NESUG 15 Beginning Tutorials

Using SAS Indexes with Large Databases
Alex Vinokurov, Omnicare Clinical Research, King of Prussia, PA
Lawrence Helbers, Omnicare Clinical Research, King of Prussia, PA

ABSTRACT

This paper presents a primer on using SAS” indexes to directly
access large databases in a variety of sort orders. It discusses
applicable uses of an index, creation of indexes and the SAS code
needed to utilize indexes in selecting data subsets, merging, and
SAS procedures. The techniques discussed produced substantial
performance improvements in prescription database analyses with
over 68 million observations.

INTRODUCTION

Have you had to develop an application where you want to access
just the records you want quickly from a much larger database?
SAS indexes make that possible. This paper is designed to show
you how and when to use indexes with SAS. These methods can
have great advantages over traditional sequential access of data.

The paper demonstrates some techniques not documented in SAS-
online and hardcopy manuals, but which have been described at
the SAS website and recent User-Group presentations. The
purpose of the paper is to help spread the word. We relate our own
experiences on MS Windows" and SUN Unix" platforms using
SAS v6.12 and SAS v8.02.

WHAT’'S AN INDEX?

An index is a means of selecting data from a database using a key
(index) and direct access input/output operations. SAS supports
simple (single variable) and composite (multiple variable) indexes
and can store multiple indexes together in its supporting (.si2 in
SAS for Windows) index file.

A sales database would be a good example, where different
applications may need to access the database by Customer,
Salesperson, Invoice Number, Entity, Region, Product, and Date.
In our prescription database application we need to access the Rx
data by patient, NDC_Number (drug packaging id), drug compound
code, and year/month. Different indexes can be created to access
the data in each desired order without additional sorting, once the
index is created. All indexes would reside in a single .si2 file. The
year/month index is a composite index with multiple variables, while
the others are simple indexes.

SAS uses the index to find where the record you want is stored and
then uses direct access input/output to access that record in the
database (the .sd2 file in SAS for Windows). Some overhead is
involved in finding the records you want and then accessing them
directly, so there must be other savings to make this procedure
efficient. For example, you may only need to access a small
percentage of the records or you are avoiding a time-consuming
sort.

USES FOR INDEXES

Indexes are suggested for three types of processing:
. WHERE Statements in PROC Steps

. Match Merging

. BY Statement Processing in DATA/PROC Steps

SAS automatically uses an index to efficiently select cases if you
use a WHERE clause which includes an indexed variable in a
PROC Step. In the Sales Data Base example, you could generate
a report for a particular salesperson, product or invoice without
having to read through the entire database sequentially.

Match Merging selects the desired cases which are specified in
one dataset that are also in the larger database, using indexes. It is
this application that has yielded the greatest productivity gains for
us. A typical application involves a few steps:

1. Find all residents with 1+ Rx for a particular drug

2. Find all Rx’s for those residents identified in Step 1 for
longitudinal analysis

3. Find all these resident’s health assessments in an indexed
patient assessment file

All three steps involve Match Merging using indexes, in these
cases one-to-many merges. Indexing saves time in each step and
turned a file development task which previously took several hours
into one which now takes minutes. The challenge was to learn the
syntax to do the merge, which was not automatic and not intuitive.

SAS also automatically uses indexes in BY processing in DATA
Steps and PROC Steps. BY processing requires the data to be
sorted on input. Using an index delivers the data to the DATA step
or procedure in the desired order. BY processing is used when first.
or last. coding is needed or when sub-analysis by group is needed
and too many classes exist for available memory to use the CLASS
statement that is available for several procedures.

BY processing using the entire database will only be efficient if it
avoids costly sorts because several different sorts will be desired
by different applications. The overhead needed to retrieve each
record directly can be quite substantial. We would not recommend
using this application for match merging because it is, in our
experience, more time consuming than not using indexes.

CREATING AN INDEX

Indexes can be created using PROC DATASETS or in the DATA
Step which creates a file. Each method is demonstrated below.

PROC DATASETS

PROC DATASETS modifies the characteristics of members of an
existing SAS library. To add an index, specify the library, the
member to modify and the indexes to create. For example:

proc datasets library=rx_data
modi fy master;
index create res_id;
i ndex create compound;
i ndex create ndc_nunb;
index create yearno=(year nonth);
contents data=master;
run;
quit;

The code above modifies library rx_data, member master, and
creates simple indexes for patient (res_id), drug compound, ndc
number, and a compound index (yearmo) using the variables year
and month. The CONTENTS statement provides a revised
contents for the master dataset, which will now include a list of the
dataset’s indexes. PROC DATASETS is an interactive procedure,
so make sure to use a QUIT statement to terminate its operation.

CREATING AN INDEX IN THE DATA STEP

Use the (index=) dataset option to create an index in the DATA
Step. The syntax is index=([index name]=(varl var2 ...)). In the
case of a composite index you list the variables included in the
composite for index name. You may leave out the =(varl var2) for
simple indexes. The code below

data rx_data. master
(index=(res_id

conpound
ndc_nunb
yearno=(year nonth)))
set test;
run;
proc contents
run;

creates the same four indexes as in the PROC DATASETS
example. A simple index is created for res_id, drug compound, and
NDC number. A compound index called yearmo is created for year
and month). The output of the PROC CONTENTS will report:

Index Varl Var2

1 COMPOUND

2 NDC_NUMB

3 RES_ID

4 YEARMO YEAR MONTH

Note the difference between the simple and compound indexes.
The compound index has entries under Varl and Var 2 headings to
report what variables compose the index.

SAS APPLICATION CODE USING INDEXES

In some cases SAS uses indexed datasets transparently, so no
additional coding is necessary. In other cases the code is a bit
counterintuitive and hard to remember. We will review that syntax,
but suggest these techniques will be adopted more readily by
developing general use macros. In yet other cases, SAS may
determine that using the index will be counterproductive and chose
to ignore the index in processing.

We consider the coding for SAS procedures, match merging, and
BY processing below.

SAS PROCEDURES- WHERE CLAUSE

SAS automatically uses an index to efficiently select cases if you
use a WHERE clause which includes an index variable. In the
Sales Data Base example, a report for a particular salesperson
could be coded:

proc neans data=sal esnstr n nmean sum std;
where sal esper="SmthlL’;
var booked shi pped pai d;

run;

NESUG 15 Beginning Tutorials

SAS will find the cases for this salesperson using direct access to
avoid having to read the entire database.

MATCH MERGING

Our decision to write this paper stemmed from the difficulty we had
figuring out how to do a match merge with indexes. Don't use
MERGE/BY processing. It will work but be inefficient. The correct
techniques are documented, if you know where to look. Better yet,
create simple to use macros that use the correct techniques.

In our applications we need to search a large database to find
records which match a short list of unique drugs or residents. We
do inner merges where only records in both files are kept. We'll call
the large file the master file and the smaller file the select file. We
think doing a match merge should be as simple as the macro call
below:

%one2many(mast er =l i b2. DI SP0101,
sel ect =m n_res(keep=res_id nmds_rsid),
keyvar=res_i d,
nT gout =di sp0101
filter=);

Do a one-to-many match merge by simply specifying the master,
select, and output files, the key variable to use, and an optional line
to filter cases further by non-indexed values (the macro is included
on the conference CD). Unfortunately, it is not that easy yet, so
we'll go through the syntax you need to know for the one-to-one,
one-to-many, and many-to-many match merge cases below.

One-to-One Merging

You can create an output data set containing the records in the
select data set that are also contained in the master dataset using
the SET/SET syntax shown below.

dat a Qut put - SAS- dat a;
set Sel ect - SAS- dat a;
set Master-SAS-data key=key_nane/ uni que;
select(_iorc_);
when (%sysrc(_sok)) do;
out put ;
end;
when (%sysrc(_Dsenom) do;
error=0;
end;
ot herw se;
end;
run;

One-to-Many Merging

The one-to-many merge is similar to the one-to-one, but it uses a
DO UNTIL to loop through all the records with the match key. The
syntax is:

dat a Qut put - SAS- dat a;
set Sel ect - SAS- dat a;
do until (_iorc_=%ysrc(_Dsenon));
set Master-SAS-data key= key_nane;
select(_iorc_);
when (%sysrc(_sok)) do;
out put ;
end;
when (%sysrc(_Dsenom) do;
error=0;
end;
ot herw se;
end;
end;
run;

Like the one-to-one merge, it has some syntax that isn't likely to be
familiar to beginners such as _iorc_, %sysrc, _sok, we will discuss
that later.

Many-To-Many Merging
Many-to-many merging requires SQL, just as it does when doing
such a match merge without indexes. The syntax is:

proc sql;
create table output as
sel ect b.*
fromslct_tab as a, naster as b
where a.nds_rsid=b. nds_rsid;
run;

Table output is created merging all cases in table sict_tab to
matching cases in table master. PROC SQL uses the indexes
transparently as the WHERE clause does in other SAS procedure
calls.

COMMON MNEMONICS

This section explains some of the esoteric code above. The
%SYSRC macro function is used to test whether a given return
code is a specific known condition. The user passes a ‘mnemonic’
condition name to the %SYSRC macro. The returned code can then
be used in program branching. Example syntax is:

iorc=%ysrc(_Dsenom

The _iOrc_ variable is the return code test whether the _Dsenom
condition was the result of an access. Some mnemonics are for
KEY= accesses, others are for BY accesses and some are for
both. Common mnemonics are:

_SOK Specifies that the desired observation was
located. Mnemonic can be used with KEY= or
BY access. In the match merging code above a
match is found and written to output.
_DSENOM Specifies that the master data set does not
contain the observation. Used with KEY=
access. Can be used to raise error condition or
branch to write an unmatched id file.
_DSENMR Specifies that the transaction data set
observation does not exist in the master data
set. Used with BY statement access. Uses are
the same as for _DSENOM above.
_DSEMTR Specifies that multiple transaction data set
observations with a given BY value do not exist
in the master data set. Used with BY statement
access. Uses are the same as for _DSENOM
above.

The %SYSRC code is just used to ascertain whether a match was
found or not and then branch accordingly in the program logic.

OTHER DATA STEP USES

Under the right circumstances it can also be efficient to use BY
processing with different indexes to avoid doing time consuming
sorts. For example, suppose you have a large sales database and
have to produce two reports on a monthly basis that are detailed-
nested summaries. For example, a sales report by business entity,
brand, region, product code and one by ingredient, warehouse,
product. If there are too many categories to accumulate summaries

NESUG 15 Beginning Tutorials

in memory you might try to sort the needed variables from the
master database, which is a time consuming step. If the master
database was indexed by these composite keys, then data could
be accessed sequentially for ‘BY’ processing without a sort.

Beware that the extra overhead in resolving the index and doing the
random read could make this approach undesirable. Our advice is
to test first.

The code illustrates two ‘BY’ procedures without an intervening sort
because the master data is indexed both ways:

proc neans dat a=nmaster;
by entity brand regi on product;
var sal es;

run;

proc neans dat a=nmaster;
by ingredi ent warehouse product ;
var sal es;

run;

UPDATING IN PLACE

For the record, indexed files can be updated in place with updates
to the indexes using the MODIFY command. Master files don't
have to be completely rewritten to add or update records. That
subject is broad and beyond the scope of what we planned here.
The reader is referred to a good article on the SAS.COM web site
by Moorman and Warner cited in our references for more
information.

Note that otherwise when a new dataset is created from an
indexed dataset using the SET command that the new file is not
indexed, unless specified with INDEX= or modified later with PROC
DATASETS.

RESTRICTIONS ON USE

Indexes can't be used everywhere in SAS. Here is a short list of
restrictions:

. must be direct access datasets — no tapes
. can't be used on compressed datasets
. Not available for SAS Transport datasets.

PERFORMANCE COMPARISONS

Indexing can produce benefits of shorter processing times but can
involve extra costs to such as additional storage space for the
index file and additional coding. In our application, the benefits
clearly outweighed the costs.

ADDITIONAL DISK SPACE

Adding 4 simple indexes to our databases added 9% to our disk
space requirements on both the PC and UNIX platforms. This
amounts to over 2 gigabytes, relatively inexpensive with today’s
hardware prices.

TIME REQUIRED TO CREATE INDEXES
Time required to create a set of indexes isn't substantial. Adding 4
indexes to a database with 1.89 million records took:

PC Platform
UNIX platform.

30 minutes
2.5 minutes

A good candidate application for indexing then, is one that doesn'’t
need to be recreated too frequently and one where the master
database is used often to produce many different displays.

NESUG 15 Beginning Tutorials

Time to Complete (secs)

Observations in

Test w/o Indexes with Indexes Savings (%) Master File

Where Processing in PROC step

PC SAS v6.12 215.6 10.8 95.0% 1,892,000

UNIX SAS v8.2 33.4 23.2 30.5% 1,892,000
Match Merging
One-to-One

PC SAS v6.12 344.8 48.6 85.9% 1,482,000

UNIX SAS v8.2 28.1 2.9 89.8% 1,482,000
One-to-Many

PC SAS v6.12 233.1 13.0 94.4% 1,892,000

UNIX SAS v8.2 32.8 5.1 84.4% 1,892,000

TIME SAVED WHEN USING INDEXES REEERENCES

The figure above reports comparison ‘real times’ required to
complete selected tasks on the PC and UNIX platforms. We report
results for WHERE Processing and Match Merging (one-to-one and
one-to-many) for some large databases with 1.5-1.9 million
records. Our actual database is nearly 30 times larger than this
‘test’ file. We don’t have a real world example of BY processing, but
the remaining cases presented are representative of our work with
the prescription database.

The WHERE-processing example selected less than .1 % of all
records for summary. The savings using indexes were 95% for the
PC platform and 31% for the UNIX platform. The total savings are
much larger on the PC platform as the UNIX is much faster to
complete a given task.

Match Merging is used widely in our early stages of project
database development from the larger master database. It includes
some of the longest runs we encounter, over 10 hours per run for
the entire database. In the test presented here 20 thousand
selected residents were match merged against 1.5 million master
records in a demographic database. Savings on both the PC and
UNIX platforms were over 85%.The non-indexed case counts both
the time to sort the reference file and the BY match merge.

The one-to-many case selected all prescriptions for a few drugs
from the master file. The non-indexed case was a simple SET
DATA step with an IF to specify the list of drugs desired. The PC-
based test saved over 94% and the UNIX-based test saved over
84%.

Applications that produce many sets of displays, using a small
percentage of all observations each time, are good candidates for
indexing. The percent savings are substantial. Production savings
are accrued several fold and the one-time cost to create the
indexes is spread over many runs.

CONCLUSION

Under the right circumstances SAS indexes can provide dramatic
improvements in performance. With the right training or macro
infrastructure they can also be easy to create and use. We hope
this paper has helped explain when and how to do so.

Horowitz, Lisa, Compressing and Indexing Large SAS Data Sets:
The Hows, Whens, and Wherefores, SAS Institute, A presentation
to PhilaSUG, November 1995.

Karp, Andrew H., Indexing and Compressing SAS Data Sets: How,
Why and Why Not, Sierra Information Services Inc, PowerPoint
Presentation.

Moorman, D.J. and Warner, D., Updating Data Using the MODIFY
Statement and the KEY Option, SAS Service and Support Library,
2001.

SAS Institute Inc, SAS Language Reference Version 6 First
Edition, CARY, NC, SAS Institute Inc, pp. 212-221.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.

Contact the author at:
Alex Vinokurov
Omnicare Clinical Research
630 Allendale Road
King of Prussia, PA 19406
Work Phone: 484-679-3148
Fax: 484-679-2509

Email: Alexander.Vinokurov@ omnicarecr.com
Lawrence Helbers

Omnicare Clinical Research

630 Allendale Road

King of Prussia, PA 19406

Work Phone: 484-679-2421

Fax: 484-679-2509

Email: Larry.Helbers@omnicarecr.com

SAS is aregistered trademark or trademark of the SAS Institute
Inc., Cary NC in the USA and other countries.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

