curve_fit routine is actually syntactic sugar for the general algorithm that 
performs least-squares minimization – leastsq, with the imposing syntax:

leastsq(func, x0, args=(), Dfun=None, full_output=0,
        col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8,
        gtol=0.0, maxfev=0, epsfcn=0.0, factor=100, diag=None):

For instance, the curve_fit routine could have been called with a leastsq  
call instead:

leastsq(error_function,p0,argx=(x,y))

Here, error_function is equal to lambda p,x,y: target_
function(x,p[0],p[1],p[2])-y. Most of the optimization routines in SciPy can 
be accessed from either native Python code, or as wraps of Fortran or C classical 
implementations of their corresponding algorithms—technically, we are still using 
the same packages we did under Fortran or C, but from within Python. For instance, 
the minimization routine that implements the truncated Newton method can be 
called with fmin_ncg (and this is purely Python) or as fmin_tnc (and this one  
is a wrap of a C implementation).

Minimization
For general minimization problems, SciPy has many different algorithms. We have 
covered so far the least-squares algorithm (leastsq), but we also have brute force 
(brute), simulated annealing (anneal), Brent or Golden methods for scalar functions 
(brent, golden), the downhill simplex algorithm (fmin), Powell's method  
(fmin_powell), nonlinear conjugate gradient or Newton's version of it  
(fmin_cg, fmin_ncg), and the BFGS algorithm (fmin_bfgs).

Constrained minimization is also possible computationally, and SciPy has  
for this task routines that implement the L-BFGS-S algorithm (fmin_l_bfgs_s), 
truncated Newton's algorithm (fmin_tnc), COBYLA (fmin_cobyla), or sequential 
least-squares programming (fmin_slsqp).
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The following script, for example, compares the output of all different methods to 
finding a local minimum of the Rosenbrock function, scipy.optimize.rosen near 
the origin, using the downhill simplex algorithm:

>>>scipy.optimize.fmin(scipy.optimize.rosen,[0,0])

Optimization terminated successfully.

         Current function value: 0.000000

         Iterations: 79

         Function evaluations: 146

array([ 1.00000439,  1.00001064])

Since the 0.11 version of SciPy, all minimization routines can be called from the 
generic minimize, with the method parameter pointing to one of the strings such as 
Nelder-Mead (for the downhill simplex), Powell, CG, Newton-CG, BFGS, or anneal. 
For constrained minimization, the corresponding strings are one of L-BFGS-S, TNC 
(for truncated Newton's), COBYLA, or SLSQP.

minimize( fun, x0, args=(), method='BFGS', 
jac=None, hess=None, hessp=None, 
           bounds=None, constraints=(),tol=None, 
           callback=None, options=None)

Roots
For most special functions included in the scipy.special module, we have accurate 
algorithms that allow obtaining their zeros. For instance, for the Bessel function of 
first kind with integer order, jn_zeros offers as many roots as desired (in ascending 
order). We may obtain the first three roots of the Bessel J-function of order four by 
issuing the following command:

>>> print scipy.special.jn_zeros(4,3)

[  7.58834243  11.06470949  14.37253667]

For nonspecial scalar functions, the scipy.optimize module allows approximation 
to the roots through a great deal of different algorithms. For scalar functions,  
we have the crude bisection method (bisect), the classical secant method of 
Newton-Raphson (newton), and more accurate and faster methods such as Ridders' 
algorithm (ridder), and two versions of the Brent method (brentq and brenth).
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The root finding for functions of several variables is very challenging in many ways; 
the largest the dimension, the worse, of course. The effectiveness of any of these 
algorithms depends very heavily on the problem, and it is a good idea to invest  
some time and resources in knowing them all. Since version 0.11 of SciPy, it is 
possible now to call any of the designed methods with the same routine root,  
which has the following syntax:

root(fun, x0, args=(), method='hybr', 
jac=None, tol=None, callback=None, options=None)

The different methods are obtained upon changing the value of the method 
parameter to a method string. We may choose among the methods such as 'hybr' 
for a modified hybrid Powell's method; 'lm' for a modified least-squares method; 
'broyden1' or 'broyden2' for Broyden's good and bad methods, respectively; 
'diagbroyden' for diagonal Broyden Jacobian approximation; 'anderson' for 
Anderson's extended mixing; 'Krylov' for Krylov approximation of the Jacobian; 
'linearmixing' for scalar Jacobian approximation; and 'excitingmixing' for a 
tuned diagonal Jacobian approximation.

For large-scale problems, both the Krylov approximation of the Jacobian or the 
Anderson extended mixing are usually the best options.

Let us present an illustrative example of the power of these techniques. Consider  
the following system of differential equations:

We use the plot routine quiver from the matplotlib.pyplot libraries to visualize 
a slope field, for values of x and y between -0.5 and 2.5, and hence identify the 
location of the possible critical points in that region:

>>> f=lambda x: [x[0]**2-2*x[0]-x[1]+0.5, x[0]**2-4*x[1]**2-4]

>>>x,y=numpy.mgrid[-0.5:2.5:24j,-0.5:2.5:24j]

>>> U,V=f([x,y])

>>>matplotlib.pyplot.quiver(x,y,U,V,color='r', \

...         linewidths=(0.2,), edgecolors=('k'), \

...         headaxislength=5)
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This gives the following:

Note how there is a whole region of the plane, in which the slopes are extremely 
small. Because of the degrees of the polynomials involved, there are at most four 
different possible critical points. In this area we should be able to identify two  
(as a matter of fact there are only two noncomplex solutions). One of them seems  
to be near (0, 1), and the second near (2, 0). We use these two locations as initial 
guesses for our searches:

>>>scipy.optimize.root(f,[0,1])

  status: 1

 success: True

qtf: array([ -4.81190247e-09,  -3.83395899e-09])

nfev: 9

       r: array([ 2.38128242, -0.60840482, -8.35489601])

     fun: array([  3.59529073e-12,   3.85025345e-12])

       x: array([-0.22221456,  0.99380842])

 message: 'The solution converged.'

fjac: array([[-0.98918813, -0.14665209],

       [ 0.14665209, -0.98918813]])

>>>scipy.optimize.root(f,[2,0])

  status: 1

 success: True
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qtf: array([  2.08960516e-10,   8.61298294e-11])

nfev: 12

       r: array([-4.56575336, -1.67067665, -1.81464307])

     fun: array([  2.44249065e-15,   1.42996726e-13])

       x: array([ 1.90067673,  0.31121857])

 message: 'The solution converged.'

fjac: array([[-0.39612596, -0.91819618],

       [ 0.91819618, -0.39612596]])

In the first case, we converged successfully to (-0.22221456, 0.99380842). In the 
second case, we converged to (1.90067673, 0.31121857). The routine informs us 
details about the convergence and properties of the approximation. For instance, 
nfev tells us about the number of function calls performed, and fun indicates the 
output of the function at the found location. The other items in the output reflect  
the matrices used in the procedure, such as qtf, r, fjac.

Integration
SciPy is capable of performing very robust numerical integration. Definite integrals 
of a set of special functions are evaluated accurately with routines in the scipy.
special module. For other functions, there are several different algorithms to  
obtain reliable approximations in the scipy.integrate module.

Exponential/logarithm integrals
The next diagram summarizes the indefinite and definite integrals in this category 
– the exponential integrals – expn, expi, and exp1; Dawson's integral dawsn; and 
Gauss error functions – erf and erfc. We also have Spence's dilogarithm (also 
known as Spence's integral).
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Trigonometric and hyperbolic trigonometric 
integrals
In this category, we have Fresnel sine and cosine integrals, as well as the sinc and 
hyperbolic trigonometric integrals.

In the definitions given in the preceding diagram, gamma denotes the Euler-
Mascheroni constant:

Elliptic integrals
These integrals arise naturally when computing the arc length of ellipses. SciPy 
follows the argument notation for elliptic integrals – complete (one argument)  
and incomplete (two arguments).
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Gamma and beta integrals
The following diagram shows the most useful of them all:

Numerical integration
For any other functions, we are content with approximating definite integrals with 
quadrature formulae, such as quad (adaptive quadrature), fixed_quad (fixed-order 
Gaussian quadrature), quadrature (fixed-tolerance Gaussian quadrature), and 
romberg, (Romberg integration). For functions of more than one variable, we have 
dbquad (two) and tplquad (three). The syntax in all cases is a variation of quad:

quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08,
     epsrel=1.49e-08, limit=50, points=None, weight=None,
wvar=None, wopts=None, maxp1=50, limlst=50)

If instead of functions we have samples, we may use the routines such as trapz, 
cumtrapz (composite trapezoidal rule and its cumulative version); romb (Romberg 
integration again); and simps (Simpson's rule) instead. In these routines the syntax  
is simpler and changes the order of the parameters; for example, this is how we  
call simps:

simps(y, x=None, dx=1, axis=-1, even='avg')

Those of us familiar with the QUADPACK libraries will find similar syntax, usage, 
and performance.

For extra information, run the scipy.integrate.quad_explain() command. This 
explains with great detail all the different outputs of the quadrature integrals included 
in the module result, estimate of absolute error, convergence, and explanation of the 
used weightings, if necessary. Let us give at least one meaningful example, where we 
integrate a special function, and compare the output of a quadrature formula against 
the more accurate value of the routines given in scipy.special:

>>> f=lambda t: numpy.exp(-t)*t**4

>>> from scipy.special import gammainc
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>>> from scipy.integrate import quad

>>> from scipy.misc import factorial

>>> print gammainc(5,1)

0.0036598468273437131

>>>result,error=quad(f,0,1)/factorial(4)

>>> result

0.0036598468273437122

To use a routine that integrates from samples, we have the flexibility of assigning 
the frequency and length of the data. For the following problem, we could try with 
10,000 samples in the same interval:

>>> x=numpy.linspace(0,1,10000)

>>>scipy.integrate.simps(f(x)/factorial(4), x)

0.003659846827346905

Ordinary differential equations
As with integration, SciPy has some extremely accurate general-purpose solvers for 
systems of ordinary differential equations of first order.

For the case of real-valued functions we have basically two flavors – ode (with 
options passed with the set_integrator method) and odeint (simpler interface). 
The syntax of ode is as follows:

ode(f,jac=None)

The first parameter, f, is the function to be integrated, and the second parameter, 
jac, refers to the matrix of partial derivatives with respect to the dependent variables 
(the Jacobian). This creates an ode object, with different methods to indicate the 
algorithm to solve the system (set_integrator), the initial conditions (set_
initial_value), and different parameters to be sent to the function or its Jacobian.

The options for integration algorithm are 'vode' for real-valued variable coefficient 
ODE solver, with fixed-leading-coefficient implementation (it provides Adam's  
method for non-stiff problems, and BDF for stiff); 'zvode' for complex-valued  
variable coefficient ODE solver, with similar options to the previous; 'dopri5'  
for a Runge-Kutta method of order (4)5; 'dop853' for a Runge-Kutta method of  
order 8(5, 3).
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The next session presents an example of usage of ode to solve the initial  
value problem:

We compute each step sequentially, and compare it with the actual solution,  
which is known. Notice that virtually there is no difference:

from scipy.integrate import ode
f=lambda t,y: -20*y        # The ODE
actual_solution=lambda t:numpy.exp(-20*t)  # actual solution
dt=0.01            # time step
solver=ode(f).set_integrator('dop853')  # solver
solver.set_initial_value(1,0)      # initial value
while solver.successful() and solver.t<=1+dt:
   # solve the equation at succesive time steps,
   # until the time is greater than 1
   # but make sure that the solution is successful
   print solver.t, solver.y, actual_solution(solver.t)
   # We compare each numerical solution with the actual
   # solution of the ODE
solver.integrate(solver.t + dt)    # solve next step

Once run, this code gives us the following output:

<scipy.integrate._ode.ode at 0x10eac5e50>

0 [ 1.] 1.0

0.01 [ 0.81873075] 0.818730753078

0.02 [ 0.67032005] 0.670320046036

0.03 [ 0.54881164] 0.548811636094

0.04 [ 0.44932896] 0.449328964117

0.05 [ 0.36787944] 0.367879441171

0.06 [ 0.30119421] 0.301194211912

0.07 [ 0.24659696] 0.246596963942

0.08 [ 0.20189652] 0.201896517995

0.09 [ 0.16529889] 0.165298888222

0.1 [ 0.13533528] 0.135335283237

      ...
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0.9 [  1.52299797e-08] 1.52299797447e-08

0.91 [  1.24692528e-08] 1.24692527858e-08

0.92 [  1.02089607e-08] 1.02089607236e-08

0.93 [  8.35839010e-09] 8.35839010137e-09

0.94 [  6.84327102e-09] 6.84327102222e-09

0.95 [  5.60279644e-09] 5.60279643754e-09

0.96 [  4.58718175e-09] 4.58718174665e-09

0.97 [  3.75566677e-09] 3.75566676594e-09

0.98 [  3.07487988e-09] 3.07487987959e-09

0.99 [  2.51749872e-09] 2.51749871944e-09

1.0 [  2.06115362e-09] 2.06115362244e-09

For systems of differential equations of first order with complex-valued functions, 
we have a wrapper of ode, which we call with the complex_ode command. Syntax 
and usage are similar to those of ode.

The syntax of odeint is much more intuitive, and more Python friendly:

odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, 
       ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0,
hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12,
mxords=5, printmessg=0)

The most impressive part of this routine is that one is able to indicate not only the 
Jacobian, but also whether this is banded (and how many nonzero diagonals under 
or over the main diagonal we have, with the ml and mu options). This speeds up 
computations by a huge factor. Another amazing feature of odeint is the possibility 
to indicate critical points for the integration (tcrit).

We will now introduce an application to analyze Lorentz attractors with the routines 
presented in this section.

Lorenz Attractors
No book on scientific computing is complete without revisiting Lorenz attractors; 
SciPy excels both at computation of solutions and presentation of ideas based  
upon systems of differential equations, of course, and we show how and why  
in this section.
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Consider a two-dimensional fluid cell that is heated from underneath and cooled 
from above, much like what occurs with the earth's atmosphere. This creates 
convection that can be modeled by a single partial differential equation, for  
which a decent approximation has the form of the following system of ordinary 
differential equations:

The variable x represents the rate of convective overturning. Variables y and z  
stand for the horizontal and vertical temperature variations, respectively. This 
system depends on four physical parameters, the descriptions of which are far 
beyond the scope of this book. The important point is that we may model earth's 
atmosphere with these equations, and in that case a good choice for the parameters  
is given by sigma = 10, and b = 8 / 3. For certain values of the third parameter, we 
have systems for which the solutions behave chaotically. Let us explore this effect 
with the help of SciPy.

We will use one of the solvers in the scipy.integrate module, as well as  
plotting utilities:

import numpy
from numpy import linspace
import scipy
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
sigma=10.0
b=8/3.0
r=28.0
f = lambda x,t: [sigma*(x[1]-x[0]),
                 r*x[0]-x[1]-x[1]*x[2],
                 x[0]*x[1]-b*x[2]]

Let us choose a time interval t large enough with a sufficiently dense partition and 
any initial condition, y0.

>>> t=linspace(0,20,2000); y0=[5.0,5.0,5.0]

>>> solution=odeint(f,y0,t)

>>> X=solution[:,0]; Y=solution[:,1]; Z=solution[:,2]
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If we desire to plot a 3D rendering of the solution obtained, we may do so as follows:

>>> plt.gca(projection='3d'); plt.plot(X,Y,Z)

This produces the following graph, showing a Lorenz attractor:

This is most illustrative, and shows precisely the chaotic behavior of the solutions. 
Let us observe the fluctuations of the vertical temperature in detail, as well as the 
fluctuation of horizontal temperature against vertical:

>>>plt.subplot(121,aspect='equal'); plt.plot(t,Z)

>>>plt.subplot(122,aspect='equal'); plt.plot(Y,Z)

This produces the following the plots, showing vertical temperature with respect to 
time (left) and horizontal versus vertical temperature (right):
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Summary
This chapter explored the topics of special functions, integration, interpolation, 
and optimization through the corresponding modules (special, integrate, 
interpolate, optimize).



SciPy for Signal Processing
We define a signal as data that measures either time-varying or spatially varying 
phenomena. Sound or electrocardiograms are excellent examples of time-varying 
quantities, while images embody the quintessential spatially varying cases. Moving 
images are treated with the techniques of both types of signal, obviously.

The field of signal processing treats four aspects of this kind of data – its acquisition, 
quality improvement, compression, and feature extraction. SciPy has many routines 
to treat effectively tasks in any of the four fields. All these are included in two low-
level modules (scipy.signal being the main one, with an emphasis in time-varying 
data, and scipy.ndimage, for images). Many of the routines in these two modules 
are based on Discrete Fourier Transform of the data. SciPy has an extensive package 
of applications and definitions of these background algorithms – scipy.fftpack, 
which we will start covering first.

Discrete Fourier Transforms
The Discrete Fourier Transform (DFT from now on) transforms any signal from its 
time/space domain into a related signal in frequency domain. This allows us not 
only to be able to analyze the different frequencies of the data, but also faster filtering 
operations, when used properly. It is possible to turn a signal in frequency domain 
back to its time/spatial domain; thanks to the Inverse Fourier Transform. We will not 
go into detail of the mathematics behind these operators, since we assume familiarity 
at some level with this theory. We will focus on syntax and applications instead.
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The basic routines in the scipy.fftpack module compute the DFT and its inverse, 
for discrete signals in any dimension – fft, ifft (one dimension); fft2, ifft2 
(two dimensions); fftn, ifftn (any number of dimensions). All of these routines 
assume that the data is complex valued. If we know beforehand that a particular 
dataset is actually real valued, and should offer real-valued frequencies, we use rfft 
and irfft instead, for a faster algorithm. All these routines are designed so that 
composition with their inverses always yields the identity. The syntax is the same  
in all cases, as follows:

fft(x[, n, axis, overwrite_x])

The first parameter, x, is always the signal in any array-like form. Note that fft 
performs one-dimensional transforms. This means in particular, that if x happens 
to be two-dimensional for example, fft will output another two-dimensional array 
where each row is the transform of each row of the original. We can change it to 
columns instead, with the optional parameter, axis. The rest of parameters are also 
optional; n indicates the length of the transform, and overwrite_x gets rid of the 
original data to save memory and resources. We usually play with the integer n 
when we need to pad the signal with zeros, or truncate it. For higher dimension,  
n is substituted by shape (a tuple), and axis by axes (another tuple).

To better understand the output, it is often useful to shift the zero frequencies to the 
center of the output arrays with fftshift. The inverse of this operation, ifftshift, 
is also included in the module. The following code shows some of these routines in 
action, when applied to a checkerboard image:

from scipy.fftpack import fft,fft2, fftshift
import matplotlib.pyplot as plt
B=numpy.ones((4,4)); W=numpy.zeros((4,4))
signal = numpy.bmat("B,W;W,B")
onedimfft = fft(signal,n=16)
twodimfft = fft2(signal,shape=(16,16))
plt.figure()
plt.gray()
plt.subplot(121,aspect='equal')
plt.pcolormesh(onedimfft.real)
plt.colorbar(orientation='horizontal')
plt.subplot(122,aspect='equal')
plt.pcolormesh(fftshift(twodimfft.real))
plt.colorbar(orientation='horizontal')

Note how the first four rows of the one-dimensional transform are equal (and so are 
the last four), while the two-dimensional transform (once shifted) presents a peak at 
the origin, and nice symmetries in the frequency domain.
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In the following screenshot, the left-hand side image is fft and right one is fft2 of a 
2 x 2 checkerboard signal:

The scipy.fftpack module also offers the Discrete Cosine Transform with its 
inverse (dct, idct) as well as many differential and pseudo-differential operators 
defined in terms of all these transforms – diff (for derivative/integral); hilbert, 
ihilbert (for the Hilbert transform); tilbert, itilbert (for the h-Tilbert transform 
of periodic sequences); and so on.

Signal construction
To aid in the construction of signals with predetermined properties, the scipy.signal 
module has a nice collection of the most frequent one-dimensional waveforms in 
the literature – chirp and sweep_poly (for the frequency-swept cosine generator), 
gausspulse (a Gaussian modulated sinusoid), sawtooth and square (for the 
waveforms with those names). They all take as their main parameter a one-dimensional 
ndarray representing the times at which the signal is to be evaluated. Other 
parameters control the design of the signal, according to frequency or time constraints.

from scipy.signal import chirp, sawtooth, square, gausspulse
import matplotlib.pyplot as plt
t=numpy.linspace(-1,1,1000)
plt.subplot(221); plt.ylim([-2,2])
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plt.plot(t,chirp(t,f0=100,t1=0.5,f1=200))   # plot a chirp
plt.subplot(222); plt.ylim([-2,2])
plt.plot(t,gausspulse(t,fc=10,bw=0.5))      # Gauss pulse
plt.subplot(223); plt.ylim([-2,2])
t*=3*numpy.pi
plt.plot(t,sawtooth(t))                     # sawtooth
plt.subplot(224); plt.ylim([-2,2])
plt.plot(t,square(t))                       # Square wave

The following diagram shows waveforms for chirp (upper-left), gausspulse 
(upper-right), sawtooth (lower-left), and square (lower-right):

The usual method of creating signals is to import them from file. This is possible  
by using purely NumPy routines, for example fromfile:

fromfile(file, dtype=float, count=-1, sep='')

The file argument may point to either a file or a string, the count argument is 
used to determine the number of items to read, and sep indicates what constitutes 
a separator in the original file/string. For images, we have the versatile routine, 
imreadin in either the scipy.ndimage or scipy.misc module:

imread(fname, flatten=False)
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The fname argument is a string containing the location of an image. The routine 
infers the type of file, and reads the data into array accordingly. In case if the 
flatten argument is turned to True, the image is converted to gray scale.  
Note that, in order to work, the Python Imaging Library (PIL) needs to be installed.

It is also possible to load .wav files for analysis, with the read and write routines 
from the wavfile submodule in the scipy.io module. For instance, given any 
audio file with this format, say audio.wav, the command, >>>rate,data = scipy.
io.wavfile.read("audio.wav") assigns an integer value to the rate variable, 
indicating the sample rate of the file (in samples per second), and a NumPy ndarray 
to the data variable, containing the numerical values assigned to the different notes. 
If we wish to write some one-dimensional ndarray data into an audio file of this 
kind, with the sample rate given by the rate variable, we may do so by issuing  
the following command:

>>>scipy.io.wavfile.write("filename.wav",rate,data)

Filters
A filter is an operation on signals that either removes features or extracts some 
component. SciPy has a very complete set of known filters, as well as the tools to 
allow construction of new ones. The complete list of filters in SciPy is long, and  
we encourage the reader to explore the help documents of the scipy.signal  
and scipy.ndimage modules for the complete picture. We will introduce in  
these pages, as an exposition, some of the most used filters in the treatment  
of audio or image processing.

We start by creating a signal worth filtering:

from numpy import sin, cos, pi, linspace
f=lambda t: cos(pi*t) + 0.2*sin(5*pi*t+0.1) + 0.2*sin(30*pi*t) +
            0.1*sin(32*pi*t+0.1) + 0.1*sin(47* pi*t+0.8)
t=linspace(0,4,400); signal=f(t)

We test first the classical smoothing filter of Wiener and Kolmogorov, wiener.  
We present in a plot the original signal (in black) and the corresponding filtered  
data, with a choice of Wiener window of size 55 samples (in blue). Next we compare 
the result of applying the median filter, medfilt with a kernel of the same size as 
before (in red):

from scipy.signal import wiener, medfilt
plt.plot(t,signal,'k')
plt.plot(t,wiener(signal,mysize=55),'b',linewidth=3)
plt.plot(t,medfilt(signal,kernel_size=55),'r',linewidth=3)



SciPy for Signal Processing

[ 86 ]

This gives us the following graph showing the comparison of smoothing filters 
(wiener is the one that has its starting point just below 0.5 and medfilt has its 
starting point just above 0.5):

Most of the filters in the scipy.signal module can be adapted to work in arrays 
of any dimension. But in the particular case of images, we prefer to use the 
implementations in the scipy.ndimage module, since they are coded with these 
objects in mind. For instance, to perform a median filter on an image for smoothing, 
we use scipy.ndimage.median_filter. Let us show an example. We will start by 
loading Lena to array, and corrupting the image with Gaussian noise (zero mean and 
standard deviation of 16):

from scipy.stats import norm     # Gaussian distribution
lena=scipy.misc.lena().astype(float)
lena+=norm(loc=0,scale=16).rvs(lena.shape)
denoised_lena = scipy.ndimage.median_filter(lena)

The set of filters for images come in two flavors – statistical and morphological. For 
example, among the filters of statistical nature, we have the Sobel algorithm oriented 
to detection of edges (singularities along curves). Its syntax is as follows:

sobel(image, axis=-1, output=None, mode='reflect', cval=0.0)
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The optional parameter, axis indicates the dimension in which the computations are 
performed. By default, this is always the last axis (-1). The mode parameter, which 
is one of the strings 'reflect', 'constant', 'nearest', 'mirror', or 'wrap', 
indicates how to handle the border of the image, in case there is insufficient data  
to perform the computations there. In case if mode is 'constant', we may indicate 
the value to use in the border, with the cval parameter.

lena=scipy.misc.lena()
sblX=sobel(lena,axis=0); sblY=sobel(lena,axis=1)
sbl=numpy.hypot(sblX,sblY)

The following screenshot illustrates the previous two filters in action—Lena (upper-
left), noisy Lena (upper-right), edge map with sobel (lower-left), and median filter 
(lower-right):
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LTI system theory
To investigate the response of a time-invariant linear system to input signals, we 
have many resources in the scipy.signal module. As a matter of fact, to simplify 
representation of objects, we have a lti class (linear-time invariant class) with 
associated methods such as bode (to calculate bode magnitude and phase data), 
impulse, output, and step.

No matter whether we are working with continuous or discrete-time linear systems, 
we have routines to simulate such systems (lsim and lsim2 for continuous, dsim 
for discrete), as well as compute impulses (impulse and impulse2 for continuous, 
dimpulse for discrete) and steps (step and step2 for continuous, dstep for discrete).

Transforming a system from continuous to discrete is possible with cont2discrete, 
but in either case we are able to provide for any system with any of its 
representations, as well to convert from one to another. For instance, if we have 
the zeros z, poles p, and system gain k of the transfer function, we may obtain the 
polynomial representation (numerator first, then denominator) with zpk2tf(z,p,k). 
If we have numerator (num) and denominator (dem) of the transfer function, we 
obtain the state-space with tf2ss(num,dem). This operation is reversible, with the 
ss2tf routine. The change of representation from zero-pole-gain to/from state-space 
is also contemplated in the (zpk2ss, ss2zpk) module.

Filter design
There are routines in the scipy.signal module that allow the creation of different 
kinds of filters with diverse methods. For instance, the bilinear routine returns 
a digital filter from an analog using a bilinear transform. Finite impulse response 
(FIR for short) filters can be designed by the window method with the firwin and 
firwin2 routines. Infinite impulse response (IIR for short) filters can be designed in 
two different ways, via iirdesign or iirfilter. Butterworth filters can be designed 
with the butter routine. There are also routines to design filters of Chebyshev 
(cheby1, cheby2), Cauer (ellip), and Bessel (bessel).

Window functions
And no signal processing computational system would be complete without an 
extensive list of windows—mathematical functions that are zero valued outside 
specific domains. In this section, we will use a few of the windows coded in the 
scipy.signal module to design very simple smoothing filters by convolution.  
We will be testing them on the same one-dimensional signal we employed before,  
for comparison.
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We will start by showing the plot of four well-known window functions – Boxcar, 
Hamming, Blackman-Harris (Nuttall version), and triangular. We will use a size  
of 31 samples:

from scipy.signal import boxcar, hamming, nuttall, triang
windows=['boxcar', 'hamming', 'nuttall', 'triang']
for w in windows:
eval( 'plt.plot(' + w + '(31))' )
plt.ylim([-0.5,2]); plt.xlim([-1,32])
plt.legend(windows)

We need to extend the original signal by fifteen samples for plotting purposes:

extended_signal=numpy.r_[signal[15:0:-1],signal,signal[-1:-15:-1]]
plt.plot(extended_signal,'k')

The final step is the filter itself, which we perform by a simple convolution:

for w in windows:
    window = eval( w+'(31)')
    output=numpy.convolve(window/window.sum(),signal)
plt.plot(output,linewidth=2)
plt.ylim([-2,3]); plt.legend(['original'+windows)

This produces the following output showing convolution of a signal with  
different windows:
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Image interpolation
The set of filters on images that perform some geometric manipulation of the  
input is classically termed image interpolation, since this numerical technique  
is the root of all the algorithms. As a matter of fact, SciPy collects all these under  
the submodulescipy.ndimage.interpolation for ease of access. This section is  
best explained through examples, going over the most meaningful routines for 
geometric transformation. The starting point is the image Lena. We now assume  
that all functions from the submodule have been imported into the session.

We need to apply an affine transformation on the domain of the image,  
given in matrix form as follows:

To apply the transformation on the domain of the image we will issue the  
affine_transform command (note the syntax is self explanatory):

A=numpy.mat("0,1;-1,1.25"); b=[-400,0]
Ab_Lena=affine_transform(lena,A,b,output_shape=(512*2.2,512*2.2))

For a general transformation, we use the geometric_transform routine with the 
following syntax:

geometric_transform(input, mapping, output_shape=None, 
                    output=None, order=3, mode='constant',
cval=0.0, prefilter=True, extra_arguments=(),
extra_keywords={})

We need to provide a rank-2 map from tuples to tuples as the parameter mapping. 
For instance, we desired to apply the Möbius transform for complex-valued number 
z (where we assume the values of a, b, c, and d are already defined and they are 
complex-valued numbers).

We would have to code it in the following way:

def f(z):
    temp = a*(z[0]+1j*z[1]) + b
    temp /= c*(z[0]+1j*z[1])+d
    return (temp.real, temp.imag)



Chapter 5

[ 91 ]

In both functions, the values of the grid that cannot be computed directly with 
the formula are inferred with spline interpolation. We may specify the order of 
this interpolation with the order parameter. The points outside the domain of 
definition are not interpolated, but filled according to some predetermined rule. 
We may impose this rule by passing a string to the mode option. The choices are 
– 'constant', to use a constant value that we may impose with the cval option; 
'nearest', that continues the last value of the interpolation on each level line; 
'reflect' or 'wrap', which are self explanatory.

For example, for the values a = 2**15*(1+1j), b = 0, c = -2**8*(1-1j*2),  
and d = 2**18-1j*2**14, we obtain (after imposing the reflect mode) the  
result, as shown just after this line of code:

Moebius_Lena = geometric_transform(lena,f,mode='reflect')

The following screenshot shows affine transformation (left) and geometric 
transformation (right):

For the special cases of rotations, shifts, or dilations, we have the syntactic 
sugar routines rotate(input,angle), shift(input, offset), and 
zoom(input,dilation_factor).

Given any image, we know the value of the array at pixel values (with integer 
coordinates) in the domain. But, what would be the corresponding value of a 
location without integer coordinates? We may obtain that information with the 
valuable routine, map_coordinates. Note that the syntax may be confusing, 
especially with the parameter coordinates:

map_coordinates(input, coordinates, output=None, order=3, 
                mode='constant', cval=0.0, prefilter=True)
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For instance, if we wish to evaluate Lena at the locations (10.5, 11.7) and (12.3, 1.4), 
we collect the coordinates as a sequence of sequences; the first internal sequence 
contains the x values, and the second, the y values. We may specify the order of 
splines used with order, and the interpolation scheme outside of the domain, if 
needed, as in the previous examples.

>>>lena=scipy.misc.lena().astype(float)

>>> coordinates=[[10.5, 12.3], [11.7, 1.4]]

>>>map_coordinates(lena, coordinates, order=1)

array([ 157.2 ,  157.42])

>>>map_coordinates(lena, coordinates, order=2)

array([ 157.80641507,  157.6741489 ])

Morphology
We also have the possibility of creating and applying filters to images based on 
mathematical morphology, both to binary and gray-scale images. The four basic 
morphological operations are opening (binary_opening), closing (binary_
closing), dilation (binary_dilation), and erosion (binary_erosion). Note  
that the syntax for each of these filters is very simple, since we only need two 
ingredients – the signal to filter and the structuring element to perform the 
morphological operation.

binary_operation(signal, structuring_element)

We have illustrated the use some of these operations towards an application to 
obtain the structural model of an oxide, but we postpone this example until we 
cover the notions of triangulations and Voronoi diagrams in Chapter 7, SciPy for 
Computational Geometry.

We may use combinations of these four basic morphological operations to create more 
complex filters for removal of holes, hit-or-miss transforms (to find the location of 
specific patterns in binary images), denoising, edge detection, and many more. The 
module even provides with some of the most common filters constructed this way. For 
instance, for the location of the letter "e" in a text (which we covered previously as an 
application of correlation), we could use the following command instead:

>>>binary_hit_or_miss(text, letterE)

For gray-scale images, we may use a structuring element or a footprint. The syntax 
is, therefore, a little different:

grey_operation(signal, [structuring_element, footprint, size, ...])
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If we desire to use a completely flat and rectangular structuring element (all ones), 
then it is enough to indicate the size as a tuple. For instance, to perform gray-scale 
dilation of a flat element of size (15,15) on our classical image of Lena, we issue the 
following command:

>>>grey_dilation(lena, size=(15,15))

The last kind of morphological operations coded in the scipy.ndimage module 
perform distance and feature transforms. Distance transforms create a map that 
assigns to each pixel the distance to the nearest object. Feature transforms provide 
with the index of the closest background element instead. These operations are used 
to decompose images into different labels. We may even choose different metrics 
such as Euclidean distance, chessboard distance, and taxicab distance. The syntax  
for the distance transform using a brute force algorithm is as follows:

distance_transform_bf(signal, metric='euclidean', sampling=None,
return_distances=True, return_indices=False,
                      distances=None, indices=None)

We indicate the metric with the strings such as 'euclidean', 'taxicab',  
or 'chessboard'. If we desire to provide the feature transform instead,  
we switch return_distances to False and return_indices to True.

Similar routines are available with more sophisticated algorithms – distance_
transform_cdt (using chamfering for taxicab and chessboard distances). For 
Euclidean distance, we also have distance_transform_edt. All these use  
the same syntax.

Summary
In this chapter we explored signal processing (any dimensional) including the 
treatment of signals in frequency space, by means of their Discrete Fourier 
Transforms. These correspond to the fftpack, signal, and ndimage modules.





SciPy for Data Mining
This section deals with those branches of mathematics that treat the collection, 
organization, analysis, and interpretation of data. The different applications and 
operations spread over several modules and submodules – scipy.stats (for purely 
statistical tools), scipy.ndimage.measurements (for analysis and organization of 
data), scipy.spatial (for spatial algorithms and data structures), and finally the 
clustering package scipy.cluster, with its two submodules – scipy.cluster.
vq (vector quantization) and scipy.cluster.hierarchy (for hierarchical and 
agglomerative clustering).

Descriptive statistics
We often require the analysis of data in which certain features are grouped in 
different regions, each with different sizes, values, shapes, and so on. The scipy.
ndimage.measurements submodule has the right tools for this task, and the best way 
to illustrate the capabilities of the module is by means of an exhaustive examples. For 
example, for binary images of zeros and ones, it is possible to label each blob (areas 
of contiguous pixels with value one) and obtain the number of these with the label 
command. If we desire to obtain the center of mass of the blobs, we may do so with 
the center_of_mass command. We may see these operations in action once again in 
the application to obtaining the structural model of oxides in next chapter.

For nonbinary data, the scipy.ndimage.measurements submodule provides with 
the usual basic statistical measurements (value and location of extreme values, mean, 
standard deviation, sum, variance, histogram, and so on).
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For more advanced statistical measurements we must access functions from the 
scipy.stats module. We may now use geometric and harmonic means (gmean, 
hmean), median, mode, skewness, various moments, or kurtosis (median, mode, skew, 
moment, kurtosis). For an overview of the most significant statistical properties 
of the dataset, we prefer to use the describe routine. We may also compute item 
frequencies (itemfreq), percentiles (scoreatpercentile, percentileofscore), 
histograms (histogram, histogram2), cumulative and relative frequencies (cumfreq, 
relfreq), standard error (sem), and the signal-to-noise ratio (signaltonoise), which 
is always useful.

Distributions
One of the main strengths of the scipy.stats module is the great number of 
distributions coded, both continuous and discrete. The list is impressively large  
and has 81 continuous distributions and 10 discrete distributions.

One of the most usual ways to employ these distributions is the generation of 
random numbers. We have been employing this technique to "contaminate"  
our images with noise, for example:

>>> from scipy.stats import norm     # Gaussian distribution

>>>lena=scipy.misc.lena().astype(float)

>>>lena+= norm.rvs(loc=0,scale=16,size=lena.shape)

>>>signaltonoise(lena,axis=None)

array(2.4578546916065163)

Let's see the SciPy way of handling distributions. First, a random variable class is 
created (in SciPy there is the rv_continuous class for continuous random variables, 
and the rv_discrete class for the discrete case). Each continuous random variable 
has associated a probability density function (pdf), a cumulative distribution 
function (cdf), a survival function along with its inverse (sf, isf), and all possible 
descriptive statistics. They also have associated the random variable per se, rvs, 
which is what we used to actually generate the random instances. For example, 
with a Pareto continuous random variable with parameter b = 5, to check these 
properties, we could issue the following:

>>> from scipy.stats import pareto

>>> import matplotlib.pyplot as plt

>>> x=numpy.linspace(1,10,1000)

>>>plt.subplot(131); plt.plot(pareto.pdf(x,5))

>>>plt.subplot(132); plt.plot(pareto.cdf(x,5))

>>>plt.subplot(133); plt.plot(pareto.rvs(5,size=1000))
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This gives the following graphs showing probability density function (left), 
cumulative distribution function (center), and random generation (right):

Interval estimation, correlation measures, and 
statistical tests
We briefly covered interval estimation as an introductory example of SciPy – bayes_
mvs, in Chapter 1, Introduction to SciPy, with very simple syntax, as follows:

bayes_mvs(data, alpha=0.9)

It offers a tuple of three arguments, in which each argument has the form (center, 
(lower, upper)). The first argument refers to the mean, the second refers to 
the variance, and the third to the standard deviation. All intervals are computed 
according to the probability given by alpha, which is 0.9 by default.

We may use the linregress routine to compute the regression line of some  
two-dimensional data x, or two sets of one-dimensional data, x and y. We may 
compute different correlation coefficients, with their corresponding p-values, as 
well. We have the Pearson correlation coefficient (pearsonr), Spearman's rank-order 
correlation (spearmanr), point biserial correlation (pointbiserialr), and Kendall's 
tau for ordinal data (kendalltau). In all cases, the syntax is the same, as it is only 
required either a two-dimensional array of data, or two one-dimensional arrays of 
data with the same length.
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SciPy also has most of the best-known statistical tests and procedures – t-tests 
(ttest_1samp for one group of scores, ttest_ind for two independent samples of 
scores, or ttest_rel for two related samples of scores), Kolmogorov-Smirnov tests 
for goodness of fit (kstest, ks_2samp), one-way Chi-square test (chisquare), and 
many more.

Let us illustrate some of the routines of this module with a textbook example,  
based on Timothy Sturm's studies on control design.

Twenty-five right-handed individuals were asked to use their right hands to turn a 
knob that moved an indicator by screw action. There were two identical instruments, 
one with a right-handed thread where the knob turned clockwise, and the other with 
a left-hand thread where the knob turned counter-clockwise. The following table 
gives the times in seconds each subject took to move the indicator to a fixed distance.

Subject 1 2 3 4 5 6 7 8 9 10
Right thread 113 105 130 101 138 118 87 116 75 96
Left thread 137 105 133 108 115 170 103 145 78 107
Subject 11 12 13 14 15 16 17 18 19 20
Right thread 122 103 116 107 118 103 111 104 111 89
Left thread 84 148 147 87 166 146 123 135 112 93
Subject 21 22 23 24 25
Right thread 78 100 89 85 88
Left thread 76 116 78 101 123

We may perform an analysis that leads to a conclusion about right-handed people 
finding right-hand threads easier to use, by a simple one-sample t-statistic. We will 
load the data in memory, as follows:

>>> data = numpy.array([[113,105,130,101,138,118,87,116,75,96, \

... 122,103,116,107,118,103,111,104,111,89,78,100,89,85,88], \

... [137,105,133,108,115,170,103,145,78,107, \

... 84,148,147,87,166,146,123,135,112,93,76,116,78,101,123]])

The difference of each row indicates which knob was faster, and for how much  
time. We can obtain that information easily, and perform some basic statistical 
analysis on it. We will start by computing the mean, standard deviation, and a 
histogram with 10 bins:

>>>dataDiff = data[1,:]-data[0,:]

>>>dataDiff.mean(), dataDiff.std()

(13.720000000000001, 21.62872164507186)
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>>>matplotlib.pyplot.hist(dataDiff)

(array([2, 1, 1, 5, 3, 4, 1, 4, 1, 3]),

 array([-28.,-20.,-12.,-4.,4.,12.,20.,28.,36.,44.,52.]),

<a list of 10 Patch objects>)

The following histogram is produced:

Under the light of this histogram, it is not too far fetched to assume a normal 
distribution. If we assume that this is a proper simple random sample, the use of 
t-statistics is justified. We would like to prove that it takes longer to turn the left 
thread than the right, so we set the mean of dataDiff to be contrasted against the 
zero mean (which would indicate that it takes the same time for both threads).  
The two-sample t-statistics and p-value for the two-sided test are computed by  
the simple command, as follows:

>>>t_stat,p_value=ttest_1samp(dataDiff)

The p-value for the one-sided test is then calculated:

>>> print p_value/2.0

0.00239943063239

Note that this p-value is much smaller than either of the usual thresholds  
alpha = 0.05 or alpha = 0.1. We can thus guarantee that we have enough 
evidence to support the claim that right-handed threads take less time to turn  
than left-handed threads.
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Distribution fitting
In Timothy Sturm's example we claim that the histogram of some data seemed 
to fit a normal distribution. SciPy has a few routines to help us approximate the 
best distribution to a random variable, together with the parameters that best 
approximate this fit. For example, for the data in that problem, the mean and 
standard deviation of the normal distribution that realizes the best fit can be  
found in the following way:

>>>mean,std=norm.fit(dataDiff)

We can now plot the (normed) histogram of the data, together with the computed 
probability density function, as follows:

>>>matplotlib.pyplot.hist(dataDiff, normed=1)

(array([ 0.01,0.005,0.005,0.025,0.015,0.02,0.005,0.02,

        0.005,  0.015]),

 array([-28.,-20.,-12.,-4.,4.,12.,20.,28.,36.,44.,52.]),

<a list of 10 Patch objects>)

>>> x=numpy.linspace(dataDiff.min(),dataDiff.max(),1000)

>>>pdf=norm.pdf(x,mean,std)

>>>matplotlib.pyplot.plot(x,pdf)

We will obtain the following graph showing the maximum likelihood estimate  
to the normal distribution that best fits dataDiff:
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We may even fit the best probability density function without specifying any 
particular distribution, thanks to a non-parametric technique, kernel density 
estimation. We can find an algorithm to perform Gaussian kernel density  
estimation in the scipy.stats.kde submodule. Let us show by example  
with the same data as before:

>>> from scipy.stats.ked import gaussian_kde

>>>pdf=Gaussian_kde(dataDiff)

A similar plotting session as before, offers us the following graph, showing 
probability density function obtained by kernel density estimation on dataDiff:

Distances
In the field of data mining, it is often required to determine which members of a 
training set are closest to unknown test instances. It is imperative to have a good 
set of different distance functions for any of the algorithms that perform the search, 
and SciPy has for this purpose a huge collection of optimally coded functions in 
the distance submoduleof the scipy.spatial module. The list is long. Besides 
Euclidean, squared Euclidean, or standardized Euclidean, we have many more – 
Bray-Curtis, Canberra, Chebyshev, Manhattan, correlation distance, cosine distance, 
dice dissimilarity, Hamming, Jaccard-Needham, Kulsinski, Mahalanobis, and so on. 
The syntax in most cases is simple:

distance_function(first_vector, second_vector)



SciPy for Data Mining

[ 102 ]

The only three cases in which the syntax is different are the Minkowski, Mahalanobis, 
and standarized Euclidean distances, in which the distance function requires either an 
integer number (for the order of the norm in the definition of Minkowski distance), a 
covariance for the Mahalanobis case (but this is an optional requirement), or a variance 
matrix to standardize the Euclidean distance.

Let us see now a fun exercise to visualize the unit balls in Minkowski metrics:

Square=numpy.meshgrid[-1.1:1.1:512j,-1.1,1.1:512j]
X=Square[0]; Y=Square[1]
f=lambda x,y,p: minkowski([x,y],[0.0,0.0],p)<=1.0
Ball=lambda p:numpy.vectorize(f)(X,Y,p)

We have created a function Ball, which creates a grid of 512 x 512 Boolean values. 
The grid represents a square of length 2.2 centered at the origin, with sides parallel 
to the coordinate axis, and the true values on it represent all those points of the grid 
inside of the unit ball for the Minkowksi metric, for the parameter p. All we have to 
do is show it graphically, like in the following example:

>>>matplotlib.pyplot.imshow(Ball(3)); plt.axis('off')

This produces the following, where Ball(3) is a unit ball in the Minkowski metric 
with parameter p = 3:

We feel the need to issue the following four important warnings:

•	 First warning: We must use these routines, instead of creating our own 
definitions of the corresponding distance functions whenever possible.  
They guarantee a faster result, and optimal coding to take care of situations 
in which the inputs are either too large or too small.
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•	 Second warning: These functions work great when comparing two vectors; 
however, for the pairwise computation of many vectors, we must resort to 
the pdist routine. This command takes an m x n array representing m vectors 
of dimension n, and computes the distance of each of them to each other. 
We indicate the distance function to be used with the option metric, and 
additional parameters as needed. For example, for the Manhattan (cityblock) 
distance for five randomly selected four-dimensional vectors with integer 
values 1, 0, or -1, we could issue the following command:
>>> V=scipy.stats.randint.rvs(0.4,3,size=(5,4))-1

>>> print V 

[[ 1  0  1 -1]

 [-1  0 -1  0]

 [ 1  1  1 -1]

 [ 1  1 -1  0]

 [ 0  0  1 -1]]

>>>pdist(V,metric='cityblock')

array([ 5.,  1.,  4.,  1.,  6.,  3.,  4.,  3.,  2.,  5.])

This means, if v1 = [1,0,1,-1], v2 = [-1,0,-1,0], v3 = [1,1,1,-1], 
v4 = [1,1,-1,0], and v5 = [0,0,1,-1], then the Manhattan distance of 
v1 from v2 is 5. The distance from v1 to v3 is 1; from v1 to v4 is 4; from v1 to 
v5 is 1. From v2 to v3 the distance is 6; from v2 to v4 is 3; from v2 to v5 is 4. 
From v3 to v4 the distance is 3; from v3 to v5 is 2. And finally, the distance 
from v4 to v5 is 5, which is the last entry of the output.

•	 Third warning: When computing the distance between each pair of 
two collections of inputs, we use the cdist routine, which has a similar 
syntax. For instance, for the two collections of three randomly selected 
four-dimensional Boolean vectors, the corresponding Jaccard-Needham 
dissimilarities are computed, as follows:
>>> V=scipy.stats.randint.rvs(0.4,2.size=(3,4)).astype(bool)

>>> W=scipy.stats.randint.rvs(0.4,3.size=(3,4)).astype(bool)

>>>cdist(V,W,'jaccard')

array([[ 0.75      ,  1.        ],

       [ 0.75      ,  1.        ],

       [ 0.33333333,  0.5       ]])

That is, if the three vectors in V are labeled v1 through v3 and if the two 
vectors in W are labeled as w1 and w2, then the dissimilarity between v1  
and w1 is 0.75; between v1 and w2 is 1; and so on.
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•	 Fourth warning: When we have a large amount of data points, and we 
need to address the problem of nearest neighbors (for example, to locate the 
closest element of the data to a new instance point), we seldom do it by brute 
force. The optimal algorithm to perform this search is based in the idea of 
k-dimensional trees. SciPy has two classes to handle these objects – KDTree and 
cKDTree. The latter is a subset of the former, a little faster since it is wrapped 
from C code, but with very limited use. It only has the query method to find 
the nearest neighbors of the input. The syntax is simple, as follows:

KDTree(data, leafsize=10)

This creates a structure containing a binary tree, very apt for the design 
of fast search algorithms. The leafsize option indicates at what level the 
search based on the structure of binary tree must be abandoned in favor of 
brute force.
The other methods associated to the KDTree class are – count_neighbors, 
to compute the number of nearby pairs that can be formed with another 
KDTree; query_ball_point, to find all points at a given distance from the 
input; query_ball_tree and query_pairs, to find all pairs of points within 
certain distance; and sparse_distance_matrix, that computes a sparse 
matrix with the distances between two KDTree classes.
Let us see it in action, with a small dataset of 10 randomly generated four-
dimensional points with integer entries:

>>> data=scipy.stats.randint.rvs(0.4,10,size=(10,4))

>>> print data 

[[8 6 1 1]

 [2 9 1 5]

 [4 8 8 9]

 [2 6 6 4]

 [4 1 2 1]

 [3 8 7 2]

 [1 1 3 6]

 [5 2 1 5]

 [2 5 7 3]

 [6 0 6 9]]

>>> tree=KDTree(data)

>>>tree.query([0,0,0,0])

(4.6904157598234297, 4)
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This means, among all the points in the dataset, the closest one in the Euclidean 
distance to the origin is the fifth one (index 4), and the distance is precisely  
about 4.6 units.

We may input more than one point; the output will still be a tuple, where the first 
entry is an array that indicates the smallest distance to each of the input points.  
The second entry is another array that indicates the indices of the nearest neighbors.

Clustering
Another technique used in data mining is clustering. SciPy has two modules to  
deal with any problem in this field, each of them addressing a different clustering 
tool – scipy.cluster.vq for k-means and scipy.cluster.hierarchy for 
hierarchical clustering.

Vector quantization and k-means
We have two routines to divide data into clusters using the k-means  
technique – kmeans and kmeans2. They correspond to two different  
implementations. The former has a very simple syntax:

kmeans(obs, k_or_guess, iter=20, thresh=1e-05)

The obs parameter is an ndarray with the data we wish to cluster. If the dimensions 
of the array are m x n, the algorithm interprets this data as m points in the 
n-dimensional Euclidean space. If we know the number of clusters in which this 
data should be divided, we input so with the k_or_guess option. The output is a 
tuple with two elements. The first is an ndarray of dimension k x n, representing 
a collection of points—as many as clusters were indicated. Each of these locations 
indicates the centroid of the found clusters. The second entry of the tuple is a 
floating-point value indicating the distortion between the passed points, and the 
centroids generated previously.

If we wish to impose an initial guess for the centroids of the clusters, we may  
do so with the k_or_guess parameter again, by sending a k x n ndarray.

The data we pass to kmeans need to be normalized with the whiten routine.

The second option is much more flexible, as its syntax indicates:

kmeans2(data, k, iter=10, thresh=1e-05, 
minit='random', missing='warn')
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The data and k parameters are the same as obs and k_or_guess, respectively. The 
difference in this routine is the possibility of choosing among different initialization 
algorithms, hence providing us with the possibility to speed up process and use 
fewer resources if we know some properties of our data. We do so by passing to 
the minit parameter one of the strings such as 'random' (initialization centroids 
are constructed randomly using a Gaussian), 'points' (initialization is done 
by choosing points belonging to our data), or 'uniform' (if we prefer uniform 
distribution to Gaussian).

In case we would like to provide the initialization centroids ourselves with the k 
parameter, we must indicate our choice to the algorithm by passing 'matrix' to  
the minit option as well.

In any case, if we wish to classify the original data by assigning to each point the 
cluster to which it belongs; we do so with the vq routine (for vector quantization). 
The syntax is pretty simple as well:

vq(obs, centroids)

The output is a tuple with two entries. The first entry is a one-dimensional ndarray 
of size n holding for each point in obs, the cluster to which it belongs. The second 
entry is another one-dimensional ndarray of same size, but containing floating-point 
values indicating the distance from each point to the centroid of its cluster.

Let us illustrate with a classical example, the mouse dataset. We will create a big 
dataset with randomly generated points in three disks, as follows:

>>> from scipy.stats import norm

>>> from numpy import array,vstack

>>> data=norm.rvs(0,0.3,size=(10000,2))

>>>inside_ball=numpy.hypot(data[:,0],data[:,1])<1.0

>>> data=data[inside_ball]

>>> data = vstack((data, data+array([1,1]),data+array([-1,1])))

Once created, we request the data to be separated into three clusters:

>>> from scipy.cluster.vq import *

>>> centroids, distortion = kmeans(data,3)

>>>cluster_assignment, distances = vq(data,centroids)

Let us present the results:

>>> from matplotlib.pyplot import plot

>>> plot(data[cluster_assignment==0,0], \
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...      data[cluster_assignment==0,1], 'r.')

[<matplotlib.lines.Line2D at 0x10b84ad50>]

>>> plot(data[cluster_assignment==1,0], \

...      data[cluster_assignment==1,1], 'b.')

[<matplotlib.lines.Line2D at 0x10b84af50>]

>>> plot(data[cluster_assignment==2,0], \

...      data[cluster_assignment==2,1], 'k.')

[<matplotlib.lines.Line2D at 0x10b84e8d0>]

This gives the following plot showing the mouse dataset with three clusters from left 
to right – red (0), blue (1), and black (2):

Hierarchical clustering
There are several different algorithms to perform hierarchical clustering. SciPy has 
routines for the following methods:

•	 Single/min/nearest method: single
•	 Complete/max/farthest method: complete
•	 Average/UPGMA method: average
•	 Weighted/WPGMA method: weighted
•	 Centroid/UPGMC method: centroid
•	 Median/WPGMC method: median
•	 Ward's linkage method: ward
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In any of the previous cases, the syntax is the same; the only input is the dataset, 
which can be either an m x n ndarray representing m points in the n-dimensional 
Euclidean space, or a condensed distance matrix obtained from the previous data 
using the pdist routine from scipy.spatial. The output is always an ndarray 
representing the corresponding linkage matrix of the clustering obtained.

Alternatively, we may call the clustering with the generic routine, linkage. This 
routine accepts a dataset/distance matrix, and a string indicating the method to use. 
The strings coincide with the names introduced before. The advantage of linkage over 
the previous routines is that we are also allowed to indicate a different metric than the 
usual Euclidean distance. The complete syntax for linkage is then as follows:

linkage(data, method='single', metric='euclidean')

Different statistics on the resulting linkage matrices may be performed with 
the routines such as Cophenetic distances between observations (cophenet); 
inconsistency statistics (inconsistent); maximum inconsistency coefficient  
for each non-singleton cluster with its descendants (maxdists); and maximum 
statistic for each non-singleton cluster with its descendants (maxRstat).

It is customary to use binary trees to represent linkage matrices, and the  
scipy.cluster.hierachy submodule has a large number of different routines  
to manipulate and extract information from these trees. The most useful of  
these routines is the visualization of these trees, often called dendrograms.  
The corresponding routine in SciPy is dendrogram, and has the following  
imposing syntax:

dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, 
get_leaves=True, orientation='top', labels=None, 
count_sort=False, distance_sort=False, 
show_leaf_counts=True, no_plot=False, no_labels=False, 
color_list=None, leaf_font_size=None, 
leaf_rotation=None, leaf_label_func=None, 
no_leaves=False, show_contracted=False,
link_color_func=None)

The first obvious parameter, Z, is a linkage matrix. This is the only non-optional 
variable. The other options control the style of the output (colors, labels, rotation,  
and so on), and since they are technically nonmathematical in nature, we will not 
explore them in detail in this monograph, other than through the simple application 
to animal clustering shown next.
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Clustering mammals by their dentition – Mammal's teeth are divided into four 
groups such as incisors, canines, premolars, and molars. The dentition of several 
mammals has been collected, and is available for download at www.uni-koeln.de/
themen/statistik/data/cluster/dentitio.dat.

This file presents the name of the mammal, together with the number of top incisors, 
bottom incisors, top canines, bottom canines, top premolars, bottom premolars, top 
molars, and bottom molars.

We wish to use hierarchical clustering on that dataset to assess which species are 
closer to each other by these features.

We start by preparing the dataset and store the relevant data in ndarrays.  
The original data is given as a text file, where each line represents a different 
mammal. The first four lines are as follows:

OPOSSUM                    54113344
HAIRY TAIL MOLE            33114433
COMMON MOLE              32103333
STAR NOSE MOLE            33114433

The first twenty-seven characters of each line hold the name on the animal. The 
characters in positions twenty-eight to thirty-five are the number of respective kind 
of denture. We need to prepare this data into something that SciPy can handle. We 
collect the names apart, since we will be using them as labels in the dendrogram. The 
rest of the data will be forced into an array of integers:

file=open("dentitio.dat","r")    # open the file
lines=file.readlines()      # read each line in memory
file.close()        # close the file
mammals=[]                 # this stores the names
dataset=numpy.zeros((len(list),8))  # this stores the data
for index,line in enumerate(lines):
mammals.append( line[0:27].rstrip(" ").capitalize() )
    for tooth in range(8):
        dataset[index,tooth]=int(line[27+tooth])

We proceed to compute the linkage matrix and its posterior dendrogram, making 
sure to use the Python list mammals as labels:

>>> from scipy.cluster.hierachy import linkage, dendrogram

>>> Z=linkage(dataset)

>>>dendrogram(Z, labels=mammals, orientation="right")

>>>matplotlib.pyplot.show()
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This gives us the following dendrogram showing clustering of mammals according 
to their dentition:

Note how all the bats are clustered together. The mice are also clustered together, 
but far from the bats. Sheep, goats, antelopes, deer, and moose have similar dentures 
too, and they appear clustered at the bottom of the tree, next to the opossum and the 
armadillo. Note how all felines are also clustered together, on the top of the tree.

Experts in data analysis can obtain more information from dendrograms; they 
are able to interpret the lengths of the branches or the different colors used in the 
composition, and give us more insightful explanations about the way the clusters 
differ from each other.

Summary
This chapter dealt with tools appropriate for data mining, and explored the  
modules such as stats (for statistics), spatial (for data structures), and  
cluster (for clustering and vector quantization).



SciPy for Computational 
Geometry

In this chapter we will cover the routines in the scipy.spatial module that deal 
with the construction of triangulations of points in spaces of any dimension, and the 
corresponding convex hulls. The procedure is simple; given a set of m points in the 
n-dimensional space (which we represent as an m x n NumPy array), we create the 
scipy.spatial class Delaunay, containing the triangulation formed by those points.

>>> data = scipy.stats.randint.rvs(0.4,10,size=(10,2))

>>> triangulation = scipy.spatial.Delaunay(data)

Any Delaunay class has the basic search attributes such as points (to obtain the set 
of points in the triangulation), vertices (that offers the indices of vertices forming 
simplices in the triangulation), neighbors (for the indices of neighbor simplices for 
each simplex—with the convention that "-1" indicates no neighbor for simplices at 
the boundary).

More advanced attributes, for example convex_hull, indicate the indices of the 
vertices that form the convex hull of the given points. If we desire to search for the 
simplices that share a given vertex, we may do so with the vertex_to_simplex 
method. If, instead, we desire to locate the simplices that contain any given point  
in the space, we do so with the find_simplex method.

At this stage we would like to point out the intimate relationship between 
triangulations and Voronoi diagrams, and offer a simple coding exercise.  
Let us start by choosing first a random set of points, and obtaining the  
corresponding triangulation.

>>> locations=scipy.stats.randint.rvs(0,511,size=(2,8))

>>> triangulation=scipy.spatial.Delaunay(locations.T)
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We may use the matplotlib.pyplot routine triplot to obtain a graphical 
representation of this triangulation. We first need to obtain the set of computed 
simplices. Delaunay offers us this set, but by means of the indices of the vertices 
instead of their coordinates. We thus need to map these indices to actual points 
before feeding the set of simplices to the triplot routine:

>>>assign_vertex = lambda index: triangulation.points[index]

>>>triangle_set = map(assign_vertex, triangulation.vertices)

>>>matplotlib.pyplot.triplot(locations[1], locations[0], \

... triangles=triangle_set, color='r')

We will now obtain the edge map of the Voronoi diagram in a similar fashion  
as we did before, and plot it below the triangulation (since the former needs to  
be with either a pcolormesh or imshow command).

Note how the triangulation and the corresponding Voronoi diagrams are dual  
of each other; each edge in the triangulation (red) is perpendicular with an edge  
in the Voronoi diagram (white). How should we use this observation to code an 
actual Voronoi diagram for a cloud of points? The actual Voronoi diagram is the  
set of vertices and edges that composes it, rather than a binary image containing  
an approximation to the edges as we have computed.

Let us finish this chapter with two applications to scientific computing that use these 
techniques extensively, in combination with routines from other SciPy modules.
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Structural model of oxides
In this example we will cover the extraction of the structural model of a molecule of a 
bronze-type Niobium oxide, from HAADF-STEM micrographs.

The following diagram shows HAADF-STEM micrograph of a bronze-type Niobium 
oxide (taken from http://www.microscopy.ethz.ch/BFDF-STEM.htmhttp://www.
microscopy.ethz.ch/BFDF-STEM.htm, courtesy of ETH Zurich):

For pedagogical purposes, we took the following approach to solving this problem:

1.	 Segmentation of the atoms by thresholding and morphological operations.
2.	 Connected component labeling to extract each single atom for posterior 

examination.
3.	 Computation of the centers of mass of each label identified as an atom.  

This presents us with a lattice of points in the plane that shows a first  
insight in the structural model of the oxide.

4.	 Computation of the Voronoi diagram of the previous lattice of points. The 
combination of information with the output of the previous step will lead  
us to a decent (approximation of the actual) structural model of our sample.

Let us proceed in this direction.

Once retrieved, our HAADF-STEM images will be stored as big matrices with 
float32 precision. For this project, it is enough to retrieve some tools from the 
scipy.ndimage module, and some procedures from the matplotlib library.  
The preamble then looks like the following code:

import numpy
import scipy
from scipy.ndimage import *
from scipy.misc import imfilter
import matplotlib.pyplot as plt
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The image is loaded with the imread(filename) command. This stores the image as 
a numpy.array with dtype = float32. Notice that the maxima and minima are 1.0 
and 0.0, respectively. Other interesting information about the image can be retrieved:

img=imread('/Users/blanco/Desktop/NbW-STEM.png')
print "Image dtype: %s"%(img.dtype)
print "Image size: %6d"%(img.size)
print "Image shape: %3dx%3d"%(img.shape[0],img.shape[1])
print "Max value %1.2f at pixel %6d"%(img.max(),img.argmax())
print "Min value %1.2f at pixel %6d"%(img.min(),img.argmin())
print "Variance: %1.5f\nStandard deviation: 
       %1.5f"%(img.var(),img.std())

This outputs the following information:

Image dtype: float32

Image size:  87025

Image shape: 295x295

Max value 1.00 at pixel  75440

Min value 0.00 at pixel   5703

Variance: 0.02580

Standard deviation: 0.16062

We perform thresholding by imposing an inequality in the array holding  
the data. The output is a Boolean array where True (white) indicates that the 
inequality is fulfilled, and False (black) otherwise. We may perform at this  
point several thresholding operations and visualize them to obtain the best  
threshold for segmentation purposes. The following images show several  
examples (different thresholdings applied to the oxide image):
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By visual inspection of several different thresholds, we choose 0.62 as one that 
gives us a good map showing what we need for segmentation. We need to get rid 
of "outliers", though; small particles that might fulfill the given threshold but are 
small enough not to be considered as an actual atom. Therefore, in the next step we 
perform a morphological operation of opening to get rid of those small particles. We 
decided that anything smaller than a square of size 2 x 2 is to be eliminated from the 
output of thresholding:

BWatoms = (img> 0.62)
BWatoms = binary_opening(BWatoms,structure=numpy.ones((2,2)))

We are ready for segmentation, which will be performed with the label routine 
from the scipy.ndimage module. It collects one slice per segmented atom, and  
offers the number of slices computed. We need to indicate the connectivity type.  
For example, in the following toy example, do we want to consider that situation  
as two atoms or one atom?

It depends; we would rather have it now as two different connected components, 
but for some other applications we might consider that they are one. The way we 
indicate the connectivity to the label routine is by means of a structuring element 
that defines feature connections. For example, if our criterion for connectivity 
between two pixels is that they are in adjacent edges, and then the structuring 
element looks like the image shown on the left-hand side from the images shown 
next. If our criterion for connectivity between two pixels is that they are also  
allowed to share a corner, then the structuring element looks like the image on  
the right-hand side. For each pixel we impose the chosen structuring element  
and count the intersections; if there are no intersections, then the two pixels  
are not connected. Otherwise, they belong to the same connected component.
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We need to make sure that atoms that are too close in a diagonal direction are 
counted as two, rather than one, so we chose the structuring element on the left.  
The script then reads as follows:

structuring_element = [[0,1,0],[1,1,1],[0,1,0]]
segmentation,segments = label(BWatoms,structuring_element)

The segmentation object contains a list of slices, each of them with a Boolean matrix 
containing each of the found atoms of the oxide. We may obtain for each slice a great 
deal of useful information. For example, the coordinates of the centers of mass of 
each atom can be retrieved with the following commands:

coords  = center_of_mass(img, segmentation, range(1,segments+1))

xcoords = numpy.array([x[1] for x in coords])

ycoords = numpy.array([x[0] for x in coords])

Note that, because of the way matrices are stored in memory, there is a transposition of 
the x and y coordinates of the locations of the pixels. We need to take it into account.

Notice the overlap of the computed lattice of points over the original image  
(the left-hand side image from the two images shown next). We may obtain  
it with the following commands:

>>>plt.imshow(img); plt.gray(); plt.axis('off')

>>>plt.plot(xcoords,ycoords,'b.')

We have successfully found the centers of mass for most atoms, although there are 
still about a dozen regions where we are not too satisfied with the result. It is time to 
fine-tune by the simple method of changing the values of some variables; play with 
the threshold, with the structuring element, with different morphological operations, 
and so on. We can even add all the obtained information for a wide range of those 
variables, and filter out outliers. An example with optimized segmentation is shown, 
as follows (look at the right-hand side image):



Chapter 7

[ 117 ]

For the purposes of this exposition, we are happy to keep it simple and continue 
working with the set of coordinates that we have already computed. We will be  
now offering an approximation to the lattice of the oxide, computed as the edge 
 map of the Voronoi diagram of the lattice.

L1,L2 = distance_transform_edt(segmentation==0,
return_distances=False,
return_indices=True)
Voronoi = segmentation[L1,L2]
Voronoi_edges= imfilter(Voronoi,'find_edges')
Voronoi_edges=(Voronoi_edges>0)

Let us overlay the result of Voronoi_edges with the locations of the found atoms:

>>>plt.imshow(Voronoi_edges); plt.axis('off'); plt.gray()

>>>plt.plot(xcoords,ycoords,'r.',markersize=2.0)

This gives the following output, which represents the structural model we were 
searching for:

A finite element solver for Poisson's equation
We use finite elements when the size of the data is so large that it results prohibitive 
to deal with finite differences. To illustrate this case, we would like to explore the 
potential flow over a wing, as a solution to the Laplace equation subjects to certain 
boundary conditions.

We wish to create a simple profile of a wing, and produce a mesh surrounding it. 
This will be our starting point to solve this problem using finite elements, as we will 
be placing on the domain a piecewise continuous function, whose pieces are linear 
and supported on each of the triangles.
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import numpy
from numpy import pi, cos, sin, hstack, vstack, linspace, where
from numpy import ones, multiply, cross, array, mat, zeros, mgrid
import scipy
import matplotlib.pyplot as plt
from scipy.special import exp10
from scipy.linalg import norm
from scipy.sparse import dok_matrix
from scipy.sparse.linalg import spsolve
from scipy.interpolate import LinearNDInterpolator
from scipy.spatial import Delaunay

We will be using two functions to generate vertices of our triangulation:

paramtr=lambda s:linspace(0,1,s)
ellipse=lambda a,b,s:[a*cos(2*pi*paramtr(s)), b*sin(2*pi*paramtr(s))]

We will start with a grid of a sufficiently large domain where the wing profile is to 
be included. We will complement this basic grid with enough points on the wing 
profile, which is designed as an ellipse:

vertices=ellipse(128,16,48)
for k in range(16): 
    vertices=hstack((vertices,ellipse(128+16*k,16+16*k,48+2*k)))

We will be restricting the domain to a small rectangular region. We wish to introduce 
enough points in that border:

horizontal=linspace(-200,200,26)
vertical=linspace(-100,100,16)
vertices=hstack((vertices,vstack((horizontal,100*ones(26)))))
vertices=hstack((vertices,vstack((horizontal,-100*ones(26)))))
vertices=hstack((vertices,vstack((-200*ones(16),vertical))))
vertices=hstack((vertices,vstack((200*ones(16),vertical))))

Let us now perform the restriction of vertices, as follows:

inside_vertices=where( multiply(abs(vertices[0])<=200,
    abs(vertices[1])<=100 ))
vertices=vertices[:,inside_vertices[0]]

We may create now the triangulation, and erase from it all triangles that are inside 
of the wing profile, and outside the rectangle [-200,200]x[-100,100]. We do so by 
computing the center of mass for each triangle, and discarding those triangles whose 
centers are inside of the ellipse, or outside the rectangle:

triangulation = Delaunay(vertices.T)
index2point = lambda index: triangulation.points[index]
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all_centers = index2point(triangulation.vertices).mean(axis=1)
not_in_wing = lambda pt: (pt[0]/128)**2+(pt[1]/16)**2>=1
trngl_set=triangulation.vertices[where(map(not_in_wing,all_centers))]

We then have the following triangulation:

>>>plt.triplot(vertices[0],vertices[1],triangles=trngl_set)

This produces the following graph:

In this case, the flow potential is the solution of the Laplace equation, with boundary 
conditions as follows:

Here, Cin is the set of vertical edges on the leftmost side of the rectangle. Cout is the set 
of vertical edges on the rightmost side of the rectangle. We code the solution in the 
usual fashion. We compute the stiff matrix A (which for obvious reasons need to be 
sparse), the matrix R and the vector r holding the Robin conditions. With them, the 
solution to the system comes from the solution X of the system (A + R) X = r. This 
should be no trouble for SciPy. Let us start with the stiff matrix:

points=triangulation.points.shape[0]
stiff_matrix=dok_matrix((points,points))
Robin_matrix=dok_matrix((points,points))
Robin_vector=zeros((points,1))

for triangle in triangulation.vertices:
helper_matrix=dok_matrix((points,points))
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    pt1,pt2,pt3=index2point(triangle)
    area=abs(0.5*cross(pt2-pt1,pt3-pt1))
    coeffs=0.5*vstack((pt2-pt3;pt3-pt1;pt1-pt2))/area
    helper_matrix[triangle,triangle]=array(mat(coeffs)*mat(coeffs).T)
stiff_matrix=stiff_matrix+helper_matrix

Note the cumbersome way to update the matrix stiff_matrix. This is due to the 
fact that the matrix is sparse, and the current choice of representation does not 
behave well with indexing.

To compute the Robin matrix and vector we need to collect all edges on the 
boundary first. We also need to define the kappa and gN functions to help  
us design the boundary conditions:

kappa=lambda pt: exp10(6)*(pt[0]>99.99)
gN=lambda pt:float(pt[0]<=99.99)

for edge in triangulation.convex_hull:
helper_matrix=dok_matrix((points,points))
    length=norm(index2point(edge))
    center=mean(index2point(edge),axis=0)
helper_matrix[edge,edge]= length*kappa(center)*array([2,1,1,2])
Robin_matrix=Robin_matrix+helper_matrix
Robin_vector[edge]+=gN(center)*length*0.5*ones((2,1))

We are ready to solve the equation, precisely by computing the linear interpolant  
on the vertices of the triangulation, with the values obtained in our previous step:

>>>sltn_v=spsolve(stiff_matrix+Robin_matrix,Robin_vector)

>>> solution=LinearNDInterpolator(triangulation.points,sltn_v)

>>>X,Y=mgrid[-200:200,-100:100]

>>>plt.imshow(solution(-X,Y).T)

This produces the following image showing velocity potential for the wing profile:
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Summary
In the previous five chapters we have covered at length all the different modules 
included in the SciPy libraries, in a structured manner derived from the logical 
division of the different branches of mathematics.

We have also witnessed the power of this system to accomplish with minimal  
coding and optimal resource use, state-of-the-art applications to research problems 
in different areas of science.

In the next chapter we will introduce one of the main strengths of SciPy – the ability 
to interact with other languages.





Interaction with Other 
Languages

We often need to incorporate into our workflow some code written in different 
languages; mostly C/C++ or Fortran, and also from R, Matlab, or Octave. Python 
excels at allowing code from all these other sources to run from within; care must  
be taken to convert different numerical types to something that Python understands, 
but this is pretty much the only issue we encounter.

Fortran
SciPy provides a simple way of including Fortran code – f2py. This is a utility 
shipped with the NumPy libraries, which is operative when distutils from  
SciPy are available. This is always the case when we install SciPy.

The f2py utility is supposed to run outside of Python, and it is used to create from 
any Fortran file, a Python module that can be easily called in our sessions. Under  
any *nix system, we call it from the terminal. Under Windows, we recommend  
to run it in the native terminal, or even better, through a cygwin session.

Before being compiled with f2py, any Fortran code needs to undergo three  
basic changes, as follows:

•	 Removal of all allocations
•	 Transformation of the whole program into a subroutine
•	 If anything special needs to be passed to f2py, we must add it with the 

comment string "!f2py" or "cf2py"
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Let us illustrate the process with a simple example. The following naïve subroutine, 
which we store in the primefactors.f file, performs a factorization in prime 
numbers for any given integer:

SUBROUTINE PRIMEFACTORS(num, factors, f)
  IMPLICIT NONE
  INTEGER, INTENT(IN) :: num  !input number
  INTEGER,INTENT(OUT), DIMENSION((num/2))::factors 
  INTEGER, INTENT(INOUT) :: f
  INTEGER :: i, n
  i = 2  
  f = 1  
  n = num
  DO
    IF (MOD(n,i) == 0) THEN 
      factors(f) = i
      f = f+1
      n = n/i
    ELSE
      i = i+1
    END IF
    IF (n == 1) THEN    
      f = f-1    
      EXIT
    END IF
  END DO
END SUBRO
UTINE PRIMEFACTORS

Since no allocation was made in the code, and we receive a subroutine directly, 
we may skip to the third step, but for the moment we will not tamper with f2py 
commands, and are content with trying to create a python module from it. The fastest 
way to wrap this primefactors subroutine is by issuing the following command:

% f2py –c primefactors.f –m primefactors

If everything is correct, an extension module with the name primefactors.so  
is created. We can then access the primefactors routine in Python from  
the primefactors module:

>>> import primefactors

>>>primefactors.primefactors(6,1)

array([2, 3, 0], dtype=int32)
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C/C++
Technically, f2py can also wrap C code for us, but there are more efficient ways 
to perform this task. For instance, if we need to interface a very large library of C 
functions, the preferred method is Simplified Wrapper and Interface Generator 
(SWIG). To wrap C++ code, depending on features required and the method of 
interacting with Python, we have several methods such as SWIG or f2py again, but 
also PyCXX, Boost.Python, or the SciPy module, weave. When C compilers are not 
available (and thus linking extensive libraries is not possible in the usual way), we 
use ctypes. Whenever we are going to use NumPy/SciPy code, and we seek fast 
solutions to our wrapping/binding, the most two common ways to interact with  
C/C++ are usually through the Python/C API, or through the weave package.

All the methods briefly enumerated here would require an entire monograph 
to describe at length the methodology of binding the nuisances of the wrapping 
depending on systems and requirements, and the caveats of their implementations. 
The method we would like to cover with more detail in this appendix is the weave 
package, more concretely by means of the inline routine. This command receives a 
string (raw or otherwise) containing a sequence of commands, and runs it in Python 
by calling your C/C++ compiler. The syntax is as follows:

inline(code, arg_names, local_dict=None, global_dict=None,
           force = 0,
           compiler='',
           verbose = 0,
support_code = None,
           customize=None,
type_factories = None,
auto_downcast=1,
           **kw)

Let us go over the different parameters:

•	 code is the string that holds the code to be run. Note that this code must not 
specify any kind of return statement. Instead, it should assign some result 
that can be returned to Python.

•	 The arg_names parameter is a list of strings containing the Python variable 
names that are to be sent to the C/C++ code.

•	 The local_dict parameter is optional, and must be a Python dictionary 
containing the values used as local scope for the C/C++ code.

•	 The global_dict parameter is also optional, and must be another Python 
dictionary containing the values that should be used as the global scope for 
the C/C++ code.
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•	 The force parameter is used only for debugging purposes. It is also optional, 
and can take only two values – 0 (by default) or 1. If its value is set to 1, the 
C/C++ code is compiled every time inline is called.

•	 We may specify the compiler that takes over the C/C++ code with  
the compiler option. It must be a string containing the name of the  
C/C++ compiler.

For example, we could use the following method to employ cout for text  
displaying purposes:

>>> name = 'Francisco'

>>> pin = 1234

>>> code = 'std::code << name << "---PIN: " '

>>> code+= '<<std::hex << pin <<std::endl;'

>>>arg_names = ['name','pin']

>>> inline(code, arg_names)

Francisco---PIN: 4d2

That was a very simple example, in which no external header declarations were 
needed. If we wish to do so, those go in the support_code option. For instance,  
if we wish to include math functions from R in our C/C++ code, and pass it with 
inline, we need to perform the following steps:

1.	 Configure the C functions as a shared library. In the folder holding the R 
release, in a terminal session, issue the following command:
% ./configure --enable-R-static-lib --enable-static --with-
readline=no

2.	 Change to the folder src/nmath/standalone and finish the installation  
of libraries. At the end, we should have a file named libRmath.so, which 
needs to be pointed to from the libpath string back in our Python session:
% cd src/nmath/standalone

% make

3.	 Back in our Python session, we prepare the inline call with the proper 
options. For instance, if we wish to call the R routine pbinom, we proceed  
as follows:
>>>support_code= 'extern "C" double pbinom(double x,\

... double n, double p, intlower_tail, intlog_p);'

>>>library_dirs=[libpath]

>>> libraries=['Rmath']
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>>>runtime_library_dirs=[libpath]

>>> code='return_val=pbinom(100,20000,100./20000.,0,1);'

>>> inline(code, support_code, library_dirs, libraries,\

... runtime_library_dirs)

-0.7477349

Note how the function declaration is passed in support_code, not in code. 
Also, note that this option needs to start with extern "C" whenever we are 
not using C++.

4.	 If extra headers need to be passed, we do so with the header option, rather 
than support_code or code:

>>> headers = ['<math.h>']

We have a word of advice. Care must be taken while converting the different variable 
types from their original C/C++ format to something that Python understands. This 
requires modifying the original C/C++ code in certain cases. But by default, we do not 
have to worry about the following C/C++ types, as SciPy automatically turns them 
into the indicated Python formats, as shown in the following table:

Python int float complex string list dict tuple

C/C++ int double std:: 
complex

py:: 
string

py:: 
list

py: 
dict

py:: 
tuple

File types FILE* are sent to Python files. Python callables and instances are both 
obtained from py::object. NumPy ndarrays are constructed from PyArrayObject*. 
For any other Python type to be used, the corresponding C/C++ types must be 
carefully turned into combinations of the previous.

And that should be all. To go beyond trivial uses of the inline function, we usually 
create extension modules and catalog the functions within for future use.

Matlab/Octave
Since both numerical computing environments provide with a fourth-generation 
programming language, we discourage the straightforward inclusion of code from 
any of these two. There is no gain in terms of speed, resource usage, or coding 
power. In the extreme and rare cases in which a specific routine is not available in 
SciPy, the preferred way to bring it to our session is by generating C code from the 
Matlab/Octave code, and then wrap it with any of the methods suggested in the 
previous section.
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There is a different story when we receive data created from within Matlab or 
Octave. SciPy has a dedicated module to deal with this situation – scipy.io.

Let us show by example. We start in Octave, where we generate a Delaunay 
triangulation of a random set of 10 points in the plane. We save the coordinates  
of these points, as well as the pointers to the triangles in the triangulation, to a 
Matlab-style file (version 7) called data.

octave:1> x=rand(1,10);

octave:2> y=rand(size(x));

octave:3> T=Delaunay(x,y);

octave:4> save –v7 data x y T

We are done there. We go to our Python session, where we recover the file data.

>>> from scipy.io import loadmat

>>> datadict = loadmat("data")

The datadict variable holds a Python dictionary, with the names of the variables  
as keys, and the loaded matrices as their corresponding values:

>>>datadict.keys()

['__header__', '__globals__', 'T', 'y', 'x', '__version__']

>>>datadict['x']

array([[0.81222999,0.51836246,0.60425982,0.23660352,0.01305779,

        0.0875166,0.77873049,0.70505801,0.51406693,0.65760987]])

>>>datadict['__header__']

'MATLAB 5.0 MAT-file, written by Octave 3.2.4, 2012-11-27

 15:45:20 UTC'

It is possible to save data from our sessions to a format that Matlab and Octave  
will understand. We do so with the savemat command, from the same module.  
The syntax is as follows:

savemat(file_name, mdict, appendmat=True, format='5', 
long_field_names=False, do_compression=False,
oned_as=None)

The file_name parameter contains the name of the Matlab-type file where the  
data will be written. The Python dictionary mdict contains the names (as keys)  
of the variables, and their corresponding array values.
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If we wish to append .mat at the end of the file, we may do so in the file_name 
variable, or setting appendmat to True. In case we need to provide long names for 
the files (which not all versions of Matlab accept), we need to indicate so by setting 
the long_field_names option to True.

We may indicate the version of Matlab with the format option. We set it to the string 
'5' for versions 5 and later, or to the string '4' for version 4.

It is possible to compress the matrices we send, and we indicate so by setting the 
do_compression option to True.

The last option is very interesting. It allows us to indicate Matlab/Octave whether 
our arrays are to be read column by column, or row by row. Setting the oned_as 
parameter to the string 'column' will send our data into a collection of column 
vectors. If we set it to the string 'row', it will send the data as collections of row 
vectors. If set to None, the format in which the data was written is respected.

Summary
This chapter introduced one of the main strengths of SciPy – the ability to interact 
with other languages such as C/C++, Fortran, R, and MATLAB®/Octave.
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