
Paper 108-26

1

Intelligent SAS® Log Manager
Paul D Sherman, IBM Corporation, San Jose, CA

ABSTRACT
The SAS log generated during program execution is one of the
richest sources of application health, especially when dealing with
macros which build and invoke code dynamically. Explicitly
sending messages to the Log Manager at critical steps
throughout the application one may disable all low-level SAS
feedback and present only relevant, highly specialized
information to the SAS log. One is led immediately to the source
of both compile-time and run-time errors. Resulting is a clean,
well-structured and specific trace of application flow throughout
the entire job submitted.

INTRODUCTION
The Log Manager package is a lightweight addition to any SAS
program eliminating the need for macro error and symbol
resolution trace with no loss of SAS log content. Further, the
SAS log is annotated in hierarchical C-like fashion familiar to
programmers of block-structured languages, indented for each
level of macro logic. General status messaging and critical
exceptions are handled separately for easy identification by
electronic text search utilities. All this functionality and debugging
ease for the price of two simple macro calls inside each program
macro.

If one follows the simple practice of sending a message to the
Log Manager at the beginning and end of each macro, all
responsibility of program flow trace can be encapsulated within
the Log Manager itself. It is the aim of this package to totally
eliminate any need for compilation status tools such as symbol or
macro resolution logic, notes or errors. By providing the Log
Manager with the name of the macro, its argument list and its
argument's contents one knows exactly what content is being
passed to which macro object at any time.

The Log Manager is composed of four basic methods (macros)
being %bloknote(), %setvar(), %putvar() and %throw().
Bloknote encapsulates all internal details of message handling
and SAS log interaction, thus is the only one which needs to be
invoked from within external code. Two types of events lend
themselves to Log Manager communication outside the usual
bloknote invocation, however. These two events are healthy
status and unexpected situations often called notifications and
exceptions, respectively.

NOTIFICATIONS
Especially between pieces of code which take a long time to
execute or those which interact with the local file system it is
helpful to send a message of status to the SAS log indicating
time or date, file name created or deleted, and so on. Such may
be done using %putlog(). Since it is a member of the Log
Manager, putlog knows at what indentation (code) level to report
its messages, even during macro calls nested many levels deep.

...
%let t0 = %today();
%proc sort data=&indat.;

by key;
run;

%let t1 = %today();
%putlog(sorted &indat. in &t1.-&t0. sec);
...

EXCEPTIONS
It is considered poor programming practice not to exhaustively
check all possible variations of any variable in a macro argument
list. Simply put, the unconditional else in a logic branch serves
such purpose, as shown in the code fragment below.

...
%if &var. = THIS %then %do;

%* do this *;

%end; %else %if &var. = THAT %then %do;
%* do that *;

%end; %else %if &var. = SOMETHING %then %do;
%* do something else *;

%end; %else %do;
%* dont know so just ignore input *;
%throw(oops - unexpected input &var.);

%end;
...

Quite often it is not known how to handle input of wrong or
undefined format or type. The %throw() method of Log
Manager, similar to %putlog(), sends the desired message to
the SAS log wrapped up together with the standard Base SAS
Error: keyword. Therefore, log messages thrown during
program execution encountering unknown conditions may easily
be located electronically together with severe and unavoidable
low-level SAS internal messages.

HOW IT WORKS
The Log Manager is a simple state machine sequenced through
four states by a single general purpose method. The state
variable is a numeric position counter indicating the level of code
nesting at any given time during program execution. This state
variable, or log level, must be defined on the global heap so that
it is available in-scope throughout the entire program. Internal
macro %setvar() manages all details of initializing and updating
this state variable with the desired algebraic operation and
numeric expression.

/==>START==>\ /==>OPEN ==>\
/ \ / \

/-------\ /----------\ /----------\
| Main | | Macro | | Macro |
|Program| |Subroutine| |Subroutine|
\-------/ \----------/ \----------/

\ / \ /
\<== END <==/ \<==CLOSE<==/

Figure 1 : The four states of %bloknote()

STATES
START Initializes the Log Manager, sets up its global state

variable, and disables all native warnings, notes and
errors stateements. Use of %putlog() or %throw() prior
to entering the START state will cause many run-time
errors.

OPEN Stamps the log with macro name and its argument list
and values.

CLOSE Informs the log that the macro execution has finished.
END Notifies the log that all macros have finished, bringing

program flow back to open-code level.

Coders' Corner

2

The Log Manager includes overall error checking at the two
obvious state extremes: Closure when there is no open macro,
and program exit when not all macros have been closed. Usually
both situations are due simply to omitted %bloknote() calls,
though any other real code runtime error may also give the same
messages.

One sends a message to the LogManager by invoking bloknote
indicating to which of the four code execution will proceed:

%bloknote(state, macroName(&arg1., ...));

Internal macro %putlog() encapsulates the Base SAS PUT
function using the at (@) position option with log level state
variable. This is the basic principle how log messages are
indented.

EXTRACTING ARG-LIST CONTENT THROUGH VARIABLE
DEREFERENCE
The chief advantage of SAS log management is not only to show
which code level is executing when, but what objects and values
are being exchanged. It is the latter which provides the most
helpful clues during program debug without symbolgen. Simply
dereference each variable in a macro's argument list when
passing them to the Log Manager. In the case of keyword
parameters it is also helpful to include the parameter name and
equality sign (=) as well. An example follows:

%macro myMacro(p1, p2, kArg);
%bloknote(OPEN, myMacro(&p1., &p2.,

kArg=&kArg.)
);
...
%bloknote(CLOSE);

%mend;

As the only exception to this rule, users of SAS software version
6.12 or earlier may need to pass only the variable name rather
than its reference if such is an extremely long string, due to a 200
character variable length limitation of the macro argument list.
Though loosing some generality and trace information, it is not
believed to hinder greatly the program debug process.

COMPLEX EXAMPLE: ITERATOR DATA
(aka Run-time Dynamic Do-Loop)
Most interesting is the Log Manager output during repeated
macro invocation with differing argument list content. This is a
typical situation when one defines a data set consisting of unique
keys derived from some master data set. The control or iterator
data set then has one row per macro instance and is used as
input to a data/_null_ step which iterates through list repeatedly
invoking the desired macros or functions, often via call execute.

Suppose that there is a data set called theData which has
character and numeric columns defined as key and value,
respectively. Further, assume that key takes on the letters of the
alphabet A through Z. Hence our sample data set theData has
twenty-six possible observations, or rows. Using an sql group-by
syntax, or the equivalent proc sort nodupkey and data step
version, we can derive the control or iterator table which is unique
on a set of columns (or keys) which we wish to pass to our action
macro such as %myMacro() described above.

In the call execute step, any key variable derived from the iterator
data set is brought out of quotes, while any un-iterated constant
such as the master data set content is left quoted for dereference
at a lower level of macro resolution.

%macro iterate(indat);
%bloknote(OPEN, iterate(&indat.));

proc sql noprint;
create table iterator as

select key,
avg(value) as avgval

from &indat.
group by key

;
quit;

data _null_;
set iterator;
call execute(

'%myMacro(&indat.' ||
',' || key ||
', kArg=' || avgval ||

')'
);
run;

%bloknote(CLOSE);
%mend;

The resulting SAS log display will be highly detailed and very
informative:

...
iterate(theData) {

myMacro(theData, A, kArg=1419) {
}
myMacro(theData, B, kArg=1920) {
}
myMacro(theData, C, kArg=124) {

ERROR: ODBC Connection Failed.
}
...
myMacro(theData, Z, kArg=193) {
}
myMacro(theData, AA, kArg=193) {

Exception ERROR: key AA not in alphabet
}

}
...

Notice that something went wrong during the third pass through
the iterator loop, for which SAS threw a critical error. Two things
are immediately obvious: First that the action macro myMacro is
generally functional and sound to which not all input conditions
cause warnings, and secondly that the specific invocation
sequence and values of arguments are indicated unambiguously
in the SAS log. Unfortunately, critical low-level SAS messages
are not catchable within runtime code and therefore cannot be
indented and structured by the Log Manager. With close
attention to argument value checking and exception handling,
however, it is possible to keep these native SAS messages to a
very minimum.

A non-SAS exception was also thrown during the last iteration of
the loop, indicating the result of bad input. One immediately
proceeds to examine whatever code has created data set
theData, and why an observation with key value ‘AA’ was
created. Furthermore, one knows not to expect a result, such as
a graph, file or email from the last iteration, since an exception
was thrown and all subsequent code in myMacro was bypassed.

Coders' Corner

3

CONCLUSION
By including only two simple macro calls, one at the beginning
and end of each macro, the resulting SAS log output of any
program becomes automatically annotated in a block structured
C-like fashion with extremely useful information of program status
and flow. The SAS internal symbolgen, merror and mlogic
utilities originate from the low-level macro resolution process and
are therefore transparent to code nesting level and program flow.
Their messages tend to be lengthy and greatly clutter the SAS
log, often requiring as much effort to decipher the resolution trace
as studying specifics of the application code. Instead all macro
argument list content in addition to macro invocation itself is sent
to the log through use of the Log Manager, providing highly
specific display of program flow and macro variable content in a
clean and easy to read SAS log.

REFERENCES
Carpenter, Art, Carpenter’s Complete Guide to the SAS® Macro
Language, Cary, NC: SAS Institute Inc., 1998. 244pp.
Delwiche, Lora D. and Slaughter, Susan J., The Little SAS®
 Book: A Primer, Cary, NC: SAS Institute Inc., 1995. 228pp.

ACKNOWLEDGMENTS
I owe a special debt of gratitude to Michael Metts for his
pioneering contributions and personal encouragement toward
data analysis and test process engineering. I thank Donald Clark
as a colleague with whose efforts, talent and experience helped
introduce The SAS System into the wafer test process. I thank
Adrienne Dong and Garth Helf for their kind and generous help,
input and feedback during many helpful discussions and
suggestions which have greatly improved my understanding of
SAS. Finally, I am grateful to IBM Corporation for providing the
tools and opportunity which made this work possible.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute, Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Paul D Sherman
 IBM Corporation
 5600 Cottle Road
 San Jose CA 95193
 Phone: 408-256-6091
 Fax: 408-256-2700
 Email: shermanp@us.ibm.com

SOURCE CODE
options nosource;
/* ======================================= */
/* LOGMGR - Intelligent SAS Log Manager */
/* */
/* %setvar(name, expr, value) */
/* manage instance of global variable */
/* */
/* %bloknote(type, arg) */
/* bracket a block of code in the log */
/* */
/* %putlog(msg) - stamps log entry at */
/* current code level */
/* */
/* %throw(e) - post exception to the log */
/* */
/* 1.0 06/20/2000 pds -Initial cut */
/* 1.1 01/10/2001 pds -mod bloknote() */
/* swap annotate - */
/* indent sequence */
/* ======================================= */

/* ======================================= */
/* setvar - create/update instance of */
/* (global) variable */
/* */
/* expr must either a valid */
/* operator + - * / or not exist */
/* at all (ie be blank space) */
/* ======================================= */
%macro setvar(name, expr, value);
%* cant update macro var thru call execute();
%* data _null_;
%* call symput("&name.", &expr.);
%* run;

%if %length(&expr.) = 0 %then %do;
%* replace contents;
%let &name. = &value.;

%end; %else %do;
%* update contents using expr operator;
%let &name. = %eval(&&&name.

&expr.
&value.);

%end;
%mend;

Coders' Corner

4

/* ======================================= */
/* bloknote - bracket a block of code */
/* in the log */
/* type may be one of four states */
/* START, OPEN, CLOSE or END */
/* requires use of global (ie static) */
/* variable 'loglvl' */
/* ======================================= */
%macro bloknote(type, arg);

%global loglvl;
%local OPNSYM CLSDSYM MINLVL INCLVL;
%let OPNSYM = {; %* also <blockquote>;
%let CLSDSYM = }; %* also </blockquote>;
%let MINLVL = 1; %* root code level;
%let INCLVL = 2; %* char steps/code lvl;

%if &type. = START %then %do;
data _null_;

call symput('loglvl', &MINLVL.);
run;

%setvar(loglvl, , &MINLVL.);
%putlog(&arg. &OPNSYM.);
%setvar(loglvl, +, &INCLVL.);

%end; %else %if &type. = OPEN %then %do;
%* annotate ... then indent;
%putlog(&arg. &OPNSYM.);
%setvar(loglvl, +, &INCLVL.);

%end; %else %if &type. = CLOSE %then %do;
%if &loglvl = &MINLVL. %then %do;

%throw(unopen macro - cant &type.);
%end; %else %do;

%* outdent ... then annotate;
%setvar(loglvl, -, &INCLVL.);
%putlog(&CLSDSYM.);
%putlog();

%end;

%end; %else %if &type. = END %then %do;
%if &loglvl. > &MINLVL. %then %do;

%throw(unclosed macro–cant &type.);
%end; %else %do;

%putlog(&CLSDSYM.);
%end;

%end; %else %do;
%* should abort sas at this point... *;
%throw(wrong state - bloknote(&type.));

%end;
%mend;

/* ======================================= */
/* putlog - stamps log entry at current */
/* code level */
/* must be initialized by */
/* %bloknote(START) */
/* ======================================= */
%macro putlog(arg);

data _null_;
lvl = &loglvl.;
text = "&arg.";
put @lvl text;
run;

%mend;

/* ====================================== */
/* throw - post exception to the log */
/* use also the six chars ERROR: so */
/* real sas errors roll up together */
/* must be initialized by */
/* %bloknote(START) */
/* ====================================== */
%macro throw(e);

%putlog(Exception ERROR: &e.);
%mend;

/* ====================================== */
/* aMacro - typical macro template */
/* ====================================== */
%macro aMacro(args);

%* set your macro name here;
%bloknote(OPEN, aMacro(&args.));

%* place your macro code here *;

%bloknote(CLOSE);
%mend;

/* ====================================== */
/* main - typical program entry point */
/* ====================================== */
%macro main(args);

dm 'log' clear;
dm 'program editor' clear;

%bloknote(START, main(&args.));

%* place your main code here *;

%bloknote(END);
%mend;

/* ----- program execution starts here ----*/
options nonotes noovp nomerror nomprint

nomlogic nosymbolgen errors=max
msymtab=MAX mvarsize=MAX
mautosource mrecall
sasautos=(sasautos)
linesize=256 pagesize=1000
yearcutoff=1920 cleanup dsnferr
nocenter nodate
serror nostimer

;
main();

Coders' Corner

	SUGI 26 Title Page

