
Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

Windows PowerShell Cheatsheet.
Windows PowerShell is the successor of the windows cmd language, which itself has its roots in the ms-dos Bat language. All recent
versions of Windows offer PowerShell (PS). PS may be seen as
Microsoft's answer to the shells common in Unix/Linux (such as csh, bash,
etc.). Its name implies that Microsoft sees the shell as powerful, which it arguably is.

In these notes some important PS commands are listed and PowerShell's most notable feature, the object
pipeline, is discussed. From the
outset it is important to note that, in contrast to Linux/Unix,
Windows PowerShell is completely case-insensitive.

The monospace text snippets below are
valid PS and may be copied, pasted, and executed in a PowerShell- or a PowerShell_ISE-session.
This is why the
notes form a "Cheatsheet". As is common for cheatsheets, there is hardly any explanation, the examples
speak for
themselves. It must be stressed here that many of the basic PS commands are not at all orthogonal, so that
many variant pipelines can lead to
the same effect. Often an example is one out of a multitude of possibilities accomplishing the same task.

The last two sections are about search in and traversal of the Windows Registry by means of PowerShell.

Contents
1. Unrelated to PS
2. About ISE
3. Cmdlets
4. PSdrives
5. Pipelines
6. Useful aliases
7. Example of a pipelined command
8. More examples of pipelines
9. Examples Where-Object

10. Examples ForEach-Object
11. Select-String
12. Create an item
13. Rename an item
14. Datatypes
15. Strings
16. The formatting of strings
17. Comparison
18. Switch
19. Builtin classes
20. Random numbers
21. Errors
22. Functions
23. Scripts
24. Traversing the Windows Registry
25. Registry lookup

1. Unrelated to PS
A few lesser known windows features and tricks, not directly related to PowerShell:

1. In the Windows (File) Explorer address bar enter cmd, powershell.exe,
or powershell_ise and a corresponding window opens at
the current directory (aka folder). This is
most likely the shortest route to opening a cmd, ps, or ps_ise
session from a given directory.

2. After hitting the start or search button in the windows taskbar type any of: Control Panel (in Dutch: Configuratiescherm),
Regedit, PowerShell,
or cmd. This opens a window with the name of the chosen program (Control Panel, Regedit, etc). Click on
it once and the program chosen opens.

3. Adaptation of user environment variables: Control Panel/User Accounts/User Accounts/. Then left panel:
change my
environment variables. (Choose in Control Panel: view by category).

4. Adaptation of system environment variables. Choose in Control Panel: view by category. Then
Control Panel/System and
Security/System/Advanced System Settings.
Button: Environment Variables. Set in panel system variable.
Change is
persistent, a change (see below) within PowerShell is volatile.

5. In a cmd session: setx sets persistent user environment variable. To unset:
go to HKCU/environment (in the Registry) or to Control
Panel/User Accounts.

To contents

2. About ISE

ISE stands for Integrated Scripting Environment. ISE—a standard part of Windows 10—is an editing
and execution environment for
PowerShell.

An important advantage of the use of ISE over pure PowerShell, is that ISE offers pop-up help:
when the user is typing a command line,
ISE often pops up a relevant list of methods and properties. By double clicking on an entry in the pop-up list,
the entry is appended to the
command line.

A few noticeable points:
1. Upon the start of ISE, the script Microsoft.PowerShellISE_profile.ps1 is executed.
2. To protect ordinary users against malignant PS scripts, the execution of PowerShell scripts
(including the ISE profile) must be

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

allowed explicitly. This is done once and for all by issuing
the command
 Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

3. Allow execution of a script downloaded from the internet by:
 unblock-file .\script.ps1

where script is the name of the downloaded script (which is in the current directory).
4. Execution of a script requires that the scriptname is prefixed by its path. If the script is in the present folder
use .\script.ps1, where

script is the name of the script.
5. Set width and height of the ISE output pane by:

 $Host.UI.RawUI.BufferSize = New-Object $Host.UI.RawUI.BufferSize.GetType().Fullname (150, 40)

(The pure PS console does not allow shrinking of width).
6. Set ISE console fontsize by:

 $Host.PrivateData.FontSize = 13

(pure PS has a different $Host.PrivateData object).
7. Start PowerShell as administrator:

 Start-Process PowerShell -Verb runAs

8. An important ISE tool for PowerShell learners is CTRL-J. This pops up a selection of code snippets.
These are templates that give
illustrative examples of PS syntax and can be used in scripts
as a start points for further editing.

To contents

3. Cmdlets
The internal commands of PowerShell are called "cmdlets".
A cmdlet name is of the form "verb-noun", where "verb" is one out of a fixed
set of verbs.
All cmdlets return one or more objects into a pipeline (see below). At the end of a pipeline some selected
properties of the
current object(s) are written to the screen together with their values. For instance, the one stage pipeline:
 PS C:\Users\myname> Get-ChildItem

returns a collection of objects that belong to the different files in the present folder. Because the command Get-ChildItem is the end stage
of a (one-stage) pipeline, some selected properties (namely Mode, LastWriteTime, Length, Name) together with their values are written to
screen, one line per file.

The names of members (methods and properties) of an object can be obtained by piping
the output of a cmdlet to Get-Member (see below).
Any cmdlet parameter (aka flag) can be truncated to the extent that it is still unique.	A few examples of cmdlets and their parameters:

 Get-Help # Gets help about a cmdlet,
 # example: get-help get-help
 Get-PSdrive # List available PSdrives, such
 # as c:, env:, hklm:, hkcu:, alias:, etc.
 Get-ChildItem # In the Registry: children are subkeys
 # of the current key.
 Get-ChildItem # In the File System: children are subfolders and filenames
 # of the current folder.
 Get-ChildItem -recurse # Lists recursively all children
 # of current PSdrive, Folder, or Registry key.
 Get-ChildItem -rec -force # Include hidden folders
 # (flag -hidden searches hidden directories only)
 (Get-ChildItem).name # List names ('name' is an object property)
 # of files and directories in current folder.
 Get-ChildItem -name # Equivalent to (Get-ChildItem).name
 #
 (Get-ChildItem).count # Number of entries in the collection of objects returned by Get-ChildItem
 # (count is a property of such a collection).

To contents

4. PSdrives
A PSDrive is a collection of entities that are grouped such that they may be accessed
as a filesystem drive. The grouping is performed by a
"PSprovider".
By default a PS session has access to about a dozen PSdrives among
which c:, env:, alias:, HKLM:. Here c:
is the usual
Windows c-drive; env: is the space of Windows environmental
variables; alias: is the collection of cmdlet aliases; HKLM
is a hive in the
Registry.

Standard one enters a PS session in the home folder (home directory) of the user.
To switch a PS session to another PSdrive or folder and
get the children of the new location, proceed as follows:

Switch to env:

 Set-Location env: # Prompt character becomes `Env:\>`
 # (environment variables)
 Env:\> Get-Childitem # Get all environment variables
 #
 Env:\> Get-Childitem userprofile # Get environment variable `userprofile`
 # (returns with: USERPROFILE C:\Users\user_name)

Switch to alias:

 Env:\> Set-Location alias: # Prompt character becomes Alias:\>
 Alias:\> Get-Childitem # All children (i.e., all aliases)

Back to default drive:

 Alias:\> Set-Location C:\ # Prompt character becomes C:\>
 #
 C:\> Set-Location $env:userprofile # Use environment variable `userprofile` to
 # switch to C:\Users\user_name (home folder of user).
 C:\Users\user_name>$alias:ls # Get what alias 'ls' stands for
 # (namely Get-ChildItem)

Here $env: and $alias: (note the $ prefixing the names) refer to the PSdrives env:
and alias:, respectively. Thus, the prefixing by the
variables $env: and $alias: gives access
to the respective PSdrives without need to actually change to these drives.

To contents

5. Pipelines

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

IMPORTANT: Cmdlets pass objects through pipelines, not character streams as in Unix.

The pipeline character is | (ASCII 124). It must be followed by a command that can handle the output passed through the pipeline; usually
this is a cmdlet.
Example of a pipeline consisting of three stages:

 Get-ChildItem *.txt | Where-Object length -lt 1000 | Sort-Object length

This returns a list of the names and properties of files with extension .txt in the current folder.
Shown are the .txt files that have a size of
less than 1000 bytes. The list is sorted on file size.

The output of Get-ChildItem flop.txt is an object and by the pipe

 Get-ChildItem flop.txt | Get-Member

a full list is obtained of the members (in object-oriented languages known as methods or properties) of the object associated with the file
flop.txt.
In this list we see that one of the members is named name.

Members are selected by a dot, as is usual in object-oriented languages. Thus, one can write:

 (Get-ChildItem flop.txt).name # -> flop.txt

One of the properties of any file is LastWriteTime. This property can be set to the present date and time without affecting the
content of the
file (cf. touch in Unix):
 (Get-ChildItem file.txt).LastWriteTime = Get-Date # "touch" file.txt

The object created by a cmdlet depends in general on the cmdlet's parameters (flags). For example, by adding the flag -name

 (Get-ChildItem flop.txt -name).name # -> null

we get an empty result.
Inspection by Get-Member shows that indeed the object created by Get-ChildItem flop.txt -name
does not
posses a member by the name name.

The object that is passed through a pipeline is referred to by the automatic variable $_,
which may be used only inside a script block. (A
script block is a collection of statements enclosed in curly brackets.)
Accordingly, a member named "member_name" of the object passed is
referred to as $_.member_name.

The cmdlet Rename-Item may be used to change file names and file extensions. The old
file name can be entered through a pipeline. The
new name follows the parameter -newname

 "flop.txt" | Rename-Item -newname flap.txt # We now have a file named flap.txt in the folder

Invoking the automatic variable, we perform the following trivial renaming:
 Get-ChildItem flap.txt | Rename-Item -new {$_.name} # Renamed flap.txt to flap.txt

However, if the piped object $_ does not have the member (property) name, an
error occurs:
 Get-ChildItem flap.txt -name | Rename-Item -new {$_.name} # Error: parameter $_.name is null

When more than one object is outputted by a cmdlet in the pipeline, these objects are first stored in a temporary buffer. After the buffer is
filled, the cmdlet in the next stage performs its task by looping over the buffer and reading the objects one by one. When this stage is not the
last of the pipeline, the cmdlet puts its outputted objects in yet another temporary buffer that serves as the input for the next stage. An object
that drops out at the end of the pipeline is usually written to screen by a screen writing method of the object. The concept of intermediate
buffering is very important for the understanding of PowerShell pipelines.

For example in the following statement, Get-ChildItem fills a temporary buffer with
objects that all have the property basename (which is
also an object). The cmdlet Select-Object
selects the basename properties and stores them in a yet another temporary buffer, which is
passed to Sort-Object, which sorts the elements of the buffer and writes the names of the basename objects, i.e., Sort-Object writes the
file names without file extension.

 Get-ChildItem | Select-Object basename | Sort-Object *

The result on the screen is a list of the names of all files in the current folder. The list is in alphabetic order.

The use (or missing) of parameters of cmdlets that receive input in pipelines can generate unexpected errors. Example:

 Move-Item *.txt subdirectory

moves all .txt files to folder subdirectory. Analogously, one could assume that the following
pipe would move the files one folder up:
 Get-ChildItem *.txt | Move-Item ..\ # Error!

This gives the error message that Move-Item lacks input:

 Move-Item : The input object cannot be bound to any parameters for the command either because the command does not take
 pipeline input or the input and its properties do not match any of the parameters that take pipeline input.

The parameter -destination remedies this and
 Get-ChildItem *.txt | Move-Item -destination ..\

moves without complaint all .txt files one level up.

To contents

6. Useful aliases
Many cmdlets have one or more aliases. Often an alias is DOS- or Unix-like.
 ac = Add-Content # Example: ac -value 'The End' -path 'flop.txt'
 # (appends value to file)
 cat = gc = type = Get-Content # Get the content of a file;
 # returns an array with one line per element
 cd = sl = Set-Location # Change folder, Registry key, or PSdrive.
 # Example: cd env:, cd HKLM:
 cls = clear = Clear-Host # Clears console
 #
 del = erase	= Remove-Item # Remove files, registry keys, etc.

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

 #
 dir = gci = ls = Get-Childitem # List children in current PSdrive, folder, Registry key
 #
 echo = write = Write-Output # String to output array. Array is sent to console, into
 # pipeline, or redirected/appended to file
 foreach = % = Foreach-Object # Only in pipeline: for each object crossing the pipeline
 # Do not confuse with language construct of the same name
 ft = Format-Table # Example: ls *.jpg |ft directory, length, name -AutoSize -Wrap
 #
 fl = Format-List # Example: ls env:Path |fl
 # (gives wrapped output of environment variable "Path")
 gal = Get-Alias # "Get-Alias -definition cmdlet", gives aliases of cmdlet
 # "Get-Alias [-name] alias", gives name of cmdlet called by alias
 gcm = Get-Command # Get all commands (cmdlets, functions, and aliases).
 # gcm -CommandType Alias -> all aliases
 gm = Get-Member # Example: ls flop.txt | gm
 # (all members of object flop.txt)
 gp = Get-ItemProperty # In file system: gp * gives same output as ls *
 # In Registry: value entries (names and values)
 gpv = Get-ItemPropertyValue # In filesystem: get prop's of files. Ex: gpv *.txt basename (names of .txt files)
 # Ex: In HKCU:\SOFTWARE\Microsoft\Accessibility: gpv -name cursorsize (returns number)
 gv = Get-Variable # Get names and values of
 # all session variables
 ni = New-Item # Create new file, directory, symbolic link,
 # registry key, or registry entry	
 ps = gps = Get-Process # List running processes.
 #
 pwd = gl = Get-Location # Current directory (folder)
 # or Registry key
 ren = rni = Rename-Item # Examples: ren report.doc report.txt
 # and: ls report.doc | ren -newname report.txt
 rmdir = rm = ri = Remove-Item # Remove directories, files, registry keys, etc.
 #
 rv = Remove-Variable # Remove variable (name without $ prefix, while
 # note that variable names must begin with $)
 select = Select-Object # Select specified properties of piped object
 # Example: ps |select Processname | select -first 10
 sleep = Start-Sleep # Sleep -sec 1
 # (sleep 1 second)
 sls = Select-String # Example: sls foo.txt -patt '^\S' (a regular expression
 # giving all lines that do not start with blank, tab, or EOL)
 where = ? = Where-Object # Only in pipeline.
 # Example: ls -recurse |? name -like '*Pict*'
 $env:userprofile = ~ # Example: cd ~ (change folder to home folder of user).						 	

To contents

7. Example of a pipelined command
The following four stage pipelined command may be issued from C:\Program Files, for example. It outputs
the names of .dll files of
size less than 10000 bytes in the current folder and
all its subfolders:
 Get-ChildItem -recurse -path *.dll | Where-Object {$_.length -lt 10000} |
 Sort-Object -property Length | Format-Table -property name, length, directory -wrap

The parameter -path, being default, can be omitted, as can the parameter -property in two of the stages.
The command can be shortened
further by introducing aliases
and abbreviated parameters. For clarity, the statement is split by assigning an array object to the variable
$a.
(Recall here that variable names are text strings that begin with a dollar sign). Note that
the cmdlet Where-Object (alias: ?) can recognize
names of object properties without use of a script block.
That is, {$_.length -lt 10000} is equivalent to length -lt 10000. Thus,
 $a = ls -r *.dll |? length -lt 10000 # Store in $a all .dll files from current directory downward
 # with file sizes < 10000 bytes

The array object $a is piped to the alias sort of the cmdlet Sort-Object
and the sorted object goes to Format-Table:
 $a | sort length | ft name, length, directory -w # Sort entries of array $a on file size (length) and tabulate
 # formatted name, length, and directory

Finally, in one statement:
 ls -r *.dll |? length -lt 10000 |sort length |ft name, length, directory -w

To contents

8. More examples of pipelines
In PowerShell the "<" operator is reserved for future use, so that the cmd-mode/Unix redirection:
 ./program.exe < input.txt

does not work. Instead, pipe the input:
 cat input.txt | ./program.exe

The ">" operator redirects to output and ">>" appends to output, just like they do in cmd-mode and Unix.

List properties (names and values) of the file object PSnotes.txt:
 ls PSnotes.txt |fl * # Lists all properties: Directory, LastAccessTime, Basename, etc.
 ls PSnotes.txt |fl LastAccessTime, Basename # Lists two properties: date/time of last access and file name.

If you want to tabulate (instead of list) names and values of one or more properties then pipe to ft. Example:
 ls PSnotes.txt |ft LastAccessTime, Basename # Tabulates date and time of last access and file name

The difference between tabulating (ft) and listing (fl) properties is minor.

To list the content of the lines in foo.out that begin with at least four spaces together with their sequence numbers
use select-string
(alias sls). The cmdlet has the parameter -pattern
that specifies a regexp:

 sls foo.out -pattern '^[]{4,}' | ft linenumber, line

(Note that an empty line may not contain spaces and is then not shown by this command).

The string 'was' is found in all .txt files in the present directory (folder)
by application of sls:
 sls *.txt -patt 'was' |ft -wrap filename, linenumber, line

Here -wrap indicates that line is not truncated but wrapped.

Find all directories called winx from the present directory downward (-rec). Inspect also
hidden directories (-force) and suppress error
messages (-ea 0):

 ls winx -dir -rec -force -ea 0 |ft

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

To contents

9. Examples Where-Object
The cmdlet Where-Object, which only appears in pipelines, has alias "?".

As an example, list the basenames ending with the letter r in the current directory.
Use the operator -match with a regexp and recall that the
symbol $ indicates the end of a string:

 ls |? basename -match 'r$'

This lists the basenames ending on 'r' plus additional information (mode, write time, length, full file name).
If only the basename is to be
listed, use:
 ls |? basename -match 'r$' |ft basename

Example of the comparison operators: -in, -notmatch, -and, -notlike.
The first statement below limits the list of 'svchost' and 'firefox'
processes to the first 10 in total.
The next statement uses a script block, which is
the code snippet between curly brackets:

 ps |? ProcessName -in "svchost", "firefox" | select -f 10 |ft processname, PagedMemorySize
 ls |? {$_.name -notmatch 'e$' -and $_.name -notlike 'c*'} # Names not ending on "e" (regexp) or beginning with "c"

To contents

10. Examples ForEach-Object
Remember that % is an alias for ForEach-Object, as is foreach. Example:
 Get-Alias |% {if ($_.name -match '^s') {Write-Host $_.name ' stands for: ' $_.definition}}

This gives:
 sajb stands for: Start-Job
	 ...
 si stands for: Set-Item
	 ...
 sleep stands for: Start-Sleep
	 ...
 swmi stands for: Set-WMIInstance

Get-Alias sends 158 objects (aliases) through the pipeline. All objects have a property name,
which is matched against a regexp. The
regexp checks if the first letter is 's' or 'S'. If true, the object attribute
name, the string "stands for:", and the object property definition are
written. The Write-Host cmdlet, which allows a certain freedom in the format of its output, writes to a host—which in an interactive
session is the screen. A boolean expression must be surrounded by round brackets,
the body of the Foreach-Object must be enclosed by
curly brackets (the outer ones), and the body of the
true branch is within curly brackets too.

Note that a list of aliases starting with 's' or 'S' can be obtained in a prescribed format
from the shorter Where-Object (?) statements:

 Get-Alias |? name -match '^s' # regexp
 Get-alias |? name -like 's*' # string + wildcard

And still shorter:
 gal s*

More than one statement may be in the body of the ForEach-Object loop; statements are separated by semicolons.
Example: list the names
and count the number of lines of the .txt files in the present folder:
 ls *.txt |% {Write-Host $_.name, " " -NoNewline; (cat $_).count }

Here -NoNewLine is a parameter of Write-Host. Remember that cat returns an array object that has the method count.

As yet another example, notice first that

 gal cat |? displayname

displays the string
 Alias cat -> Get-Content

The verb "Get" can be captured from this string by the comparison
operator -match with the regexp (note the parentheses indicating a
capture):
 $reg = '-> (\w*)-'

and the captured result appears in $matches[1]. Here \w*	indicates an
arbitrary number of word characters.
The alias gal (Get-Alias),
without arguments, fills a buffer containing all aliases.
Each object in the buffer has the property "displayname".
Hence to get a sorted list of
the unique verbs of all aliases, issue:
 gal|? displayname -match '-> (\w*)-' |% {$matches[1]} |sort -unique

Three aliases are missed here (namely ise, man, md) because their definition lacks the hyphen: -.

An example of foreach as a language construct:

 $letterArray = "a","b","c","d"
 foreach($letter in $letterArray){
 Write-Host -ForeGroundColor green $letter
 }

Yet another example as language construct:
 $ff = ps firefox # Usually there is more than one firefox process active
 foreach($p in $ff) {$p.starttime}

This gives something like (in Dutch):
 zaterdag 8 juni 2019 07:47:44
 zaterdag 8 juni 2019 13:53:41
 zaterdag 8 juni 2019 07:47:30
 zaterdag 8 juni 2019 07:47:28
 zaterdag 8 juni 2019 15:21:39
 zaterdag 8 juni 2019 13:42:46
 zaterdag 8 juni 2019 11:52:45

Incidentally, the very same output is obtained by:
 (ps firefox).starttime

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

To contents

11. Select-String
We met the the cmdlet Select-String (alias sls) above. Because it is an extremely useful tool—and not an easy one as it depends heavily
on regular expressions—we give three more examples of its use.

Consider as a first example the statements

 $address = 'https://131.174.138.39/~pwormer/teachmat/PS_cheat_sheet.html'
 $parsed = $address |sls -patt 'https://([0-9.]*)/(.*)$'

The second statement breaks out the IP address and the path from $address and assigns them to submembers of the object
$parsed. This
object has several members, one of them matches. The one-stage pipeline:

 $parsed.matches

lists on the screen the names and values of all properties of the object $parsed.matches. It gives:
 Groups : {0, 1, 2}
 Success : True
 Name : 0
 Captures : {0}
 Index : 0
 Length : 60
 Value : https://131.174.138.39/~pwormer/teachmat/PS_cheat_sheet.html

The array $parsed.matches.groups contains objects that in turn contain the captures, i.e., the subexpressions in the regular expression that
are between parentheses. As always the zeroth element gives the total string (as does the property $parsed.matches.Value). In summary,
 $parsed.matches.groups[0].value : https://131.174.138.39/~pwormer/teachmat/PS_cheat_sheet.html
 $parsed.matches.groups[1].value : 131.174.138.39
 $parsed.matches.groups[2].value : ~pwormer/teachmat/PS_cheat_sheet.html

As another example, we remark that the present file, called PS_cheat_sheet.html, contains strings that are enclosed
in and , i.e.,
the strings are displayed in bold face. We will now construct a PS pipeline that lists these strings.
(The pipeline does not work correctly
when bold text extends over different lines. Moreover, the search will be non-greedy, which means that only the first bold string in each line
is returned).
First we introduce a regular expression (regexp) that captures bold HTML text:

 $reg = '(.*?)'

This regexp matches the first arbitrary string in a line that is enclosed within and .
It captures the string matching the regexp inside
the parentheses. The latter regexp matches zero or more (*) arbitrary characters (.) in a non-greedy search (?).
The regexp $reg is used in:
 sls PS_cheat_sheet.html -patt $reg |% {$_.matches.groups[1].value}

which writes all the bold strings in the present notes.

As a final example we consider the file foo.txt with contents:

 In columns 20...25 (six columns) are positive, negative, and unsigned integers.
 101 xxxxx -23 ddd
 20 ddd +2 eee
 30 %^&&fghu -100 ffff
 40 qawer 1000 fffqq
 And yet one more 1 unsigned number in column 23!

The following statements list the sum (=880) of the numbers in columns 20-25:
 $s=0; (sls foo.txt -patt '.{19}([0-9-+]{1,6})').matches |% {$s+= $_.groups[1].value}; $s

The regexp skips arbitrary characters in the first 19 columns and captures digits and plus/minus
signs in columns 20-25. The sum is
accumulated in $s where PowerShell converts
the captured strings to integers.

To contents

12. Create an item
The cmdlet New-Item (alias ni) creates a new item. An item is
one of the following:

Folder (aka directory)
File
Link (symbolic or hard)
Registry key
Registry entry

As an example we create a symbolic link on the desktop, named manual. (In Dutch Desktop is Bureablad). Both PowerShell and cmd
require admin privilege to do this. The newly created link manual targets the file manual.txt that exists in the current folder:
 New-Item -ItemType SymbolicLink -Path C:\Users\paul\Bureaublad\manual -Target .\manual.txt

This can be shortened to:
 ni -ty sym -p C:\Users\paul\Bureaublad\manual -v manual.txt

The parameter Target has the alias Value, ItemType has the alias Type,
and the current folder indicator .\ may be omitted.

Create more than one .txt file at once, example:

 'file1', 'file2', 'file3' |% {ni $_'.txt'}

Also more than one folder can be created in this way:
 'dir1', 'dir2', 'dir3' |% {ni -ty dir $_}

To contents

13. Rename an item
The cmdlet Rename-Item (aliases: ren and rni) renames items such as
files, folders, and registry keys. In contrast to the cmd command

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

rename, it does not allow
a wildcard in the name of the files. Although
 ren report.txt report.doc

is correct in cmd-mode as well as in PowerShell, the command that includes the wildcard *
 ren *.txt *.doc # Error in PS!

only works in cmd-mode. PowerShell returns an error.

The cmdlet rename-item can take piped input for the old name and recognizes
the flag -newname for the new name. For example,

 'report.txt' | ren -newname report.doc

gives the required change of the file extension.

To change multiple names at once, one may use the -replace operator. Its syntax is:

 string -replace regexp, new_name

In string every substring that matches the regular expression
regexp is replaced by new_name. For example,

 'report.txt' -replace '\.txt$', '.doc' # -> 'report.doc'

The regular expression '\.txt$' is anchored at the end of the string by "$" and
the dot is escaped so that its meaning is not the regexp
arbitrary character but the ordinary punctuation mark.
Thus,
 ls *.txt | ren -new { $_.name -replace '\.txt$','.doc' }

replaces in the current directory all file extensions .txt by .doc.
The value of the script block (the part between curly brackets) is a string:
the new file name.

In the previous example the PS statement is considerably more difficult to memorize than the equivalent cmd statement. Because that
happens more often, it is
useful to mention that cmd /c invokes a cmd command from within Powershell (the flag /c
stands for
"command"). Thus,

 cmd /c rename *.doc *.pdf

changes the extension .doc to .pdf for all items in the current folder.	Parenthetically, the following PS command achieves the same task
without invoking -replace:
 (ls *.doc).basename |% {ren .\$_.doc .\$_.pdf}

This statement is not easy to memorize either.

Note. The text with hyperlink
-replace operator
states explicitly that the first argument of -replace must be a regular expression. In the
fourth example of

 get-help rename-item -examples

the first argument of -replace is '.txt'. At first sight this looks like an ordinary string,
but if we remember that the dot stands for an
arbitrary character, we do recognize it as as a regexp.

To contents

14. Datatypes
Type cast operators are among others:
[int], [long], [string], [char], [bool], [byte], [double], [decimal], [single],
[array], [xml],
[hashtable], [PSCustomObject].

Once a variable is declared explicitly, an implicit type change is forbidden.
Examples:
 [string]$s = 'Peanuts' # Explicit declaration
 $s = 4 # Assign new string '4'
 $s * 3 # Gives 444 (triplicates the string)
 [int]$s = 4 # Explicit change of type (to int32)
 $s * 3 # Gives 12
 $s = 'bear' # Error --> Cannot convert value "bear" to type "System.Int32"
 [string]$s = 'bear' # Explicit recasting is OK
 $s = [char]0x07 # Recasting is OK on RHS (hex-char 0x07 sounds "Bell", warning sound)

Another type casting example:
 'a', 'b', 'c', 'd' > letters.txt # Each letter on a line in file letters.txt. Output in UTF-16 (!)
 [string]$letter = cat letters.txt # Get-Content, assign to string
 $letter # --> a b c d (a single string)
 $letter = [string](cat letters.txt) # The same. Brackets are necessary to cast the output of the cmdlet

Use set to assign a constant:
 set pi 3.14 -opt const # Assign constant; (No $ in set pi !)
 $pi # Gives 3.14 (Use $ in reference to the constant just set without $!)
 $pi = 2 # -> Error: Cannot overwrite variable pi because it is read-only or constant.
 set pie $([math]::pi) -opt const
 $pie # -> 3.14159265358979

Arrays
 $a = @('a', 'b') # Array (round brackets, colons as separators)
 $a += 'c' # Push 'c'
 $a += 'd' # Push 'd'
 $a # --> a\n b\n c\n d (vertical stack)
 $a.GetType() # --> True True Object[] System.Array

 $arry = 1,2,3,4,5 # Array, $arry[0] is 1, $arry[$arry.length-1] is 5.
 $arry.GetType() # --> True True Object[] System.Array

Associative arrays (aka dictionaries or hash tables)
 $assoc = @{one=1 ; two=2} # Associative array (curly brackets, semicolons as separators)
 $assoc.one # -> 1
 $assoc['two'] # -> 2
 $assoc['three'] = 3 # Adds a member
 $assoc.four = 4 # Adds a member
 $assoc.GetType() # --> True True Hashtable System.Object
 $assoc #

The last statement ($assoc) gives:
 Name Value
 ---- -----
 four 4
 one 1
 three 3
 two 2

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

:c
:d
:e
:f
:g
:n

:p
:x

To contents

15. Strings
Strings are as in PHP.
'Singly' quoted strings: no expansion of variables or escape character (backtick).
"Doubly" quoted: expansion of variables. Expressions
under $ are evaluated. For example,
 $five = 5
 '3*$five' -> 3*$five
 "3*$five" -> 3*5
 "$(3*5)" -> 15

Backtick escapes under double quotes. For example, escaping the dollar symbol: "`$(3*5)" gives $(3*5). Backticks are unchanged under
single quotes:
'`$(3*5)' gives '`$(3*5)'.
Notes:

1. "`n" gives the newline character.
2. The string "John Doe" can be appended to a file simply by "John Doe" >> out.txt. The file out.txt will be in UTF-16.
3. The cmdlet add-content (alias ac) writes to file
by default in ANSI (Windows-1252), and allows specification of other encodings.

Here-strings
@' ... '@ (no expansion) and @" ... "@ (with expansion).
Note that the openings @' and @"
must start in column 1 and be on a single
line. The same holds for the endings '@ and "@.

Example, assume $a -eq "Big Brother":
@'
 $a
 $(3*5)
'@

gives
 $a
 $(3*5)

while
@"
 $a
 $(3*5)
"@

gives
 Big Brother
 15

To contents

16. The formatting of strings
The PS formatting of strings is derived from the
composite formatting of C#.
The format operator is -f. Schematically it is used like:
 "String containing format-items" -f elements to be formatted separated by commas

Examples:
 "{0, 0:f4} is rounded to 4 decimals" -f 12.34567 # -> 12.3457 is rounded to 4 decimals
 "12345 converted to hex is: {0,10:x}" -f 12345 # -> 12345 converted to hex is: 3039
 "Prices are {0, 0:c} and {1, 8:c0}" -f 12.3998, 1.99 # -> Prices are € 12,40 and € 2

On the left-hand-side of the operator -f there is a string containing format-items:
 {index[,alignment]:[formatString[number]]}

[Square brackets surround optional values].
The index is 0-based and refers to the position in the array on the right of -f.
The alignment
gives the total number of spaces reserved for the output, with the output string being right-aligned
in the reserved space. If the alignment is
too small, the system takes the spaces it needs.
After the colon is the format string (see below). In the case of floating point numbers, the
number of decimals is given by the number after the format string. By default it is 2. The number of digits before the decimal point is
adapted by the system so as not to lose information.

A composite-formatted string can be written by Write-Host:
 $str = "One decimal:{1,5:n1}; two decimals:{0, 7:n2}; three decimals:{2, 10:n3}"
 Write-Host($str -f 2.141, 1.141, 3.141)

Note the order: second argument first, then the first, and finally the third. Also
look at the spacings dictated by the alignment parameter:
 One decimal: 1.1; two decimals: 2.14; three decimals: 3.141
 ||||| ||||||| ||||||||||

The following is an (incomplete) list of format strings, optionally they may be appended by an
integer giving the number of decimals:
Currency (output depends on the region set in Windows Control Panel: $, €, ...)
Decimal. Only for integers (no decimals)
Scientific (exp) notation
Fixed point, n:fd gives field of length n
and d digits after the decimal point. If n is too small the system adapts.
Most compact generic format, fixed or scientific
Number, includes decimal point and thousands separators
(choice of dots or commas depend on the region set in Windows

Control Panel)
Percentage
Hexadecimal format (only integers)

To get the sizes of all PS-scripts in the current directory (gp = Get-ItemProperty):
 gp *.ps1 |% {$_.length}

A script block allows computation (1kb is a literal constant of value 1024):
 gp *.ps1 |% {$_.length/1kb} # Lengths in kilobyte

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

List basename and length in a pretty format (round brackets are needed to give priority to the division):
 gp *.ps1 |% { "{0, 31} {1, 6:f1}" -f $_.basename, ($_.length/1kb)}

As usual, there is a simple alternative to get (almost) the same info (lengths in bytes):
 ls *.ps1 |ft basename, length

Strings have methods, if we enter
 "This is a valuable string" |gm

we see lots of string methods among which is split.
That is,
 $a = ("This is a valuable string").split(' ')

returns the array $a with 5 members, the strings
"This", "is", "a", "valuable", "string".
The method may be used in:
 $env:path.split(';')

which returns the Windows environmental variable path with
its entries stacked vertically.

To contents

17. Comparison
Comparison operators are among others:
-eq, -ne, -gt, -ge, -lt, -le, -like, -notlike, -match, -notmatch,
and -cmatch.
Although the operator -replace does not perform a comparison,
it is usually included in this group.

Examples:
 'peanutbutter' -like 'nut' # false
 'peanutbutter' -like '*nut*' # true (* is wildcard)
 'peanutbutter' -notlike '*nut*' # false
 'peanutbutter' -notlike 'nut' # true
 'peanutbutter' -match '[a-z]+' # true (regexp: all letters)
 'peanutbutter' -match 'r$' # true (regexp: last letter is r)
 'peanutbutter' -match '[A-Z]+' # true (PS is case insensitive)
 'peanutbutter' -cmatch '[A-Z]+' # false (cmatch matches cases)
 'peanutbutter' -replace 'u', 'U' # 'peanUtbUtter'

A website may contain the microsoft installation app UsefulApp.msi and its SHA256 hash
in the text file UsefulApp.msi.digest (64 hex
digits). Download both and issue:
 (Get-FileHash .\UsefulApp.msi).Hash -eq (cat .\UsefulApp.msi.digest)[0]

If this returns True, you can trust that the downloads haven't been changed on their way down to your computer. The cmdlet Get-FileHash
returns an object with 3 members, one of them called Hash.
Because cat
returns an array, you need to pick out its first element. Note
parenthetically that when the publisher of UsefulApp.msi
uses MicroSoft Authenticode, the cdmdlet Get-AuthenticodeSignature may be
worth looking at.

To contents

18. Switch
The following switch statement is case sensitive because of the flag -casesensitive:
 function f ($str) {
 Switch -casesensitive ($str) {
 'aap' { write-host 'AAP' }
 'noot' { write-host 'NOOT' }
 'mies' { write-host 'MIES' }
 'wim' { write-host 'WIM' }
 Default { "Unable to determine value of $str" }
 }
 "Statement after switch"
 }
 f('noot') # --> NOOT \n Statement after switch
 f('Noot') # Unable to determine value of Noot \n Statement after switch

To contents

19. Builtin classes
PowerShell has built-in classes, one is [console] with methods (among others) beep
and write:
see the msdn (microsoft developer
network) site.
 [console]::beep(800, 1000) # beep at 800 Hz for 1000 msec
 [console]::write([char]0x07) # Write hex 07, that is, ring the bell (does not work under ISE)
 [console]::readkey() # Return name of key + modifier(not under ISE)

Another built-in class is [math]. See
msdn.

Examples:
 [math]::pi # 3.14159265358979
 [math]::cos([math]::pi) # -1
 [math]::max(-1, -4) # -1
 [math]::pow(10,3) # 1000

To contents

20. Random numbers
 Get-Random -min 0.0 -max 1.0 # Random nr between 0.0 and 1.0, see help Get-Random for bounds

Alternatively, use the
System.Random object:
 $rand = New-Object Random
 $rand | gm # Gives methods of $rand, among which NextBytes

The creation of a byte array by type casting is equivalent to the
creation of a System.Byte object (a byte array of length 4 plus methods):
 [byte[]]$out = @(0,0,0,0) <--> $out = New-Object Byte[] 4

Fill the array by a method of instance $rand:
 $rand.NextBytes($out) # Fill array $out with 4 integer random numbers n: 0 -le n -le 255
 $out # To console

To contents

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

21. Errors
Almost all cmdlets recognize the flag -ErrorAction, abbreviated: -ea. The parameters
of this flag (Continue, etc) may be replaced by
numbers, as follows:
 # -ErrorAction Continue | Ignore | Inquire | SilentlyContinue | Stop
 # -ea 2 | 4 | 3 | 0 | 1

For instance, suppress error message about inaccessible subdirectories as follows:
 ls -rec -ea 0 *.jpg # all .jpg files in present and all subdirectories

As in many languages errors may be trapped. Enter Get-Help about_trap to see how.
The very same info as web page is here:
About trap.

Example of trapping:

 Trap [System.Exception] {
 "Command error trapped.`n$_" # Automatic variable '$_' contains system error msg; `n gives newline.
 continue # Suppress traceback, continue after erroneous statement
 }
 nonsenseString # Erroneous statement: unknown cmdlet, function or script.
 'Execution continues'

PS also has a Try ... Catch construct:
 try {
 An error # Illegal statement
 }
 catch {
 "An error occurred"
 }

The global object $error is a stack containing the consecutive non-trapped errors. To list the latest
and the first error, respectively:
 $error[0] | fl # The latest
 $error[$error.count-1] | fl # The first

To contents

22. Functions
A PS function is written in the PowerShell script language and is not compiled but interpreted.
Often functions are written by end-users. In
contrast, a cmdlet is written in a .net programming language
such as C# ("C sharp") and is an intrinsic part of PS. A function name, just like
a cmdlet name, is preferably
of the form "verb-noun" where "verb" is any of the existing verbs.

To get the unique verbs of all (including user) functions sorted in alphabetical order:
 gcm -commandtype function |select verb -unique |sort verb|ft

Example of a user function:

 function Write-ToScreen($path, $name) {
 Write-Host $path, $name
 }

Alternatively, the parameters can be defined by the param statement:
 function Write-ToScreen {
 param($path, $name)
 Write-Host $path, $name
 }

Both forms can be called as (parameters can be abbreviated to unique strings):
 Write-ToScreen -path roaming -name debug.txt # --> roaming \n debug.txt

Or more briefly:
 Write-ToScreen roaming debug.txt # Quotes are not required

Or more classically:
 Write-ToScreen('roaming', 'debug.txt') # Quotes are required

With regard to return values: (most) console output generated in the body of the
function is collected into an array which is returned. After
completion of the function call, the return
array may be written to the console (the default), or it may be assigned to a variable, or redirected
to a file,
or piped to a cmdlet.
Indeed, the following three kinds of console output are collected in a return array:

1. Write-Output.
2. A simple string reference.
3. The end of a pipeline (including a pipeline of one segment)..

Example:
 function list-no{
 write-output "first"
 "second"
 "third" |fl
 }
 $a = list-no # Nothing to the console; output collected in return array $a
 $a # --> first \nsecond \nthird (vertically stacked)

Not all console output is collected: the cmdlets Write-Host
and Out-Host -i write only to the console (do not generate return values):
 function list-yes{
 Write-Host "first"
 Out-Host -i "second"
 }
 $a = list-yes # --> first \nsecond (vertically stacked) to console
 $a # No output

Because the return array may be redirected to a file and not all console output
generated during function execution ends up in this array, the
return values
require close inspection.
Example:
 function Write-Vars {
 $a = 'A'; $b = 'B'; $c = 'C'; $d = 'D'; $e = 'E';
 Write-Output $a # To return array (including EOL chars)
 $e | fl # To return array
 Write-Host $b # To console
 $c # To return array
 Out-Host -i $d # To console
 }
 $f = Write-Vars # 'B', 'D' to console; 'A', 'E', 'C' to $f
 $f # 'A', 'E', 'C' to console
 Write-Vars # 'A', 'E', 'B', 'C', 'D' to console (in order of assignment).
 Write-Vars > foo.out # 'B', 'D' to console; 'A', 'E', 'C' to foo.out

One could expect that the statement Write-Vars would write first the immediate values
of $b and $d followed by the values of the return

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

array, but this is not the case.

More examples:
 function list-txt{ls *.txt}
 $a = list-txt # No console output, output of ls returned.
 $a # Info of .txt files to console
 list-txt | ft name # Only file names to console

 function list-txt{ls *.txt|write-host}
 $a = list-txt # Long file names of .txt files to console, nothing to $a.
 $a # No output, no returned parameters.

Function parameters can have a default value:

 function f {
 param($c = "Pete")
 $c
 }
 f # -> Pete
 f John # -> John

Positional parameters are passed in the automatic array $args:
 function Get-Pos {
 foreach ($p in $args) {
 Write-Host $p
 }
 }
 Get-Pos 1, 2, 'pink elephant', icecream # --> 1 2 pink elephant icecream

Functions may handle piped input (property names must be known—as always in pipelines).
The named members of an object or hash table
piped into the function are handled in a Process block:
 Function Test-PipedValue {
 Process {
 Write-Host "name: " $_.name,
 "color: " $_.color
 }
 }

Example, create hash table and pipe into function:
 $hash = @{name = 'Jean'; color = 'White'}
 $hash | Test-PipedValue # --> name: Jean color: White

The process command loops over elements of the piped object:
 function Test-Loop{
 process {
 Write $_ # alias of write-output, appends EOL char
 }
 }
 1, 2, 3, 4 | Test-Loop # --> 1\n 2\n 3\n \4

See help about_functions for more info.

To contents

23. Scripts
A script is a collection of PowerShell commands contained in a file with extension .ps1.
The script is invoked from a PS session by
entering its file name (= script name) prefixed by its path.
If the script has parameters (defined in a param statement) their values follow the
script name,
optionally prefixed by the parameter names, just as is the case in a function invocation.

The output of scripts is comparable to that of functions. That is,
the command Write-Host writes immediately (and only) to the console,
while Write-Output
writes to a return array. After termination of the script it is decided what happens to the return array:
redirected to a file
or to the console.
Create the script Measure-Text.ps1 containing the following 8
lines:

 # Begin Measure-Text.ps1
 Param ([string]$filename) # Script with one parameter, a string.
 Write-Output "`nStatistics of $filename `:" # To return array
 cat $filename | measure -line -word -character|ft # To return array, counts of lines, words, and chars
 Write-Host "You will hear a beep after 2 sec:" # To console
 sleep -sec 2
 Write-Host 'Beep'; [console]::beep(800,1000); # To console
 # End Measure-Text.ps1

Compare what is written on the console when the output is redirected (the script
measures its own length):
 .\Measure-Txt.ps1 -filename .\Measure-Txt.ps1 > foo.out
 cat foo.out

to when the script is called directly
(parameter name -filename is optional and omitted):
 .\Measure-Txt.ps1 .\Measure-Txt.ps1

Variables and functions have a default scope which may be modified. For example, inside
a script the following function has only the script
as scope.
The scope of the variable $a is modified to global and hence
$a is known to the invoking PS session:
 function Display-Hello {
 "Hello, World"
 $global:a = 13
 }
 Display-Hello
 $a

To contents

24. Traversing the Windows Registry
PowerShell is eminently suitable for traversing the Windows Registry. The Registry stores information
needed by the programs installed in
a Windows environment.
It contains the following "hives";

hkey_classes_root (hkcr)
hkey_current_user (hkcu)
hkey_local_machine (hklm)
hkey_users (hku)
hkey_current_config (hkcc)

Each hive is a tree consisting of keys and subkeys that define traversable paths. Unless a subkey is the end of
a path, it contains one or more

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

subkeys that point further down their paths. A subkey may also contain value entries,
which are name-value pairs that offer the desired
information to installed programs. The value entries
are the very reason for the existence of the Registry. In fact, the tree structure is only a
means to help locate
the value entries.

The only Registry hives predefined as PSDrives are HKCU and HKLM.
The hives
HKCR, HKU, and HKCC are not directly accessible by cd. One
must issue
cd registry::hkcr to access HKCR:, etc. The latter change of directory leads to the very long prompt:
 PS Microsoft.PowerShell.Core\Registry::HKCR>

Alternatively, one can define a new PSdrive by a command like:
 New-PSDrive -PSProvider registry -Root HKEY_CLASSES_ROOT -Name HKCR

followed by cd HKCR:. The advantage is the much shorter prompt string: PS HKCR:\>.

A Registry key that does not contain value entries is called empty. An empty key always contains one or more subkeys.
An end node of a
path is never empty, it always contains value entries,
but by definition no subkeys. Clearly, value entries are not part of a path.

For use in the following examples, we set once and for all:
 set ps 'PSChildName' -opt constant

so that from hereon $ps -eq 'PSChildName'.
In the examples below the current PSdrive is HKCU\software. One gets there in
a PowerShell
session by issuing
 cd hkcu:\software

Recall that -ea 4 stands for -ErrorAction Ignore. This
flag suppresses errors about non-accessible keys of which there are many in the
Registry.
The alias gp stands for Get-ItemProperty.
The alias gi stands for Get-Item. The functionality of gi
overlaps to a large extent
with ls and gp.

Now follows a list of examples that may be useful in inspecting/traversing the Registry:

 ls -rec -depth 1 -name # Tabulate names of subkeys (children) and subsubkeys (grandchildren).
 gp * # Lists all value entries (name and value) in all subkeys plus a few PS variables that define
 # three generations of the current path. Skips empty subkeys.
 ls 7-zip | gp # Value entries (names and values) of the subkeys of 7-zip (plus a few PS variables).
 gp . # Lists value entries in present key. No output if present key is empty.
 gp * |ft $ps # $ps='PSChildname' is a PS variable, returned by gp, that contains the name of subkey (child).
 # Hence this tabulates names of all non-empty subkeys.
 gp microsoft # No output because no value entry present in subkey 'microsoft' (is empty).
 gp RegisteredApplications # Value entries (names and values) of hkcu:\software\RegisteredApplications + PS info
 gi * # Same as ls *; lists names of subkeys (also empty ones) and their value entries;
 # no output when present key is endnode.
 gi . # Value entries of present key. Almost same info as 'gp .', but somewhat different format.
 gi .\Microsoft\Notepad # Value entries of subkey
 gi .\microsoft\Notepad |fl * # A subkey is an object, list its property names and values. One member is array 'Property'
 gi .\microsoft\Notepad |select -exp property # The content of array 'Property' in expanded form,
 # the array elements contain the names of value entries of the present key.

Note on ls * −rec −depth 1
Consider the following two commands issued from HKCU:\software:
 ls * -rec -depth 1 -ea 4 | measure -line # gives 35329 lines
 ls -rec -depth 1 -ea 4 | measure -line # gives 804 lines

while both commands—issued from c:\—give the very same number of lines (542).
It is difficult to see this dependence on context as
anything but a bug. It is, therefore, advisable to never use ls *
together with the flags -rec -depth.

End note

The following command lists names of subkeys and subsubkeys of the present key together with an array
containing the names of their
value entries:
 ls -rec -depth 1 |select name, property

Here property contains the names of all value entries, but only the first few elements are listed.
To expand this array, together with the
names of the subkeys separated by an empty line, use the following:
 ls -rec -depth 1 |select name, property |% {$_.name; $_.property; "" }

Explanation: ls returns an array of subkey objects that all have the properties name
and property. The cmdlet select picks from each
subkey object these
two properties and adds them to an object that is referred to by
$_ in the next stage of the pipeline.
These objects are
collected in an array that is passed to % = Foreach-Object. Then %
loops over the array elements.
The script block in the body of the loop
simply issues the two member names as commands.
Issuing of a variable name gives the writing of the content of the variable. If the content
is an array,
the array is written element for element, every element on a new line.

To contents

25. Registry lookup
If a value entry or a subkey must be located, it is necessary to descend down hive trees.
The cmdlet Set-Location (alias cd) enables this.
The -recurse parameter of ls does not imply any cd in a script block.
An explicit cd is necessary if some processing must be performed
lower down the path.
For example, recalling that ls -name -rec -de 1 returns an array containing names of subkeys and subsubkeys,
we
see that the following statement gives the names of all subkeys and subsubkeys
by execution of pwd (which returns the name of the present
key),
including those without value entries (the empty ones):
 ls -name -rec -depth 1 |% {$p=pwd; cd $_ -ea 4; pwd; cd $p; rv p}

Here -ea 4 suppresses the listing of an error when a cd to a non-accessible subkey is attempted.
The newly created variable
$p is removed
to avoid possible later side effects.
Compare this statement to the following command that lists names (contained in PSPath) of
only non-
empty subkeys and subsubkeys, but does not require a cd:
 ls -name -rec -depth 1 |gp |select pspath

Once one has descended to a certain key, the names of its value entries (if any) are obtained by:
 gi . |select -exp property # This returns line by line the names of the value entries.

The command gpv -name entry_name returns the value coupled to entry_name. For instance,
the subkey 7-zip of HKCU\software
contains the value entry pair (lang: nl),
i.e., it has entry name lang and entry value nl.
The commands issued from HKCU\software:
 $p=pwd; cd 7-zip; gpv -name lang; cd $p; rv p;

effectively leave us in HKCU\software and outputs the entry value nl named lang.

Windows Powershell cheat sheet

https://www.theochem.ru.nl/~pwormer/teachmat/Ps_cheat_sheet.html[10/15/2021 11:49:17 Am]

To list the value entries (if present) of the present key, use
 gi . |select -exp property |% {$v=gpv -name $_; write-host $_":", $v; rv v;}

The next command lists names ($p) of non-empty subkeys, subsubkeys, and subsubsubkeys,
name of value entry ($name) and corresponding
value ($v).
It does not list the value entries of the current key.
Note the nesting of |% and the line continuation:
 ls -rec -name -de 2 |% {$cd=pwd; $p=$_; cd $p -ea 4; gi . |select -exp property|`
 % {$name=$_; $v=gpv -name $name; write-host $p": ", $name" = "$v; rv name, v }; cd $cd; rv cd, p}

The final command finds entry values containing a given string in keys below the current key. It is important to note
that the search time
increases exponentially with the value of the parameter -depth:
 $string = "aul"
 ls -rec -name -depth 2 |% {$cd=pwd; $p=$_; cd $p -ea 4; gi . |select -exp property|`
 % {$name=$_; $v=gpv -name $name; if ($v -match $string) {write-host $p": ", $name" = "$v;}; rv name, v }; cd $cd; rv cd, p}
 rv string

To contents

	www.theochem.ru.nl
	Windows PowerShell Cheat Sheet

