
The Optimizer Project:
WHERE The Statement Is Not The Clause

Paul D Sherman, San Jose, CA
Russell Lavery, Ardmore, PA

ABSTRACT
Improving clock time and running smaller are goals for any programmer. In the SAS® Data step, it is well known
that certain filtering expressions placed in a WHERE statement often lead to better processing efficiency. These
expressions are simple “static” equalities, those without arithmetic operations or function calls. The Data step
engine processes these statements at a very low level – as observations are being read in from the input dataset –
so that later and more complicated Data step operations have as few rows as possible to deal with.
Therefore a SAS programmer learns early on to do their easy work – first things, first, -- in the WHERE statement.

This is unfortunate. Folks in the RDBMS camp know that the FROM clause is the first point of contact to one's data
model. Only after processing all specifications and expressions in the FROM clause will the database system go on
to the WHERE clause. In SAS Proc SQL code, position of the data filters (e.g., WHERE gndr eq ”M”;) can affect
how fast the query runs and how much disk space it takes while running. Proper coding of the data filter allows
Proc SQL to “delegate” the filtering to a “lower level” internal SAS subroutine called the Data Engine.

We learn in this paper that
in SAS, the data step WHERE is a statement, IMPORTANT POINT

and processed first
but in SQL, the query WHERE is a clause,

and processed last.

This paper suggests, and justifies, that SAS SQL programmers can often improve performance by adopting a few
simple rules and coding style. Many annotated demonstrations, and a few humerous examples, are included as well
as on the companion web site.

INTRODUCTION/BACKGROUND
In SAS SQL, a programmer codes what they want done and not how to do it. There is a subroutine, called the SQL
Optimizer, that interprets the SQL code, queries system conditions (RAM, file sizes, presence of an index etc.) and
creates a “mini-program” to produce the results specified in the query. This “mini-program” can be a complex
program involving sorting, merging and indexing of many “working files” on the way to creating the result specified
in the SQL code.

The SAS SQL Optimizer queries system conditions and attempts to re-program your query before running it. It
does an excellent job of writing code that runs both “fast” and “small”. However, in some outer joins, a programmer
can use the syntax described in this paper and make the SQL code run faster, especially if the programmer has
access to information about the files (file sizes after filtering) that is not available to the SAS SQL Optimizer. The
above rules do not disable the Optimizer, they simply help it to do what it is trying to do – make filtering happen
early in the query process.

Optimizer activity is transparent to the user. To see what the Optimizer planned as the “mini-program” for creating
the result specified in the SQL code, turn on _method and _tree by coding

Proc SQL _method _tree;

and look in the log for the output from these two options.

SAS Proc SQL “sits on top of” regular SAS, interacting with many parts of regular SAS and “delegating” tasks
whenever possible. An example of “delegating a task” is ordering of data. Ordering is not done by Proc SQL.
When a SQL query specifies ordering, instructions – and the file to be ordered – are passed to SAS Proc Sort for
processing.

Another important delegation, and the heart of this paper, is data filtering. There is a low level SAS subroutine that
handles data “reads”, called the Data Engine. Proc SQL gets its data through the Data Engine and passes, to the
Data Engine, simple tasks, like filtering out unneeded observations and variables. In a similar manner, the V6
discussions of using a “subsetting if” versus a “where as a data step option”, is a discussion of reading the data into

1

the Program Data Vector (PDV) and filtering observations on program execution in the PDV, versus telling the Data
Engine to filter the observations before they are brought into the PDV.

The above fact is a small introduction to the title of the paper. The WHERE, in Proc SQL, functions very differently
from the where in a Data Step. Understanding the function of “WHERE” and “ON” in SQL, and how they can be used
to help the Optimizer delegate data filtering to a low level and create small “SQL working files,” is the main focus of
this article.

In the short review of the data step processing presented below, we can see some effect of if versus WHERE
processing in the SAS Data step. The WHERE statement in the Data Step can delegate filtering to the Data Engine.

The following datasets, and others, will be used through the paper.

data Stu_demog;
 infile Datalines
 missover;
 input @1 Stu_id 4.
 @7 Age 2.0
 @11 Class $char2.
 @15 Gndr $char1.
 ;
datalines;
0001 18 FR M
0002 19 SO F
0003 20 JR M
0004 21 SR F
;
 run;

data Billing;
 infile datalines
 missover;
 input @1 Stu_id 4.
 @6 Dept $char4.
 @12 BYR_TERM $char6.
 @19 PAID_YN $char1.
 ;
datalines;
0001 Dorm 2001_F Y
0001 Store 2001_F Y
0001 Dorm 2001_S
0001 PARK 2001_F N
0001 DORM 2000_F Y
0001 GYMN 2000_F N
0001 FINE 2000_F
0002 DORM 2000_F Y
;

data Housing;
 infile datalines missover;
 input @1 Stu_id 4.
 @6 HYr_term $char6.
 @13 Dorm $char10.
 @24 style $char6.
 ;
datalines;
0001 2001_F Riley_Hall Single
0001 2001_S Riley_Hall Single
0002 2000_F Smith_Hall Double
0002 2000_S Smith_Hall Double
0002 2001_F Smith_Hall Double
0002 2001_S Riley_Hall Suite
0003 1999_S Riley_Hall Double
0003 1999_S Riley_Hall Double
0003 2000_S Riley_Hall Suite
0003 2000_S Riley_Hall Suite
;

Figure 1

First, if the WHERE variable is not present in both files being merged, an error occurs as is show in Figure 2.
Conversely, in SQL, a WHERE can be applied to a variable that is in only one of the data sets.

data WUSS/debug;
 merge Stu_demog(in=D)
 housing(in=H);
 by stu_id;
 look="here";
 where style="Suite";
 run;

256 data WUSS/debug;
257 merge Stu_demog(in=D)
258 housing(in=H);
259 by stu_id;
260 look="here";
261 where style="Suite";
ERROR: Variable style is not on file WORK.STU_DEMOG.
262 run;

Figure 2

2

Secondly, if the programmer uses a
subsetting if, observations are brought into
the working “space” of the Data Step (here it
is the Program Data Vector or PDV).

The data sets being merged are the
stu_demog and housing data sets shown
above. The program is in the right window
and the PDV is in the left. The Data Step is
about to execute the “nonsense” statement
look=”here”;

As can be seen in Figure 3, _N_ is one and a
student id Stu_id valued at 1 has been
brought into the PDV. Time has been used
to bring the observation into the PDV and
have the data step determine if that
observation should be “kept”.

The Data step built-in loop must “spin” two
times to get to Stu_id=3.

Figure 3

Thirdly, a subsetting where is more efficient
than a subsetting if. Figure 4 shows the use
of a subsetting where.

The data sets being merged are the
Stu_demog and Housing data sets shown
above.

As can be seen in Figure 4, _N_ is one and a
student id valued at 3 has been brought into
the PDV. The first observation brought into
the PDV is the third observation in the source
data set. This makes for a faster query.

The filtering of observations has been
“passed down” to the Data Engine that feeds
observations to the compiled data step code.

Remember, a data step can merge many
files in just one pass through the data sets.

Figure 4

While Proc SQL can merge up to 32 files in one query, it has a very different merge process from the Data step
(See “The De-normalize Transpose,” in References, for a file-unlimited solution). In the Data step all files in the
merge statement are opened at once and “currently active row pointers” created in/for each open file. The merge is
processed in one top-to-bottom pass through the data sets. Alternatively, Proc SQL merges pairs of files (tables to
SQL folks) and repeats the process until all files are merged. If one were to use SQL to merge files Able, Baker,
Charlie and Delta, the process would be to merge Able and Baker into result_set_1. Then result_set_1 is merged
with Charlie, giving result_set_2. Result_set_2 is merged with Delta, giving result_set_3, the desired output. The
first file accessed by SQL is called the pivot table. SQL has several very different merging processes it can use to
merge a pair of files and the Optimizer selects the process that it thinks will produce the fastest “time to solution.”

3

First obs
read in

3

1

is the one we want.

First obs
read in

is not the one we want.

The code below, run on the
datasets shown above,
illustrates the Data Step by
“merge in one pass”
process.

data WUSS;
 merge
 Stu_demog (in=D)
 billing (in=b)
 housing (in=H)
 ;
 by stu_id;
 look="here";
 run;

A row pointer in each file
controls matching. For
every “match” a line is
output and the pointers are
advanced, unless the
pointer is on the last line of
a by-group. Student 1 only
had one line in Stu_demog
and two observations in
Housing. The one line in
Stu_demog was matched
to every line in the other
files. The second line in
housing was used many
times (see inner red box).

 B H
 Y P Y
 S R A r
 t C _ I _ s
 u l G D T D t D t l
 O _ A a n e E _ e o y o
 b i g s d p R Y r r l o
 s d e s r t M N m m e k

 1 1 18 FR M Dorm 2001_F Y 2001_F Riley_Hall Single here
 2 1 18 FR M Stor 2001_F Y 2001_S Riley_Hall Single here
 3 1 18 FR M Dorm 2001_S 2001_S Riley_Hall Single here
 4 1 18 FR M PARK 2001_F N 2001_S Riley_Hall Single here
 5 1 18 FR M DORM 2000_F Y 2001_S Riley_Hall Single here
 6 1 18 FR M GYMN 2000_F N 2001_S Riley_Hall Single here
 7 1 18 FR M FINE 2000_F 2001_S Riley_Hall Single here
 8 2 19 SO F DORM 2000_F Y 2000_F Smith_Hall Double here
 9 2 19 SO F DORM 2000_F Y 2000_S Smith_Hall Double here
10 2 19 SO F DORM 2000_F Y 2001_F Smith_Hall Double here
11 2 19 SO F DORM 2000_F Y 2001_S Riley_Hall Suite here
12 3 20 JR M 1999_S Riley_Hall Double here
13 3 20 JR M 1999_S Riley_Hall Double here
14 3 20 JR M 2000_S Riley_Hall Suite here
15 3 20 JR M 2000_S Riley_Hall Suite here
16 4 21 SR F here

Figure 5

In comma separated inner joins, the implicit style FROM clause, the optimizer will re-write submitted code and
“move” the WHERE (eg. WHERE gndr='M') so that it executes early in the query process (resulting in small working
files). In outer joins, the optimizer is not able to “move” the execution of the WHERE clause and the filtering of data
happens at (or close to) the place the WHERE was coded, often late in the query. Proper placement of the WHERE,
and structure of the query, can help the optimizer. Note that the Data Engine can not do arithmetic, and a filter like
(height*12 LE 15) can not be passed down to the Data Engine. This type of filter must be processed late in the
query, in a position similar to that of the Filter in Example 1.

The understanding of the “WHERE” and “ON” in SQL, leads to five rules of writing SQL join syntax. These are rules
that help the optimizer and are the major deliverable of the paper.

For outer joins the following rules are suggested:
1. Use explicit syntax for outer joins (use the ON clause style, not a FROM clause with files separated by commas)
2. Move filtering clauses from the “high level” WHERE statement to the ON clauses or the pivot table WHERE clause
3. Make the smallest table the pivot table (the first table listed in the FROM)
4. Sequence all other table joins in from smallest-to-largest size order
5. Don't use a WHERE clause in a multi-table SQL query except in the pivot table!!!

Unles you're testing for non-existence or other Gestalt-like philosophy.
See examples in the Appendix for some situations Where you really should use WHERE:
Educational (life's a beach), Transportational (passing in the night), Clinical (no say, no pay)
and Mathematical (off diagonal).

For a more in depth discussion of the optimizer and basic SQL processing, one might read the SUGI paper “The
Optimizer Project” _method and _tree” mentioned in the references.

4

The Combinatoric Nature of the Problem Structure
This might be a good time to lay out the structure and complexity of the task faced when investigating SQL two-
table join-type queries and applying the rules above. We can use the combination formula to understand the “size”
of the problem.

There are inner joins, left outer joins, right outer joins and full joins. This paper will limit itself to inner joins and left
outer joins. On the subject of inner joins, we just say the Optimizer lives up to its name and we have no suggestions
for improving its functionality. (While we say that the Optimizer is effective on inner joins, we still suggest that a
programmer apply the four rules of this paper (put smallest file in the pivot). Right outer joins are the mirror image
of left outer joins and it is suggested that, while do-able, they are conceptually awkward and should be avoided.
Full outer joins are not covered in this paper because of the explicit union involved in outer joins.

There are a variety of relation-expressions (a relation expression is an equation such as variable test-operation
value) that can be used in Proc SQL. The test-operations are EQ, NE, LT, LE, GT, GE. Additionally, the value
tested can be for a null value, against variable in the data set or against a constant value as in (Age GE 45).

The combinations of join-type, relation expression being tested, and kind of value being tested generates the
possible “states of nature” that are shown in the table below. These “states of nature” define the size of the problem
we face. All combinations or ”states of nature” must be investigated, their underlying processes understood, the
processes contrasted and finally rules abstracted.

Fortunately, we use some of our understanding of SQL to quickly collapse sections of the table and make the task
smaller. Inner joins have been optimized so well, that we collapsed that whole section of the table and have no
suggestions to make. When the value being checked is a constant or “static relation” (Age=12) or observation or
“dynamic relation” (test1.score GE grades.cutoff) the processes are so similar as to allow us to discuss
them as one process.

What _tree tells us about WHERE and ON processing is striking. Importantly, filtering occurs only at one of two
places, early (low) in the process, by being passed to the Data Engine or later (higher) in the process when SQL
applies the filter after joining tables.

Inner joins
The optimizer works so well, that we have not discovered anything to improve on the way it functions through
coding. In all the two-table implicit “comma form” inner joins, the optimizer passed the filtering of observations
down to the Data Engine, regardless of the use of WHERE or ON. The Optimizer is truly living up to its name.

For left outer joins, the result is similarly striking. When the four rules are applied (see examples 2, 4, 6, 8, 10, 12,
14 and 16 in the companion web site) the filtering is passed to the Date engine and applied early. An example of the
improper coding style (example 1) and proper coding style (example 2 and 9) are shown immediately below.

Left Outer joins
Logical Operator
“Left Hand Side” (LHS)
is a variable

Right Hand Side
(RHS) Value
being Checked

Test operator
notation seen in
_tree in the log

Implement Using a
WHERE Clause

Implement Using
an ON Clause

see appendix NOT Recommended Recommended
Age Is Null ; NULL ISNL Example 1 Example 9
Age Is Not Null; Not NULL NTNL Example 2 Example 10
Age = 12 ;
Age = T.age ;

Constant
 or var.

CEQ Example 3 Example 11

Age NE 12;
Age <> T.age;

Constant
 or var.

CNE Example 4 Example 12

Age GE 12;
Age >= T.age;

Constant
 or var.

CGE Example 5 Example 13

Age GT 12;
Age > T.age;

Constant
 or var.

CGT Example 6 Example 14

Age LE 12;
Age <= T.age;

Constant
 or var.

CLE Example 7 Example 15

Age LT 12;
Age < T.age ;

Constant
 or var.

CLT Example 8 Example 16

5

Examples of proper and improper syntax and a Short introduction to output from
the _tree option on the SQL statement on two table joins

The following six annotated pages illustrate how application of the five rules allows SQL to filter out observations
early. Early filtering of observations makes for small working files and faster processing of the query. The first two
examples show how the placement of the WHERE allows/prevents filtering of observations by the Data Engine for all
possible relation expressions. The examples presented are examples 1 and 9 in the table above. These examples
investigate two conditions/issues (WHERE placement and test operation condition in the WHERE) and all possible
combinations of these conditions are presented and annotated in the appendix.

The next four annotated pages allow the reader to see how the rules generalize to three (and higher) table queries.
The four pages show four ways of coding one query and how applying the rules given in this paper allow filtering to
be passed to the Data Engine. Since these queries investigate only one issue (WHERE placement) that issue
overlaps with the issues in the first 16 examples, the companion web site contains code to allow an interested
reader to run each of the queries.

The dataset used in the 16 examples is shown below. It contains three variables and 15 observations.

data work.foo;
 infile datalines missover;
 input @1 pvar $char8.
 @10 xvar yymmdd8.
 @19 yvar 4.1
 ;
datalines;
aParm 20050510 14.1
aParm 20050511 6.1
aParm 20050512 13.1
aParm 20050513 11.1
aParm 20050514 9.1
bParm 20050515 12.1
bParm 20050516 8.1
bParm 20050517 7.1
bParm 20050518 15.1
bParm 20050519 16.1
cParm 20050520 4.1
cParm 20050521 11.1
cParm 20050522 10.1
cParm 20050523 20.1
cParm 20050524 15.1
;
 run;

The code and annotated output from representative left outer join examples 1 and 9 are shown on the following
pages.

6

Example 1. ISNL/Where - IS NuLL - (Left) Outer Join
 SELECT 0 as nothing
 FROM foo as f
 left outer join foo as g ON f.pvar = g.pvar
 and f.xvar = g.xvar
 WHERE g.yvar is null;
Tree as planned.
 /-SYM-A-(nothing:1 flag=0031)
 /-OBJ----|
 /-FIL----|
 | | /-SYM-V-(g.yvar:3 flag=0001)
 | | /-OBJ----|
 | | | \-SYM-A-(nothing:1 flag=0031)
 | |--OTRJ---|
 | | | /-SYM-V-(g.pvar:1 flag=0001)
 | | | /-OBJ----|
 | | | | |--SYM-V-(g.xvar:2 flag=0001)
 | | | | \-SYM-V-(g.yvar:3 flag=0001)
 | | | /-SORT---|
 | | | | | /-SYM-V-(g.pvar:1 flag=0001)
 | | | | | /-OBJ----|
 | | | | | | |--SYM-V-(g.xvar:2 flag=0001)
 | | | | | | \-SYM-V-(g.yvar:3 flag=0001)
 | | | | |--SRC----|
 | | | | | \-TABL[WORK].foo opt=''
 | | | | |--empty-
 | | | | | /-SYM-V-(g.pvar:1)
 | | | | | /-ASC----|
 | | | | \-ORDR---|
 | | | | | /-SYM-V-(g.xvar:2)
 | | | | \-ASC----|
 | | |--FROM---|
 | | | | /-SYM-V-(f.pvar:1 flag=0001)
 | | | | /-OBJ----|
 | | | | | \-SYM-V-(f.xvar:2 flag=0001)
 | | | \-SORT---|
 | | | | /-SYM-V-(f.pvar:1 flag=0001)
 | | | | /-OBJ----|
 | | | | | \-SYM-V-(f.xvar:2 flag=0001)
 | | | |--SRC----|
 | | | | \-TABL[WORK].foo opt=''
 | | | |--empty-
 | | | | /-SYM-V-(f.pvar:1)
 | | | | /-ASC----|
 | | | \-ORDR---|
 | | | | /-SYM-V-(f.xvar:2)
 | | | \-ASC----|
 | | |--empty-
 | | | /-SYM-V-(g.pvar:1)
 | | | /-CEQ----|
 | | | | \-SYM-V-(f.pvar:1)
 | | |--LAND---|
 | | | | /-SYM-V-(g.xvar:2)
 | | | \-CEQ----|
 | | | \-SYM-V-(f.xvar:2)
 | | |--JTAG(jds=1, tagfrom=1, flags=0)
 | | |--empty-
 | | | /-SYM-A-(nothing:1 flag=0031)
 | | | /-ASGN---|
 | | | | \-LITN(0)
 | | \-OBJE---|
 | | /-SYM-V-(g.yvar:3)
 | \-ISNL---|
 --SSEL---|

Above we can read the _tree output to understand the process. The process goes, in levels, from right to left, and
from bottom to top, within a level. We see in � that, we bring in pvar, xvar and yvar, from table foo, as a
source of data. � SQL can employ several join methods. The Optimizer decided that a sorted merge join was best
and the information on how to sort is shown in 20. � is a summary of the vars and their types that will be passed
to the sort. � shows the sort of the first table. The tree to the right of � shows the same process was employed on
the second table. � summarizes the information to be passed to the subroutine that does the joining – joining will
employ a logical AND of the two “dynamic relation” expressions . � is a summary of the variables being passed to
the join.
Finally the join happens. We can see that the variable gvar is passed through the join, because Proc SQL needs to
FILter the observations on yvar – even though yvar is not required in the final query.

7

2

1

3

4

5

7
Is Null

Filtering of
observations

happens
late, after
the join

Outer join
happens

here

BAD

We coded 0 as Nothing
to make the output
smaller and fit on one
page.

The characteristic to notice in this example is that
Proc SQL is checking and filtering observations
very late point in the process.

This means that all observations in the source
data set have been read and processed up to the
point of the filtering. SQL is filtering after the
data after reading all obs, sorting all the obs and
merging all obs. The working files are big and
big files have been sorted.

6

Lets compare this to the same query written using the ON clause.
9. ISNL/On - IS NuLl - (Left) Outer Join
 SELECT 0 as nothing
 FROM foo as f
 left outer join foo as g ON f.pvar = g.pvar
 and f.xvar = g.xvar
 and g.yvar is null;
Tree as planned.
 /-SYM-A-(nothing:1 flag=0031)
 /-OBJ----|
 /-OTRJ---|
 | | /-SYM-V-(g.pvar:1 flag=0001)
 | | /-OBJ----|
 | | | \-SYM-V-(g.xvar:2 flag=0001)
 | | /-SORT---|
 | | | | /-SYM-V-(g.pvar:1 flag=0001)
 | | | | /-OBJ----|
 | | | | | \-SYM-V-(g.xvar:2 flag=0001)
 | | | |--SRC----|
 | | | | |--TABL[WORK].foo opt=''
 | | | | | /-NAME--(yvar:3)
 | | | | \-ISNL---|
 | | | |--empty-
 | | | | /-SYM-V-(g.pvar:1)
 | | | | /-ASC----|
 | | | \-ORDR---|
 | | | | /-SYM-V-(g.xvar:2)
 | | | \-ASC----|
 | |--FROM---|
 | | | /-SYM-V-(f.pvar:1 flag=0001)
 | | | /-OBJ----|
 | | | | \-SYM-V-(f.xvar:2 flag=0001)
 | | \-SORT---|
 | | | /-SYM-V-(f.pvar:1 flag=0001)
 | | | /-OBJ----|
 | | | | \-SYM-V-(f.xvar:2 flag=0001)
 | | |--SRC----|
 | | | \-TABL[WORK].foo opt=''
 | | |--empty-
 | | | /-SYM-V-(f.pvar:1)
 | | | /-ASC----|
 | | \-ORDR---|
 | | | /-SYM-V-(f.xvar:2)
 | | \-ASC----|
 | |--empty-
 | | /-SYM-V-(g.pvar:1)
 | | /-CEQ----|
 | | | \-SYM-V-(f.pvar:1)
 | |--LAND---|
 | | | /-SYM-V-(g.xvar:2)
 | | \-CEQ----|
 | | \-SYM-V-(f.xvar:2)
 | |--JTAG(jds=1, tagfrom=1, flags=0)
 | |--empty-
 | | /-SYM-A-(nothing:1 flag=0031)
 | | /-ASGN---|
 | | | \-LITN(0)
 | \-OBJE---|
 --SSEL---|

In example 9, the Optimizer has also selected a sorted merge as the most efficient process for this left outer join, so
the tree will show sorting information and operations. � shows the filtering operation passed to the Data Engine
and observations with var NOT NULL are not read into the working files managed by SQL. Because of the early
filtering of observations, there is minimal I/O associated with this file and it is likely to be very small. Then the file
is � sorted using information summarized in �. Sorting is a resource and time consuming process in SAS, but this
file is as small as it can be, given the logic of this problem. All observations from the other copy of foo are brought
in and sorted �. The Logical AND information for the join dynamic relation expressions is summarized in �. The
information on how to create the variable called “nothing” is summarized in �. Finally the outer join happens. The
key idea is that the joining is being done on a subset of foo and a “full copy” of foo. Smaller files are processed
faster. In this case our first table accessed is very small. Filtering the pivot is discussed later in this paper.

8

2

1

3

4

5

6

Outer join
happens

here

Using the ON increases the chance of the
filter being passed down to the Data
Engine. When the filtering is passed
“down”, working files are smaller and the
query runs faster.

Pivot table

GOOD code

Is Null Filtering
happens here

If you use a “comma separated” implicit style inner join on a multiple (3 or more) file query, the Optimizer will check
table sizes and will attempt to use the smallest file as the pivot table. Generally, using the smallest file as the pivot
table results in small working tables. With a “comma separated” inner join, the order in which you specify the files
in the FROM might not be the order in which the merge happens. The Optimzer will try to first merge the smallest
table (pivot) with the second smallest file- and then that result with the largest file. Consider the from below.

FROM stu_demog_records, /* 1 record per student */
 billing, /* 1 obs/student-“billing item” -> hundreds per student*/
 stu_housing /*1 obs/student-term –> approx. 8 obs. in a students sr. year*/

Importantly, by specifying the phrase “Left Join” (or inner join) you put handcuffs on the optimizer. The tables will be
joined in the order in which you specify them in the FROM. This means that the programmer can specify the pivot
table and the order of table joining. This is useful if the programmer knows information that the Optimizer can not
determine from its checking of file and system characteristics.

If there were no index on Stu_ID in the table Stu_demog_records and I wanted information on only one student (say
stu_id=3), we would be in the position of knowing that the Stu_demog_records working file (the observations read
into SQL from the file on disk) will be very small. In this case, we’d want to make the SQL use the filtered
Stu_demog_records file (only one obs) as the pivot table. This can be done by coding the join as an explicit join
(left join with an ON clause).

For a school with 10,000 students, some approximate file sizes for the above from in different join orders could be.
Stu_demog_records joined to billing with result joined to stu_housing
1 observation joined with 150 observations for that student  150 observations in the working file:

joined with 8 observations for that student  600 observations

if the merge were to go in reverse order, the working files might have the following sizes:
20,000 housing records joined with 150,000 billing records.  3,000,000,000 records in the working file.

joined with 1 observation from Stu_demog_records  600 observations

Join order can be important. Making the pivot table “small” can greatly improve “time to solution” and amount of
disk space required. The Optimizer works to create minimum size working files without any programmer attention.

Here is a comparison of the SAS data step and SQL in general.

 --- BAD ---
data _null_; SELECT 0 as nothing
 merge foo bar; FROM foo
 by key; inner join bar ON foo.key = bar.key
 if b = 10; WHERE bar.b = 10
 run;

 +++ GOOD +++
data _null_; SELECT 0 as nothing
 merge foo bar; FROM foo
 by key; inner join bar ON foo.key = bar.key
 where b = 10; and bar.b = 10
 run;

When (statically) filtering on the pivot table the optimal situation is a little different. Since the pivot is special – it has
no ON clause – we must use a WHERE clause for its filtering. However, we must not use the outer-most WHERE
clause because this would happen after all of the joins. Instead, we make the pivot into a sub-query, telling the
database we'd like to process the sub-query first. For added protection of processing order one should use GROUP
BY in this sub-query, so that an over-active database optimizer doesn't rip apart the sub-query.

Below shows good Data Step coding and good SQL coding. Both are delegating data filtering to the Data Engine
and cause filtering to happen as soon as possible. In the SQL query, the WHERE on the pivot table will be delegated
to the Data Engine and the ON filters will happen as soon as possible. The SQL code below is an example of early
filtering of observations in a complex query.

9

Statement

Clause

 +++ GOOD +++
data _null_; SELECT 0 as nothing
 merge foo bar; FROM (
 by key; SELECT key
 where a = 10; FROM foo
 run; WHERE a = 10 /* passed to Data Engine*/
 GROUP BY key /* filtering */
) as foo (key) /* happens */
 left outer join bar ON foo.key = bar.key /* early */

Aside from tightly binding a query fullselect statement, the GROUP BY clause provides another nice option. Usually,
the first or pivot table object is a specification of primary keys driving one's data model. If any of these keys have
non-unique (i.e., repeated) values between rows, incorrect output will result. By using a post-aggregate filter – the
HAVING clause, as in HAVING count(*)=1 – one can force uniqueness and exclude any uniqueness violating
input data. Thus, the data model is kept extremely robust. Alternately, one can filter out all but the violating input in
order to find and remedy the bad input data.

CONCLUSION
Between a statement (Data step) and a clause (SQL), WHERE is not the same. The Optimizer is very effective on
inner joins. If one is coding an inner join, it is generally okay to use implicit comma form and let the optimizer
decide how to process the code. If the programmer knows information about the files that the optimizer can not
know, specifying an inner join and applying the rules laid out in the article can improve performance and clarify
one's query model architecture in the source text.

For outer join queries, a programmer can often help the Optimizer by applying the rules below.
1. Always use SQL explicit join syntax (the ON clause style)
2. Move data step WHERE statements to SQL statement ON clauses
3. Make careful choice for the leading pivot table
4. Sequence all other table joins in smallest-to-largest size order
5. Don't use a WHERE clause in a multi-table SQL query!!!

unless you're testing for non-existance or other Gestalt like philosophy

REFERENCES
Date, C. J. “The Database Relational Model : A Retrospective Review and Analysis.” Reading, MA: Addison-

Wesley, 2001.
Delwiche, Laura and Susan Slaughter. "The Little SAS® Book: A Primer." Cary, NC: SAS Institute Inc., 2003.
Lavery, Russell. The SQL Optimizer Project: _Method and _Tree in SAS9.1, in Proceedings of the Thirtieth Annual

SAS User Group International Conference. Cary, NC: SAS Institute Inc., 2005. Paper 101-30.
Lavery, Russell. An Animated Guide: The Data Step Debugger in Proceedings of the Seventeenth Annual North

East SAS User Group Conference, Paper, 2004 Paper How 05
Sherman, Paul. Creating Efficient SQL – Four Steps to a Quick Query, in Proceedings of the Twenty-Seventh

Annual SAS User Group International Conference. Cary, NC: SAS Institute Inc., 2002. Paper 073-27.
Sherman, Paul. Creating Efficient SQL – Union Join without the UNION Clause, in Proceedings of the Twenty-Ninth

Annual SAS User Group International Conference. Cary, NC: SAS Institute Inc., 2004. Paper 064-29.
Sherman, Paul. Creating Efficient SQL – The De-normalize Transpose, in Proceedings of the 2005 Regional

Pharmaceutical SAS User Group Conference. Cary, NC: SAS Institute Inc., 2004. Paper PO-42.

COMPANION WEB SITE – Appendicies and example SAS program code
http://www.idiom.com/ ~sherman/paul /pubs/dwdb_where-WU2005

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Paul D Sherman Russ Lavery
335 Elan Village Lane, Apt. 424 9 Station Ave. #1
San Jose, CA 95134 Ardmore, PA 19003
Phone: (408) 383-0471 Phone: (610) 645-0735
Email: sherman@idiom.com Email: russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

CONTENT CONCRETE EXAMPLES – Situations Where you really should use WHERE

/* Educational (life's a beach)
 Your daughter is planning her high school class schedule for the spring term.
 She wants to find an easy elective which has no prerequisites nor is required
 by any other class. It's spring time, come on!

 (for any row in the class schedule there is no other row where CLASS matches
 PREREQ or PREREQ matches CLASS)
*/

data work.educdata;
 infile datalines missover;
 input @1 year 4.
 @6 term $char8.
 @15 class $char32.
 @48 prereq $char24.
 ;
datalines;
2005 Spring Algebra 1 .
2005 Spring Algebra 2 Algebra 1
2005 Spring Analytic Geometry Algebra 2
2005 Spring Spanish 1 .
2005 Spring Spanish 2 Spanish 1
2005 Spring Politics & Power Government
2005 Spring Government History
2005 Spring History European History
2005 Spring English Literature English
2005 Spring English .
2005 Spring Composition & Rhetoric English Literature
2005 Spring Drawing & Painting Art History
2005 Spring Art History History
2005 Spring European History .
2005 Spring Underwater Basket Weaving .
2005 Spring Suntan Psychology .
;
 run;

proc sql noprint _tree;
 create table work.educ as (
 SELECT s.year, s.term, s.class
 FROM work.educdata AS s
 LEFT OUTER JOIN work.educdata AS p ON s.year = p.year
 AND s.term = p.term
 AND s.class = p.prereq
 LEFT OUTER JOIN work.educdata AS r ON s.year = r.year
 AND s.term = r.term
 AND s.prereq = r.class
 WHERE p.class is null AND r.class is null
);
 quit;

proc print data=work.educ;
 title 'Educational Example';
 title2 'Easy electives which have no prerequisites';
 title3 'nor are required by any other class.';
 run;

 Easy electives which have no prerequisites
 nor are required by any other class.
 Obs year term class
 1 2005 Spring Underwater Basket Weaving
 2 2005 Spring Suntan Psychology

11

CONTENT CONCRETE EXAMPLES – Situations Where you really should use WHERE

/* Clinical (no say, no pay)
 Find all of a patient's visits which have not yet been paid (their medical
 record file has not been processed) but ignore any visit for which there is
 no laboratory test result.

 (labdat has a valid ID/TS but the VALUE column is null for some PARMs)
*/

data work.patients;
 infile datalines missover;
 input @1 pid 6.
 @8 gender $char1.
 ;
datalines;
123456 m
234332 f
;
 run;

data work.labdat;
 infile datalines missover;
 input @1 pid 6.
 @8 ts datetime20.1
 @29 testname $char3.
 @33 value 6.3
 ;
datalines;
123456 15JUL2005:14:37:12.1 RBC 23.502
234332 12JUL2005:08:25:00.1 PT 1.323
234332 05MAY2005:10:46:23.4 PT .
;
 run;

data work.visits;
 infile datalines missover;
 input @1 pid 6.
 @8 ts datetime20.1
 ;
datalines;
123456 15JUL2005:14:37:12.1
123456 15JUL2005:14:37:12.1
234332 12JUL2005:08:25:00.1
;
 run;

data work.payments;
 infile datalines missover;
 input @1 pid 6.
 @8 ts datetime20.1
 @29 amount dollar6.2
 @37 pay_id 5.
 ;
datalines;
123456 15JUL2005:14:37:12.1 $142.25 33535
234332 12JUL2005:08:25:00.1 $25.00 13123
;
 run;

proc sql noprint _tree;
 create table work.medi as (
 SELECT p.pid, v.ts, lab.testname, lab.value
 FROM work.patients AS p
 INNER JOIN work.visits AS v ON p.pid = v.pid
 LEFT OUTER JOIN work.labdat AS lab ON v.pid = lab.pid
 AND v.ts = lab.ts
 AND lab.value is not null
 LEFT OUTER JOIN work.payments AS pay ON v.pid = pay.pid
 AND v.ts = pay.pid
 WHERE pay.amount is null
);
 quit;

proc print data=work.medi;
 title 'Clinical Example';
 title2 'Patient visits which have laboratory test data';
 title3 'but have not been paid, or medical record file unprocessed';
 run;

12

CONTENT CONCRETE EXAMPLES – Situations Where you really should use WHERE

/* Transportational (passing in the night)
 The North-South train arrives every fifteen minutes. At its common destination,
 it sometimes meets the East-West train. Find the arrivals of the North-South
 train which do not meet the East-West connection.

 (timepoints of some trains do not line up to other trains at same stations) */

data work.nssched;
 infile datalines missover;
 input @1 trainid 3. @5 stationid $char16. @22 arrtime time8. ;
datalines;
101 Thong Lo .
101 Asoke .
101 Nana .
101 Chid Lom .
101 Siam 08:51:00
101 Natl Stadium .
102 Thong Lo .
102 Nana .
102 Ploen Chit .
102 Siam 09:06:00
;

datalines;
103 Prakanong .
103 Siam 09:21:00
104 Onnuch .
104 Ekka Mai .
104 Prohm Pohng .
104 Nana .
104 Ploen Chit .
104 Chidlom .
104 Siam 09:36:00
104 Natl Stadium .
;

run;

data work.ewsched;
 format trainid 3. stationid $16. arrtime time8.;
 input @1 trainid 3. @5 stationid $char16. @22 arrtime time8. ;
datalines;
201 Siam 09:06:00
201 Racha Tevi .
201 Annusavari Chai .
201 Aree .
201 Mo Chit .
;

datalines;
204 Siam 09:21:00
204 Paya Tai .
204 Sanam Pao .
204 Sapan Kwai .
204 Mo Chit .
;

run;
/* We first must derive a distinct list of East-West stations and use them to
 filter those stations of the North-South train which do not match. Hence the
 INNER JOIN step precedes our OUTER JOIN existence filter.

 Note the use of min() to avoid the following SAS Proc SQL behavior:
WARNING: A GROUP BY clause has been transformed into an ORDER BY clause because
 neither the SELECT clause nor the optional HAVING clause of the
 associated table-expression referenced a summary function. */

proc sql noprint _tree;
 create table work.tran as (
 SELECT ns.trainid, ns.stationid, ns.arrtime
 FROM work.nssched AS ns
 INNER JOIN (
 SELECT min(stationid) FROM work.ewsched GROUP BY stationid
) AS ewsta (stationid) ON ns.stationid = ewsta.stationid
 LEFT OUTER JOIN work.ewsched AS ew ON ns.stationid = ew.stationid
 AND ns.arrtime = ew.arrtime
 WHERE ew.arrtime is null
);
 quit;

proc print data=work.tran; title 'Transportational Example';
title2 'North-South train arrival times';
title3 'which do not meet the East-West train';
run;

13

CONTENT CONCRETE EXAMPLES – Situations Where you really should use WHERE

/* Mathematical
 Find the set of off-diagonal elements of upper-triangular
 matrix (2-vector) L-U = foo * foo
*/

data work.mathdata;
 infile datalines missover;
 input @1 pvar $char8.
 @10 xvar yymmdd8.
 @19 yvar 4.1
 ;
datalines;
aParm 20050510 14.1
aParm 20050511 6.1
aParm 20050512 13.1
aParm 20050513 11.1
aParm 20050514 9.1
bParm 20050515 12.1
bParm 20050516 8.1
bParm 20050517 7.1
bParm 20050518 15.1
bParm 20050519 16.1
cParm 20050520 4.1
cParm 20050521 11.1
cParm 20050522 10.1
cParm 20050523 20.1
cParm 20050524 15.1
;
 run;

proc sql noprint _tree;
 create table work.mat as (
 SELECT f.xvar AS f,
 g.xvar AS g
 FROM work.mathdata AS f
 INNER JOIN work.mathdata AS g ON f.pvar = g.pvar
 LEFT OUTER JOIN work.mathdata AS gg ON f.pvar = gg.pvar
 AND f.xvar = gg.xvar
 AND g.xvar = gg.xvar
 WHERE gg.xvar is null
);
 quit;

proc print data=work.mat;
 title 'Mathematical Example';
 title2 'off-diagonal elements of cartesian product mathdata * mathdata';
 format f g yymmdd8.;
 run;

14

APPENDIX – PROC SQL _METHOD DESCRIPTIONS (See companion web site for full source text)

************** (LEFT) OUTER JOIN ******************

1. ISNL/Where - IS NuLl - (Left) Outer Join
2. NTNL/Where - is NoT NuLl - (Left) Outer Join
3. CEQ/Where - Compare EQual - (Left) Outer Join
4. CNE/Where - Compare Not Equal - (Left) Outer Join
5. CGE/Where - Compare Greater than or Equal - (Left) Outer Join
6. CGT/Where - Compare Greater Than - (Left) Outer Join
7. CLE/Where - Compare Less than or Equal - (Left) Outer Join
8. CLT/Where - Compare Less Than - (Left) Outer Join
 L7 L6 L5 L4 L3 L2 L1
 _tree path segment:--SSEL--FIL--+--OTRJ--+--FROM--+--SORT----SRC--TABL[]
 | | +--SORT----SRC--TABL[] (pivot)
 | +--LAND-----CEQ--|
 +--{ISNL,NTNL,...}--|

 _method: sqxslct sqxfil sqxjm sqxsort sqxsrc(WORK.FOO(alias = G))
 sqxsort sqxsrc(WORK.FOO(alias = F))
9. ISNL/On - IS NuLl - (Left) Outer Join
10. NTNL/On - is NoT NuLl - (Left) Outer Join
11. CEQ/On - Compare EQual - (Left) Outer Join
12. CNE/On - Compare Not Equal - (Left) Outer Join
13. CGE/On - Compare Greater than or Equal - (Left) Outer Join
14. CGT/On - Compare Greater Than - (Left) Outer Join
15. CLE/On - Compare Less than or Equal - (Left) Outer Join
16. CLT/On - Compare Less Than - (Left) Outer Join
 L6 L5 L4 L3 L2 L1
 _tree path segment: --SSEL--OTRJ--+--FROM--+--SORT--SRC--+--TABL[]
 | | +-{ISNL,NTNL,...}--|
 | +--SORT--SRC--TABL[] (pivot)
 +-LAND---CEQ

 _method: sqxslct sqxjm sqxsort sqxsrc(WORK.FOO(alias = G))
 sqxsort sqxsrc(WORK.FOO(alias = F))
****************** INNER JOIN *********************

1-8. ISNL,NTNL,CEQ,CNE,CGE,CGT,CLE,CLT/Where - Inner Join
9-16. ISNL,NTNL,CEQ,CNE,CGE,CGT,CLE,CLT/On - Inner Join
 sqxslct sqxjhsh sqxsrc(WORK.FOO(alias = F))
 sqxsrc(WORK.FOO(alias = G))

SSEL – select
ASGN – assignment
LITN – LITeral Numeric

Proc SQL SYM-A – SYMbolic Alphabetic (character) variable
SYM-V – SYMbolic (numeric) Variable

 _Tree TABL – physical base TABLe
OBJ – abstract data type structure OBJect; defines column names

GLOSSARY SRC – data SouRCe; contains row collection data
FROM
LAND – Logical AND
JOIN – inner JOIN
OTRJ – OuTeR Join

15

test at the source

test after the join

