
Page 1 of 57

Paper 101-30

The SQL Optimizer Project: _Method and _Tree in SAS®9.1

Russ Lavery
(Thanks to Paul Sherman)

ABSTRACT
This paper discusses two little known options of SAS® Proc SQL: _method and _tree. The main body of information,
and the major opportunity to learn about the topics, exists in the heavily annotated appendix. Efficient use of this
material might involve reading, and printing, this paper then working through the appendix. This paper will also
attempt to describe some of the logic that the Optimizer employs.

Proc SQL has a powerful subroutine, the SQL Optimizer, that examines submitted SQL code and the state of the
system (file size, index presence, buffersize, sort order etc). The SQL Optimizer creates a run plan for optimally
running the query. Run plans describe executable programs that the Optimizer will create to produce the desired
output. These executable programs can be quite complicated and often involve the creating, sorting and merging of
many temporary files. Consistent with the Optimizer s goal of minimizing run times, the executable programs will trim
variables and observations from the input file(s)/working file(s) as soon as they can be removed.

Many details of the run plan can be determined by using two Proc SQL options (_Method and _Tree) and this paper
explains output from these two options. _Method and _Tree produce different output that present different aspects of
the run plan. Learning to interpret _Method and _Tree can help programmers explain why small variations in code, or
system conditions, can cause substantial variations in run time.

INTRODUCTION
This paper introduces two little known options of SAS Proc SQL: _Method and _Tree. The majority of the information,
and the opportunity to learn about the topics, exists in the heavily annotated appendix. Reading the appendix is
strongly recommended.

In SQL, you tell SQL what you want for results, not how you want the results produced. SAS SQL has a powerful
subroutine, the SQL Optimizer, that decides how the SQL query should be executed in order to minimize run time.
The Optimizer examines submitted SQL code and characteristics of the SAS system and then creates efficient
executable statements for the submitted query. The created code can be quite complicated and often involves the
creating, sorting and merging of many temporary files as well as the trimming of variables and observation at times
that will minimize run time.

All versions of SQL have Optimizers and, while they perform very well, performance can sometimes be improved by
manual intervention (AKA different coding of the query). Tuning SQL, or coding for optimum SQL efficiency, requires
that the programmer understanding the logic of the Optimizer s choices and to change her/his submitted code in a
way that allows the Optimizer to make better choices. Basic to the tuning process is the understanding of what the
Optimizer did when it ran a too slow SQL Query. _Method and _Tree show much of this information.

Unfortunately _Method and _Tree options produce large amounts of output. This paper will present an overview of
the subject and the reader is encouraged to work thorough the annotated logs in the appendix of this paper (included
on the on the CD). The annotated log files, in the appendix, is one of the larger, more detailed, collections of
annotated _Method and _Tree output.

This is part of a planned series of papers on the SAS SQL Optimizer. The papers will build on each other and,
hopefully, create a coherent body of knowledge on the Optimizer.

SUGI 30 Data Warehousing, Management and Quality

Page 2 of 57

THE LIST OF KNOWN MESSAGES AND BASIC SQL PROCESSES
_Method and _Tree will show much about how a query executed, but use many abbreviations to indicate SAS SQL
processes. In order to understand the cost penalties/implications of a particular execution plan, we must understand
the abbreviations and some of the details of the processes used by SAS SQL.

A comment on, and apology for, the incomplete nature of this paper is in order. It is only too likely that the Optimizer
currently has more subtlety than has been uncovered by the author and presented here. Additionally, SAS Inc. is
constantly improving its products. As time goes by, the Optimizer will only become more powerful and more subtle
and this paper will only become more incomplete.

TOP-TO-BOTTOM READ:
In certain situations SQL will perform a top to bottom read of the data. It will often do so in a query that does not have
a where clause, or has a where clause without a usable index. The query might not have a usable index because 1)
there is no index on the variable in the where clause, or 2) the code/syntax in the where clause might have prevented
the Optimizer from using the index. SAS has put lots of time into making a top-to-bottom read fast and has been
successful. Each read of a single observation is fast, but when millions of observations must be read, the total time (
time=Number of Obs. * seconds per observation read) can still be unacceptably long.

Here are two examples of queries that will be executed in a top to bottom read.
Proc sql;
Select * from dsn;

Proc sql;/*no index on sub*/
Select * from dsn
WHERE SUB= 001 ;

EQUIJOIN
An equijoin is the name for a join that has an equality in the where clause. SAS has not implemented the code that
an academic might consider a true equijoin however it has some fast techniques that the Optimizer can use on
equality relationships. As a result, the SQL Optimizer is often able to process equijoins quickly. Some SUGI/NESUG
articles have shown techniques to speed up queries by converting them to equijoins.

Proc sql;/*Equijoin*/
Select * from dsn
WHERE SUB= 001 ;

Proc sql;/*not an Equijoin*/
Select * from dsn
WHERE SUB LE 001 ;

Proc SQL; /*Equijioin*/
SELECT L.SUBJID, L.NAME, R.AGE
FROM LeftT as L, Right as R
Where L.subjid=r.subjid;

Proc SQL; /*not Equijoin*/
SELECT L.NAME, L.Age, R.Name, R.Age
FROM Left as L, RightT as R
Where L.Age GE R.Age;

SQL, whenever it thinks it can save time, pushes operations down to lower SAS processes. In simple cases of an
equijoin, like where Age=5, the where clause can be pushed down to the data engine. The data engine will perform
this equijoin (think of it as passing only obs where Age=5) and pass the result to SQL. If the where clause contains
code like where age*12=60, the observation would be brought into SQL The multiplication and filter happen in SQL.
The data engine is usually not smart enough to perform multiplication/division and similar operations.

CARTESIAN PRODUCT OR STEP-LOOP JOIN
Consider merging two tables (LeftT and RightT) in a SQL from clause, one table on the left (LeftT) of the comma and
one on the right (RightT). LeftT stands for the table on the left of the comma and RightT stands for the table on the
right of the comma. Cartesian products and step loops are related merging processes and the SQL Optimizer
employs them as a last resort. They are slow and very much to be avoided.

For these processes, a page of data is first read from the left table and then as much data as can fit in memory is
read from the right table. All merges are made (between any observation in the page from LeftT and all observations
in memory that came from RightT). The results are then output. Then the observations from RightT are flushed from
memory and a new read of RightT pulls in as many observations as can fit in memory. All possible matches are made
(between any observation in the page from LeftT and all observations in memory that came from RightT) and results
are output. This process continues until SQL has looped through all of the table RightT.

SUGI 30 Data Warehousing, Management and Quality

Page 3 of 57

Then SQL takes a step in the left table and reads a new page of data from LeftT into memory. The process of
looping through right table is repeated for the second page from the left table. Then a third page is read from the left
table and the looping through the right hand table is performed again. The process continues until all the
observations in the left table have been read and matched against every observation in the right hand table.

If there is a where clause in the query, it will be applied before the observations are output. SQL joins that are not
based on an equality are candidates for the step loop process processes and are therefore to be avoided.

Proc sql;
Select * from LeftT,RightT;

Proc sql;/*no index on sub*/
Select * from LeftT, RightT
Where LeftT.sub < RightT.sub;

Both examples above are likely to be executed using a step-loop join (depending on system conditions and the
decision of the SQL Optimizer).

INDEX JOIN
Even if an index exists on a variable in the where clause, the where clause (the code used for the query logic) can
prevent the Optimizer from using the index. Additionally, even if the index exists and the code in the where clause

does not disable the index, the Optimizer may decide not to use the index. The decision logic for the Optimizer is
complex, but a firm index rule is: if index merge will return more than 15% of the indexed file to the result file, the
index should not be used. In this case, there is a faster way to perform the query and the Optimzer will look for it.
The Optimizer (or the data engine) can access metadata and will estimate output file sizes.

In the case of a one file select (see left box below) the Optimzer checks the percentage of observations that come
from PA and their distribution in the file. If the Percentage is small, SQL reads the index file on the indexed variable
state . It locates the desired level(s) of state in the index and reads, from that index-observation, the hard drive

page number(s) that contain observations where state= PA . In order, the page number(s) are retrieved from the
index, page number(s) are passed to the disc controller and data is sent back to the CPU. As each page of
observations is received by the CPU, it is parsed and observations with state= PA are passed back to the working
file for the query. SAS keeps track of the most recently read page, as a technique to minimize disk reads. If a page
contains several observations that meet the where clause (e.g. state= PA), a new page will not be read from the hard
drive until all the observations in that page from PA have been sent to the query working file.

In an index merge of two files (see right box below), an index exists and the where clause code must be written in a
way that allows the SQL Optimizer to use it. In the appendix, several different queries are used to test how indexes
are used by the SQL Optimizer. The basic process for index join is that one file is read from top to bottom and the
matching observations in are read from the other file via an index lookup.

Proc sql;/*index on state*/
Select * from LeftT
Where state= PA ;

Proc sql;/*L_I_sub indexed in LeftT*/
Select * from LeftT , RightT
Where Lft_tbl.L_I_sub = Rgt_tbl.subj

For more of an explanation of the process in the right box above; Assume two tables, LeftT and RightT, with an index
on the variable L_I_sub in LeftT. The basic index merge process is that we are reading the right file from top to
bottom and using an index to find observation(s) with matching subject Ids from left.

1) Select the next observation from RightT (at start, this is the first observation in the data set)
-if end of file, stop

2) Pass subj from RightT to the SAS index subroutine
3) Search the index on the variable L_I_sub in the file LeftT for the value of subj
4) If found, go to disk and return the required fields for that observation from LeftT

- output and go to 1)
5) If not found go to 1)

SUGI 30 Data Warehousing, Management and Quality

Page 4 of 57

If the information required by the query is in the index file itself the Optimizer will simply access the index, and not
proceed to access the file associated with the index. This situation usually arises in queries when the where clause
tests for existence of a match in another file (where a value in the variable subj in RightT is also in LeftT and Left_T
has an index on subj). The fact that the Optimizer has automated this speed feature is just one indication of the level
of detail that has gone into the designing and programming Optimizer, and of the difficulty of understanding it.

HASHING JOIN
Hashing can be a very fast technique and is automatically considered by the Optimizer. SQL hashing has been
installed since V6.08 but since the Optimizer evaluates, and implements, the hashing technique without the
programmer s intervention, its existence is not well known. General information on Hashing can be found in articles by
Dr. Paul Dorfman in SUGI and NESUG online proceedings.

Hashing will not be considered as a join technique unless certain conditions are met. The SQL Optimizer accesses
metadata on the file and takes a good guess at the size of the files it needs to join. After removing unneeded
observations and variables, the Optimizer checks to see if 1% of the smaller of the two files being joined will fit into
one memory buffer. If the smaller file appears to fit, the Optimizer will attempt a hash join. If the smaller file is too
large, in relation to the buffer size, hashing will not be selected. A programmer can influence the Optimizer s choice
of hashing as a merge technique by manually changing the buffer size with a SAS option.

SQL performs a hash join in the following way. The SQL Optimizer determines which of the two tables is smaller
(after keeping only the appropriate variables from the select statement) and checks that smaller table size against the
buffer. If the table meets the size criteria, it is loaded into a tree-like structure (a hash table) in memory. The structure
of the hash object and the fact that is memory resident, allows for very fast searching. Then SQL processes the large
file, from top to bottom, and for every observation that satisfies the where clause, it performs a HASH table lookup for
the observation. Details of data step hashing are given in an article titled An Annotated Guide: Resource use of
common SAS Procedures in the NESUG 2004 proceedings.

HASH & INDEX & WHERE USE
The Optimizer will dynamically adjust to new information. In certain situations it will switch from one join method to
another-in the middle of execution - and create a hybrid join method. One such example is in the appendix (see
examples 9A to 9D) and indicates that SQL simultaneously used a hash join and an index to produce the results of
the query.

What happened is that, after tentatively trimming rows and columns from both files, the Optimizer estimated that 1%,
of the smaller of the files being joined, would fit in a buffer. This is a strong hint/instruction for the Optimizer to use a
hash join and so SQL loaded the smaller table into a hash table.

The Optimizer, as the hash table was being created, counted the number of unique key-variable values being loaded
into the hash table. The number of unique values loaded into the hash table was found to be a small number (maybe
below 1024) and the Optimizer dynamically changed the plan to take account of this information. In general, if there
are fairly few unique values key in the hash table, the Optimizer will take the values from the hash table and use them
to build an in phrase for a where clause (e.g. where state in(PA , TX)).

SQL will then use the where clause to select observations but the Optimizer will again re-evaluate it s options in light
of currently known information. The method selected for the join can be a top to bottom read or an indexed lookup.
This adjustment of code to the details of a particular query is complex, dynamic and automatic. It can be seen in
examples 9A to 9D.

SORT MERGE JOIN
This is similar, but not identical to, the data step merge. Under certain situations, the Optimizer determines that the
fastest way to execute the query is to sort the tables and process both tables from top to bottom, using a merge that
is similar (only similar) to that used by the DATA Step. This SQL merge will produce a Cartesian product, unlike the
data step merge, and it does this by looping within the BY-group variables. SQL processes a page of data from the
left table and loops through the appropriate by group right table.

GROUPING
Grouping, or aggregating observations, is a multi-step process and can take some time.

SUGI 30 Data Warehousing, Management and Quality

Page 5 of 57

SELECT
Select statements specifies variables in the final data set. The optimizer, as part of it s run plan, creates temporary
working files that are called result sets. Select logic is executed dynamically and as early as possible, keeping results
sets small.

In the code below, only the variables name, age and sex are all brought into the original SQL query space (AKA result
set). This initial removal of variables (height, weight) is handled by the data step engine and functions much like a
keep option on a data set. Height and weight never become part of a SQL result set.

Observations with sex NE M are filtered out during the initial read of the data and that variable (sex) is eliminated
from the query space, by the Optimizer, after completion of the read. After the completion of the first read, the result
set contains name and age. The result set is then sorted (by calling Proc Sort) by age. After the data is sorted age is
not required and the Optimizer eliminates that variable from the result set.

proc sql _method _tree;
create table lookat as select name from sashelp.class
where sex="M" order by age;

As the above explanation details, the Optimizer has automated Good Programming Practices and eliminates both
variables, and observations, as soon as it can.

HAVING
The having statement is very useful to SQL programmers but requires that SQL perform several steps. Please
examine the code below.
proc sql _method _tree;

title "this illustrates a having clause";
 select name, sex, age
 from sashelp.class
 group by sex
 having age=max(age);
quit;

In the code above, SQL must process the entire table sashelp.class, reading in the only the three variables in the
select clause. SQL stores the observations in a result set (a temporary table that the SQL Optimizer directs be
created). Then SQL makes a pass through the temporary table to find the max age, within each group, and tries to
store that information in a pipe line . As a speed/storage technique, the Optimizer tries to avoid the creation of
temporary files.

Sometimes applying a having requires additional passes through the working data set (AKA the result set) to check
the having criteria against each observation. If there is no Note in the log mentioning re-merging, the Optimizer was
able to produce the desired result in one pass using pipe lines to apply the having criteria. The query above
produces the log below, where the word remerging indicates an additional pass was required to find the observations
with the maximum age for each gender.

NOTE: The query requires remerging summary statistics back with the original data.
NOTE: SQL execution methods chosen are:
sqxslct
 sqxsumg
 sqxsort
 sqxsrc(SASHELP.CLASS)

DISTINCT
SQL usually implements distinct-ing by passing the result set to a Proc Sort with a nodup/nodupkey option. Distinct-
ing is usually performed late in the query process as an additional pass through the data. This is a sorting and sorts
are to be avoided because they take both time and space.

Under certain conditions (see examples 6A - 6D), the Optimizer can eliminate this last pass through if the query is
distinct-ing a variable that has a unique index. The elimination of the distinct-ing saves time. There is an example of
this, in compare-and-contrast format, in the appendix. It would be appropriate to use this as an example of how much
effort has been put into making the Optimizer produce fast code. This situation does not happen often but the
Optimizer has logic to help the programmer when it occurs.

SUGI 30 Data Warehousing, Management and Quality

Page 6 of 57

UNCORRELATED SUB-QUERY
The code in an uncorrelated sub-query is processed just once by the SQL Optimzer. The results of this first
evaluation are held in a result set until they are needed by the outer query. The code below is an example of an
uncorrelated query. The result sets L and R are created once and accessed many times.

proc sql _method _tree;
 *title show inner join merge using a comma;
create table ex5 as
select coalesce (l.name, r.name) as name
 FROM (select Name, Height from sashelp.class) AS L
 ,
 (select Name, sex from sashelp.class) as R
 where l.name =r.name;

CORRELATED SUB-QUERY
A Correlated sub-query is processed differently from an un-correlated sub-query and again shows the power of the
SQL Optimizer. A correlated sub-query uses information from each of the observations in the outer query to drive a
look up process (a SQL query) against another table. In the worst case, SQL might have to execute the look up

process for each row in the outer table. The look-up might have to be executed for every observation in the outer
query but the Optimizer creates code that avoids that, whenever possible.

In the query below, as SQL processes each observation in the outer query, it seems to be passing the gender to the
subquery and asking the subquery to find the maximum age for the current (in outer) value of gender. In fact, the
Optimizer will process the sub-query for the first observation and store the results in a result set that is both temporary
and indexed.

When additional observations from outer are processed the Optimizer first tries to find the needed information (in
this case, has SQL calculated max age for that sex before) in the temporary, indexed result set. If it can find the
required information in the temporary indexed result set, it takes information from the temporary indexed result set
and does not execute the sub-query. If the information is not in the temporary indexed result set, SQL will run the
sub-query, pass results to the outer query and then add the results of the query to the indexed result set. The
temporary indexed result set grows in size as unique values of the equality variable are found in the outer file. When
the query is done, the temporary indexed result set is deleted from the work library. The query below produces the
_method output that follows it.

proc sql _METHOD _TREE;
TITLE "A SIMPLE CORRELATED QUERY";
select * from sashelp.class as Outer
Where Outer.AGE =
 (select Max(age) from sashelp.class as inner
 where outer.sex=inner.sex);
quit;

NOTE: SQL execution methods chosen are:
 Sqxslct
 Sqxfil
 sqxsrc(SASHELP.CLASS(alias = OUTER))
NOTE: SQL subquery execution methods chosen are:
 Sqxsubq
 Sqxsumn

 sqxsrc(SASHELP.CLASS(alias = INNER)

Outer

Uncorrelated
Inner Queries
or sub-queries

Outer Query

Correlatedsub- query

SUGI 30 Data Warehousing, Management and Quality

Page 7 of 57

SIMPLE SUBSETTING LOGIC
For a one file SQL query, as shown below, the Optimizer must first decide if it should push the where down to the
data engine or handle it in SQL. The Optimizer s second decision is between using an index or a top-to-bottom read.
The Optimizer has access to metadata on the file. The Optimizer considers both the percent of the file that will be
returned and the distribution of the values in the file as it creates a plan to minimize run time.

Proc sql;/*index on state*/
Select * from LeftT
Where state= PA ;

The Optimizer has the ability to examine the metadata for the table and determine information useful for running the
query. The metadata not only tells if there is an index on the variable in the where clause, but allows the Optimizser
to determine both 1) what percent of the file will be returned by the where and 2) how the values are distributed
through the file. This information lets the Optimizer make intelligent decisions on how to quickly access data.

MERGE LOGIC
The approximate logic for selecting a particular join is shown below (DSET means Data Set or table). Unfortunately
this flowchart, like the one above, is a working model, rather than a definitive description of the Optimizer logic. The
author s only consolation, is that whatever the current logic is, SAS Inc s commitment to improving it s product means
that the current Optimizer will soon be replaced with one with more effective and subtle decision rules.

It is known that a where clause containing variables from two, or more, files can not be passed to the data engine.

OUTPUT FROM _METHOD
Method sends little output to the log. Below is typical output. It is important to note that an indentation level
indicates the existence of a result set (working table, or temp file). Output in the appendix has been annotated.
The query

proc sql _method;
 title Ex1 - show * select;
 create table ex1 as select * from sashelp.class;

produces the following _Method output in the log.
NOTE: SQL execution methods chosen are:
 Sqxcrta
 sqxsrc(SASHELP.CLASS)

Many unique
Levels of Key var

Is there a
candidate index
on DSET

Are DSETs Sorted

1% fits into
buffer

Is there an
EquiJoin

Index join

YES

NO

NO

YES Sort Merge

YES

Hash Join

YES

NO
Sort DSETs

Step Loop
(Cartesian)

NO

Does query
return LE 15%
of the DSET

YES

NO

YES

NO

Top to bottom read

Index lookup
Does query
return LE 15%
of the DSET and
is the data well
distributed

Does
the
where
syntax
disable
index
use?

NO

YES NO

YES

Does the base
engine handle the
subsetting?

NO

YES
Not covered

SUGI 30 Data Warehousing, Management and Quality

Page 8 of 57

A table of abbreviations is required to interpret the _Method output. Note that all abbreviations shown start with SQX.
This prefix stands for SQL Execution code. Below, please find the abbreviations I have been able to collect while
investigating _Method and a short explanation of the abbreviations. It is likely that more exist.

Name code Description
SqxCRTA Create table as select
SqxSLCT Select
SqxJSL Step loop join (Cartesian)
SqxJM Merge Join
SqxINDX Index Join
SqxHASH Hash Join
SqxSORT Sort
SqxSRC Source rows from table
SqxFIL Filter rows
SqxSUMG Summary stats with group by
SqxSUMM Summary stats with NO group by

OUTPUT FROM _TREE
The Optimizer creates a program, a multi-step program, and the output from tree can go on for pages.
Understanding the run plan requires information from both _Method and _Tree. Below is manually annotated (the red
numbers in parenthesis) _Tree output from the query above. Since _Tree output is quite complex, and explained in
the annotated logs, only a cursory explanation will be given here.

Tree as planned.
 /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (5)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | |--SYM-V-(class.Age:3 flag=0001)
 | |--SYM-V-(class.Height:4 flag=0001)
 | \-SYM-V-(class.Weight:5 flag=0001)
 /-SRC----|
 | (2) \-TABL[SASHELP].class opt=''
--SSEL---| (4)
 (1)

The query is processed, in levels, from right to left, and within levels from bottom to top. The idea of passing data
and information/instructions to the level to the left is a useful mental concept. At the top of each level is a summary
of the variables being passed to the level to the left. The result set being passed to the left is object (3) and it
consists of variables (5).

In the output above,
(4) SQL reads SAShelp.Class with no options processes by SQL
 (keep, drop etc are processed by the data set option processor).

(5) SQL reads variables from a SAS dataset (in sashelp) called class. The variables are:
Name: which is variable 1 in the data set class
Sex: which is variable 2 in the data set class

..
Weight: which is variable 5 in the data set class

(3) is a summary of variables being passed to the level to the left.
(2) indicates that the branches to the right describe a data source
(1) indicates that this is a select type query (SAS developers can see other types)

Processing
Sequence is:
1) rightmost level
first
 2) from bottom to
top inside a level
3) athe the top of
each level,
summarize what
will be passed to
the level to the left
4) when a level is
done, then step to
the left one level

SUGI 30 Data Warehousing, Management and Quality

Page 9 of 57

Below, please find the abbreviations I have been able to collect while investigating _Tree and a short explanation of
the abbreviations. Thanks to people at SAS for help with explanations.

Abbreviation This abbreviation can
be found in Example
Query Number found
in the Appendix

Process

ADIV 15 Divide

AGGR 7, 8, 11 This indicates an aggregation, but SQL does several
types of aggregation.

This is associated with an aggregation operation like
select sex, sum(x) as totl group by sex , or select

name, Min(x) as smallest

Sometimes processing the AGGR requires a separate
pass through the data set (look for re-merging note in
the log as an indicator of a separate pass) and some
times it does not.

AMUL 14 Multiply Arithmetic Multiplication
ASC 3, 6A, 6C, 8, 13 Sort in ASCending order
ASGN 4, 5, 7 Assign. Create a new variable or Assign a value to a

new variable. If the SQL code is

select sum(x) as totl

X will be summed and the result assigned to a variable
named totl . If the programmer names the new
variable, the name will be used in output and the
variable will be easy to identify/track through the output.
If the programmer does not name the variable, it will be
numbered and can be tracked via the number.

It is suggested that created variables be named as
shown below

Select coalesce(l.name, r.name) as
Cname , r.age as Rgt_age

CEQ 4, 5, 8, 13 This indicates a logical instruction to be passed to the
level to the left, where it is executed. CEQ means
check if these 2 leaves are equal CEQ is the symbol

for both numeric and character equality testing.

DESC 13 The sort, on the level to the left, should be in
descending order. This DESC code is information
passed to the left on the output. The descending sort
is performed (files are created and time is spent) in the
sorting in the level to the left.

Dlist List of variables with distinct values that are participating
in an aggregation/summation/grouping. See Slist and
Tlist.
Distincting gets rid of duplicates and Dlist reports on the
distincting process. Variables on a dlist have to have
duplicates removed before you can apply the
aggregation.

Empty 3, 4, 5, 6B, 6C, 7 , 8 This is a place holder in the output. The Optimizer has
the capacity to do additional operations at this point-
operations that were not performed.

SUGI 30 Data Warehousing, Management and Quality

Page 10 of 57

FCOA 4, 5,17,18, This indicates a function, like a SAS function, of type
coalesce.

FIL 23 FILter is used to handle the situations that can not be
handled by the data engine that is feeding into it. Fil
indicates that SQL applied an additional predicate late
in the processing. The clearest example of this is Ex
23. The where clause contains a variable that is not in
the source data set (age_mo=age*12). It first must be
created by SQL and then the filter predicate can be
applied.

Flags
(class.Sex:2
flag=0001)

Flags are for developers and are also used internal to
SQL. They are beyond the scope of this paper but, as
one example, (001) means that the variable is used
higher up in the SQL processing.

JTAG 17, 17A, 19, 19A, 19B,
19C, 19D, 20A, 20B,
20c, 20D, 21A, 21B,
21C, 21D

This is a code that tells what type of join was applied.
JDS=1 indicates a left join, JDS=2 Indicates a right join
and JDS=3 indicates a full join

FROM 4, 5 From indicates that data sources are being passed to
higher (more leftward) process.

GRP 8, Group is a multi-step process and can take some time
to perform

JOIN 4, 5 This indicates the SQL did a join, but not which type

LAND 12 A Logical AND should be performed. This is usually in
a where or a select.

LITC Not shown This indicates the use of a Literal Constant (character
string) as in: where state= PA

LITN 13,14 , This indicates the use of a Literal Number (ie numeric
constant) as in: Where age LT 12

OBJ 1,2, 3, 4, 5, 6A, 6B,
6C, 7, 8, 13, 14,

This indicates the existence of an object, or result set.
Obj indicates a description of columns in a result set
that is passed leftward for more processing. Objects
come from data sets or lower objects.

OBJE 4, 5, 7,14, 15, This indicates the existence of an evaluated object, the
result of an assignment of a value to a variable. An
OBJE is a variable that is typically added/merged to
another object (result set) at the same level.

When a programmer codes
Select sex, max(age) as Mage

The value of maximum age will be assigned to Mage
and mage will be, for a brief moment before the merge
into the result set for that level, an OBJE. See example
4.

ORDR 3, 6A, 7, 8, Order By, On the tree, contains ordering information
that is passed to the sort to the left. Order is
information and not an instruction. It is not, and does
not create, a result set. The sort, to the left of the
ORDR, creates the result set.

OTRJ 17, 18, 19 This stands for any of the following joins: Left join, right
join, full join. OTRJs are paired with JTAGs and the
JTAG indicates the type of join.

SLST 7, 8,15 Indicates a list of things that are involved in an
aggregation/summarization. This is a Not distinct List
of things that participate in the summarization See
Dlist and Tlist

SORT 3, 7, 8, 13 Sort, at this level, in the order described to the right.

SUGI 30 Data Warehousing, Management and Quality

Page 11 of 57

SRC 1,2, 4, 5, 6A, 6B, ,
6C,7 , 8,

Information to the right of this is a data source.
Typically an object is being passed to the left.

SSEL 1,2, 3, 4, 5, 6A, 6B,
6C,7 , 8

SSEL indicates that the query is a Select query. Not all
queries are of type select. There are modify queries
and drop queries and others.

SUBP 25 This indicates an input to the subquery. It is a
parameter passed to the subquery

SYM-A 4, 5, 7, 14, This identifies a variable as an assigned/created
variable- one that did not get read from a data set. A
SYM-A is the result of Assigning a value to a variable
through a calculation or function as in:

Select name ,Age_yr=age*12 as YRS

SYM-G 7, 8 A SYM-G is the result of assigning a value to a variable
through a Grouping calculation or function as in:

Select name ,sex, Max(age) as Mage
Group by sex;

SYM-V 25 This identifies a variable as a having been read from a
data set.

Sym-v lib.name
Flag=0001

1, 2, 3, 4, 5, 6A, 6B,
6C, 7, 8,14,

This shows a combination of abbreviations as they
might appear in the log. A variable was read from a
source table (SAS data set lib.name). See Flag above

Table
[lib].fname
opt=

1, 2, 3,4 , 5 , 6A, 6B,
6C, 7, 8

This shows a combination of abbreviations as they
might appear in the log. Tables are identified with a two
part name. See opt=

TLST 7, 8,15 Indicates a summarization. A temp List of things that
participate in the summarization. See Dlist and Slist

UNIQUE 6A, , 6C, This is the message to the log when select distinct is
coded. Creating unique values is usually implemented
by passing the current result set to Proc Sort with a
nodup/nodupkey

opt= SQL allows data set options inside the Query. An
example might be
 From class(keep=name age)
Some of these options are processed by Base SAS and
some are processed by SQL. If an option is processed
by SQL, it will show up in the opt= note.

CONCLUSION
The SQL Optimizer is a tremendous help to programmers, allowing them to write very efficient queries with absolutely
no thought. The amount of work that the SQL Optimizer does, independently of programmer input and totally behind
the scenes, is amazing.

In some cases the performance may be improved by re-coding the query and passing the Optimizer different
instructions. These issues will be explored in future papers.

If SQL performance is causing problems, knowing what the Optimizer created for a plan of execution is essential if the
programmer want to attempt to improve performance. _method and _tree allow the programmer to see how SQL
executed the query and to see the effects of her/his programming changes.

SUGI 30 Data Warehousing, Management and Quality

Page 12 of 57

REFERENCES
TS553 SQL Joins the Long and the Short of it, by Paul Kent available on the SAS web site
TS320-Inside PROC SQL s Query Optimizer, by Paul Kent available on the SAS web site

Church (1999), Performance Enhancements to PROC SQL in Version 7 of the SAS® System
Performance Enhancements to PROC SQL in Version 7 of the SAS® System, Proceedings of the Twenty-fourth
Annual SAS Users Group International Conference , 24 , paper 51

Kent, Paul (1995) SQL Joins The Long and The Short of IT Proceedings of the Twentieth Annual SAS Users
Group
International Conference, Cary, NC: SAS Institute Inc., 1995, pp.206-215.

Kent, Paul (1996) An SQL Tutorial Some Random Tips ,Proceedings of the Twenty-First Annual SAS Users
Group International Conference pp. 237-241.

For non-SAS explanations of SQL execution, see the article by Dan Hotka at www.odtug.com

ACKNOWLEDGMENTS
The author wishes to thank the Paul Dorfman, Sigurd Hermansen, Kirk Lafler, and Paul Sherman for their contribution
to the SAS community on SQL and for inspiring this paper. Thanks to Paul Sherman for his review and comments.

Thanks for the help from SAS institute, especially help from Paul Kent and Lewis Church.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Russell Lavery
9 Station Ave. Apt 1,
Ardmore, PA 19003,
610-645-0735 # 3
Email: russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The Appendix Follows

SUGI 30 Data Warehousing, Management and Quality

http://www.odtug.com
ACKNOWLEDGMENTS

Appendix SQL Method and Tree Page 13 of 57

The CONTENTS Procedure
Data Set Name SASHELP.CLASS Observations 19

Member Type DATA Variables 5

Engine V9 Indexes 0

Protection Compressed NO

Data Set Type Sorted NO

File Name C:\Program Files\SAS\SAS 9.1\core\sashelp\class.sas7bdat

**Some Basic Terms and Background to method and tree;
**Example 1;
 proc sql _method _tree;
 title Ex1 - show * select;
 create table ex1 as select * from sashelp.class;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) apply the selection criteria
 sqxsrc(SASHELP.CLASS) (2) this indicates a source for the data
To make it easier to discuss details of the output, numbers in parenthesis were added manually to the log file to make it
easier to identify the specific points under discussion. The numbers are in parenthesis and in red.

Tree as planned.
 /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (5)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | |--SYM-V-(class.Age:3 flag=0001)
 | |--SYM-V-(class.Height:4 flag=0001)
 | \-SYM-V-(class.Weight:5 flag=0001)
 /-SRC----|
 | (2) \-TABL[SASHELP].class opt=''
 --SSEL---| (4)
 (1)
Red numbers have been added, manually, to make it easier to reference parts of the output.
Query processing proceeds from bottom to top inside a level and from right to left across levels. Not every level produces
a temp file (result set). The first file actually produced above is the shown by the SRC (2). Items (3), (4) and (5) are
information to be passed to SRC, which does the work. At the top of each level (3), the result set to be passed to the left is
summarized in an obj.

Details about the above output follow:
(5) SYM-V indicates a variable from a SAS data set. Then we see the two part variable name. The :1 means that name is the
first variable in the data set (see contents above). The flag is a complex notation that is used by developers and internal
processing. Except to say that the 1 means that the variable is required in higher level processing, flag is beyond the scope
of this paper

(4) This is an indication of the data source as SAShelp.class. You can put data set options(drop, keep, rename, etc.) in
SQL. Some options are processed by base SAS and some by Proc SQL. If a dat step option were processed by Proc SQL,
it would be mentioned in the opt= . This does not incicate a temporary table or processing.

(3)OBJ, at the top of a level, summarizes variables being passed on to higher processing.

(2) SRC indicates a source of data, a result set that is being passed on to higher processing, or display. SRC indicates a
result set .

(1) SSEL indicates that this is a select query, not that variable selection happens at this point. A drop query, or modify
table query would have a different string at this point.

Level
1

Level
2

Level
3

Processing Sequence is:
1) rightmost level first
 2) from bottom to top

inside a level
3)when level is done
then step to the left a

level

 A description of the data set
Variables in Creation Order

Variable Type Len

1 Name Char 8

2 Sex Char 1

3 Age Num 8

4 Height Num 8

5 Weight Num 8

Pass info up

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 14 of 57

**Example 2;
proc sql _method _tree;
title Ex2 - show basic select;
create table ex2 as
 select Name, Height
 from sashelp.class;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) apply the selection criteria to observations???
 sqxsrc(SASHELP.CLASS) (2) this indicates a source for the data

Tree as planned.

 /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (5)
 | (3) \-SYM-V-(class.Height:4 flag=0001)
 /-SRC----|
 | (2) \-TABL[SASHELP].class opt=''
 --SSEL---| (4)
 (1)

Reading the above output shows:
(5) SYM-V shows us selecting only two variables from a SAS data set. (Note that the Optimizer is following good
programming practice and only using variables it needs.) Then we see the two part variable name. The :1 means that
name is the first variable in the data set (see contents above). The flag is a complex notation that is used by developers
and internal processing. Except to say that the 1 means that the variable is required in higher level processing, flag is
beyond the scope of this paper.

(4) This is an indication of the data source as SAShelp.class. This shown information to be passed to the left, where work
is done. SQL accepts data set options(drop, keep, rename, etc) and can show in the opt= section. Some options are
processed by base SAS and some by Proc SQL. If a data step option were processed by Proc SQL, it would be mentioned
in the opt= .

(3)OBJ, at the top of a level, summarizes variables being passed on to higher processing.

(2) SRC indicates a source of data, a result set that is being passed on to higher processing, or display. SRC indicates a
result set .

(1) SSEL indicates that this is a select query, not that variable selection happens at this point. A drop query, or modify
table query would have a different string at this point.

Use this file (no options on the
data set were processed by SQL

Instead of select *, specify the variables

The position number of the
variable in the data set

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 15 of 57

**Example 3;
proc sql _method _tree;
*title Ex3 - show basic select;
create table ex3 as
 select Name, Height
 from sashelp.class
 order by height ascending;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 sqxsort (2) this indicates a sorting of the data
 sqxsrc(SASHELP.CLASS) (3) this indicates a source for the data

Tree as planned.

 /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (7)
 | (6 A) \-SYM-V-(class.Height:4 flag=0001)
 /-SORT---|
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (10)
 | | | (6 B) \-SYM-V-(class.Height:4 flag=0001)
 | |--SRC----|
 | | (3) \-TABL[SASHELP].class opt=''
 | |--empty- (8)
 | | (4) /-SYM-V-(class.Height:4)
 | | /-ASC----| (11)
 | \-ORDR---| (9)
 --SSEL---| (5)
 (1)

Reading the above output shows:

Note that ORDER is not a command to execute a sort. It is information about how the sort should be processed and is
passed to the sort (2).

Order (11, 9, 5) is not an instruction to put observations in order. Order is information to be passed up to higher SQL
processing. No processing happens in (11), (9) or (5). This section is simply telling SQL that the data will be sorted by
ascending height- at a later time. The sort happens at (2).

(4) is a place holder. The optimizer could do amazing things here, but has not been requested to do so. :-)

(3) is a source of data. What is in that source is specified to the right.

(6A) is a summarization of the data being passed to the next higher level of processing. At this level the information about
sort order (5) becomes important.

(2) sorting is done by the SAS Proc Sort. The order information is passed to SAS sort from (5).

(1) SSEL indicates that this is a select query, not that variable selection happens at this point. A drop query, or modify
table query would have a different string at this point.

This branch (5, 9, 11) shows information required for
the sorting. (5, 9, 11) are not an internal file- just
information that gets passed to the sort in (2)

Q: Why do we have two
leaves with name and
height?

A: (3) is the source of the
data. (3) is a result set.
6A is a summary of what
gets passed to the sort
(2).

Result
Set

1
Result

Set
2

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 16 of 57

 **Example 4;
proc sql _method _tree;
*title Ex4 - show inner join merge;
create table ex4 as
select coalesce (l.name, r.name) as name
 FROM (select Name, Height from sashelp.class) AS L
 INNER JOIN
 (select Name, sex from sashelp.class) as R

on l.name =r.name;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 Sqxjhsh (2) this indicates a hash join
 sqxsrc(SASHELP.CLASS) (8) this indicates a source for the data
 sqxsrc(SASHELP.CLASS) (9) this indicates a source for the data

Tree as planned.
 /-SYM-A-(name:1 flag=0031)
 /-OBJ----| (7)
 /-JOIN---| (3)
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (16)
 | | /-SRC----| (12)
 | | | (8) \-TABL[SASHELP].class opt=''
 | |--FROM---|
 | | (4) | /-SYM-V-(class.Name:1 flag=0001)
 | | | /-OBJ----| (17)
 | | \-SRC----| (13)
 | | (9) \-TABL[SASHELP].class opt=''
 | |--empty-
 | | /-SYM-V-(class.Name:1)
 | |--CEQ----| (10)
 | | (5) \-SYM-V-(class.Name:1)
 | |--empty-
 | |--empty-
 | | /-SYM-A-(name:1 flag=0031)
 | | /-ASGN---| (14)
 | | | (11) | /-SYM-V-(class.Name:1)
 | | | \-FCOA---| (18)
 | | | (15) \-SYM-V-(class.Name:1)
 | \-OBJE---|
 --SSEL---| (6)
 (1)

(6) OBJE documents OBJect Evaluation logic.
 It tells SQL that how to calculate/evaluate the variable.
(11) Coalesce two variables, put the result in an Assigned variable (type=SYM-A).

(10 , 5) this is not an process, like getting data (9). It is used to pass data to the SQL. When the files are merged, the
values of names from the data sets (variables of type SYM-V) must be equal.
(9, 8, 4) take data from the sources to the right.
(3) This summarizes the data to be passed to the right.

What type of join?
(2) says that a join takes place. (5) says it is an equality join on name. Sqxjhsh says that the join is a hash join.

Rule: The bottom file is the file that was loaded into the hash table.
NOTE that and OBJE, as well as an OBJ, can be passed up (7) started as (14). (14) was named, name (yeah, not too
creative).

(6) and to the right describe the coalescing process. FCOA (15)
stands for Function. COAlesce

Do a
hash
join
where
names
are
equal.

Note: the Optimizer knows it does not need Height or Sex to
produce the requested results. It will not bring them into the
QUERY SPACE . See (12) and (13).

The equa l i t y t es t is not done here . (10 or 5).
Th is in fo is passed up t o t he jo in (2)

Sym-A (14) indictes a
created variable. It is
the result of
Coalescing the
variable name as the
come in from two
sources. AssiGN the
result to a new
variable (of type SYM-
A) called name.

No Height or sex

No Height or sex

Sym-A (7) indicates a created variable. It is
the result of Coalescing the variable name.

Rule: Bottom SRC is the
one that was put in the in
Hash table

We specify Inner Join not using
comma. For illustration, extra
variables are included.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 17 of 57

**Example 5;

proc sql _method _tree;

*title Ex5 - show inner join merge using a comma;
create table ex5 as

select coalesce (l.name, r.name) as name

 FROM (select Name, Height from sashelp.class) AS L

 ,

 (select Name, sex from sashelp.class) as R

 where l.name =r.name;

NOTE: SQL execution methods chosen are:

 Sqxcrta (1) this indicates a selection of observations
 Sqxjhsh (2) this indicates a hash join
 sqxsrc(SASHELP.CLASS) (9) this indicates a source for the data
 sqxsrc(SASHELP.CLASS) (10) this indicates a source for the data

Tree as planned.

 /-SYM-A-(name:1 flag=0031)

 /-OBJ----| (8)

 /-JOIN---| (3)

 | (2) | /-SYM-V -(class.Name:1 flag=0001)

 | | /-OBJ----|

 | | /-SRC----| (13)

 | | | (9) \-TABL[SASHELP].class opt=''

 | |--FROM-- |

 | | (4) | /-SYM-V -(class.Name:1 flag=0001)

 | | | /-OBJ----|

 | | \-SRC----| (14)

 | | (10) \-TABL[SASHELP].class opt=''

 | |--empty-

 | | (5) /-SYM-V-(class.Name:1)

 | |--CEQ----| (11)

 | | (6) \-SYM-V-(class.Name:1)

 | |--empty-

 | |--empty-

 | | /- SYM-A-(name:1 flag=0031)

 | | /-ASGN---| (15)

 | | | (12) | /-SYM-V-(class.Name:1)

 | | | \-FCOA---| (17)

 | | | (16) \-SYM-V-(class.Name:1)

 | \-OBJE---|

 --SSEL---| (7)

 (1)

NOTE: Table WORK.EX5 created, with 19 rows and 1 columns.

(7, 12, 15, 16, 17) OBJE documents object Evaluation logic. It tells SQL how to calculate/evaluate the variable.

(16, 15) Coalesce two variables (both called name), put result in an Assigned variable (type=SYM-A)called name.

(11 , 6) this is not an process, like getting data (9). It is used to pass data to SQL. When the files are merged in (2), the
values of names from the data sets (variables of type SYM-V) must be equal.
(10, 9, 5) take data from the sources to the right.

(3) This summarizes the data to be passed to the right.

What type of join?
(2) says that a join takes place. (6) says it is an equality join on name. Sqxjhsh says that the join is a hash join. The bottom
file is loaded into the hash table.

NOTE that and OBJE, as well as an OBJ, can be passed up (8) started as (15). (15) was named, name (yeah, not too
creative).

Note: the Optimizer knows it does
not need Height or Sex to process
the query. See (13) and (14)

The equa l i t y t es t is not done here . (10).
Th is passes in form at ion up .

No Height or sex vars

Sym-A (3) indicates an Assigned/created variable. It
is the result of Coalescing the variable name.

Bottom file (10) goes in Hash table

Specify Inner Join using comma. For
illustration, specify unneeded variables

(7) and to the right describe the
coalescing process. FCOA (16) stands
for Function. COAlesce. Coalesce
name from two files. Assign the result
to a variable called name.

This output tells us the
Optimizer used a hash join

No info
here
about
type of

join.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 18 of 57

**EXAMPLE SIX SERIES: COMPARE/CONTRAST AMONG EXAMPLES*;
** THIS IS AN EXAMPLE OF HOW MUCH THE OPTIMIZER DOES FOR US
Ask for distinct on an un-indexed variable, it sorts and selects in a final step -> 6A
If we have a unique index on that variable that can satisfy the select, it eliminates the sort -> 6B
Example 6A ****************************;
proc sql _method _tree;
*title Ex6A- show distinct on unindexed variable;
 create table ex6A as select distinct name, sex , age FROM sashelp.class;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 Sqxuniq (2)this indicates pass through the data, like a sort with nodup option
 sqxsrc(SASHELP.CLASS) (4) this indicates a source for the data

Tree as planned.
 /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (7)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | \-SYM-V-(class.Age:3 flag=0001)
 /-UNIQ---|
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (12)
 | | | (8) |--SYM-V-(class.Sex:2 flag=0001)
 | | | \-SYM-V-(class.Age:3 flag=0001)
 | |--SRC----|
 | | (4) \-TABL[SASHELP].class opt=''
 | |--empty-
 | | (5) /-SYM-V-(class.Name:1 flag=0001)
 | | /-ASC----| (13)
 | \-ORDR---| (9)
 | (6) | /-SYM-V-(class.Sex:2 flag=0001)
 | |--ASC----| (14)
 | | (10) /-SYM-V-(class.Age:3 flag=0001)
 | \-ASC----| (15)
 --SSEL---| (11)
 (1)

*Example 6B*The Optimzer does not do the distinct-ing*;

data class_W_indx(index=(name/ unique));
set sashelp.class; run;
proc sql _method _tree;
 *title Ex6B - show distinct on unique indexed variable;
 create table ex6B as select distinct name FROM class_W_indx;

quit;
NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 sqxsrc(WORK.CLASS_W_INDX) (2) this indicates a source for the data
Tree as planned.
 /-SYM-V-(class_W_indx.Name:1 flag=0001)
 /-OBJ----| (5)
 /-SRC----| (3)
 | (2) \-TABL[WORK].class_W_indx opt=''
 --SSEL---| (4)
 (1)
SQL reads the header information in the file and realizes, from the index information, that these obs. are all unique. It just
prints the observations using the index as the data source. There is no mention of an index use in the log, in _Method or in
_Tree, but the unique index was sensed by the optimizer and used to eliminate the unique-ing process in 6A. Note that
there is no need for sorting/ordering in the query.

Summary of what
goes to higher level.

Uniq is done by
proc sort with
a nodup/
nodupkey
option!

Info passed up to
higher leve ls t o t he
Proc Sort that does

t he UNIQ-ing .

Select variables

Create a unique index on
Name. SQL knows the

metadata on files.

SQL keeps track of different
types of metadata

This Query did not even access the raw data.
It was able to get all the information it

needed from the index.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 19 of 57

**Example 6C *1 variable index, distinct on 2 vars. **;
proc sql _method _tree;
*title Ex6C -distinct on unique indexed variable when selecting multiple variables;
create table ex6C as

select distinct name ,sex
 FROM class_W_indx; quit;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 Sqxuniq (2) this indicates a source for the data
 sqxsrc(WORK.CLASS_W_INDX) (4) this indicates a source for the data
Tree as planned.
 /-SYM-V-(class_W_indx.Name:1 flag=0001)
 /-OBJ----| (7)
 | (3) \-SYM-V-(class_W_indx.Sex:2 flag=0001)
 /-UNIQ---|
 | (2) | /-SYM-V-(class_W_indx.Name:1 flag=0001)
 | | /-OBJ----| (12)
 | | | (8) \-SYM-V-(class_W_indx.Sex:2 flag=0001)
 | |--SRC----|
 | | (4) \-TABL[WORK].class_W_indx opt=''
 | |--empty- (9)
 | | (5) /-SYM-V-(class_W_indx.Name:1 flag=0001)
 | | /-ASC----| (13)
 | \-ORDR---| (10)
 | (6) | /-SYM-V-(class_W_indx.Sex:2 flag=0001)
 | \-ASC----| (14)
 --SSEL---| (11)
 (1)
The metadata information (index information) does not contain enough information to allow the Optimizer to help. Create a new
dataset with a new index that is on both the variables and then use it in Proc SQL.

Example 6D *Compound index and distinct **********;
data class_W_Cmpindx(index=(nm_sex=(name sex)/ unique));

set sashelp.class;

run;

proc sql _method _tree;

*title Ex6D - show distinct on two vars with a unique compound index;

 create table ex6d as select distinct name, sex FROM class_W_Cmpindx;

NOTE: SQL execution methods chosen are:

 Sqxcrta (1) this indicates a selection of observations
 sqxsrc(WORK.CLASS_W_CMPINDX) (2) this indicates a source for the data

Tree as planned.
 /-SYM-V-(class_W_Cmpindx.Name:1 flag=0001)
 /-OBJ----| (5)
 | (3) \-SYM-V-(class_W_Cmpindx.Sex:2 flag=0001)
 /-SRC----|
 | (2) \-TABL[WORK].class_W_Cmpindx opt=''
 --SSEL---| (4)
 (1)

SQL reads the header information in the file and realizes that these obs. are all unique. It just prints the
observations using the index itself as the source of the data. No mention of index use in the log, in _Method
or in _Tree, but the unique index was sensed by the optimizer and used as the data source.

We have a distinct index on ONE of the two variables in
the select. The metadata can not be used to help us.

Uniq is done by
proc sort with a
nodup/nodupkey
option!

Summary of what
goes to higher

level.

Info passed up
to higher levels

t o t he Proc
Sor t t ha t does

the UNIQ.

Creat e a un ique c om pound index on Nam e and sex In rea l
l i fe w e d w orry about nam es l ik e Pat that can be male or
female (Patrick and Patricia), but not in this small data set.

Result
Set 1

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 20 of 57

Example 7 Grouping and calculations*******;
proc sql _method _tree; *title Ex7 - Grouping and calculations;
 create table ex7 as select sex , max(age) AS maxage, AVG(HEIGHT) AS AVG_HT
 FROM class_W_indx GROUP BY SEX ;

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 Sqxsumg (3) this indicates an aggregation maps to AGGR in tree
 Sqxsort (5) this indicates a sorting of observations
 sqxsrc(WORK.CLASS_W_INDX) (4) this indicates a source for the data

Tree as planned. /-SYM-V-(class_W_indx.Sex:2 flag=0001)
 /-OBJ----| (13)
 | (4) |--SYM-A-(maxage:1 flag=0039)
 | \-SYM-A-(AVG_HT:2 flag=0039)
 /-AGGR---|
 | (3) | /-SYM-V-(class_W_indx.Age:3 flag=0001)
 | | /-OBJ----| (21)
 | | | (14) |--SYM-V-(class_W_indx.Height:4 flag=0001)
 | | | \-SYM-V-(class_W_indx.Sex:2 flag=0001)
 | |--SORT---|
 | | (5) | /-SYM-V-(class_W_indx.Age:3 flag=0001)
 | | | /-OBJ----| (29)
 | | | | (22) |--SYM-V-(class_W_indx.Height:4 flag=0001)
(30)
 (2) | | | | \-SYM-V-(class_W_indx.Sex:2 flag=0001)
 | | |--SRC----| (31)
 | | | (15) \-TABL[WORK].class_W_indx opt=''
 | | |--empty- (23)
 | | | /-SYM-V-(class_W_indx.Sex:2)
 | | | /-ASC----|
 | | \-ORDR---| (24)
 | |--empty- (16)
 | | (6) /-SYM-V-(class_W_indx.Sex:2)
 | |--GRP----|
 | | (7)
 | |--empty-
 | |--empty-
 | | (8) /-SYM-A-(maxage:1 flag=0039)
 | | /-ASGN---| (25)
 | | | (17) \-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |--OBJE---| (26)
 | | (9) | /-SYM-A-(AVG_HT:2 flag=0039)
 | | \-ASGN---| (27)
 | | (18) \-SYM-G-(#TEMG002:2 stat=3,0 from Height(0,0))
 | |--empty- (28)
 | | (10) /-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |--TLST---| (19)
 | | (11) \-SYM-G-(#TEMG002:2 stat=3,0 from Height(1,0))
 | | /-SYM-S-(Age:3 ss=0008x)
 | \-SLST---| (20)
 | (12) \-SYM-S-(Height:4 ss=00E0x)
 --SSEL---|
 (1)

The Max(age) and Avg(height) values are not stored in temp files. They are stored in Pipelines .
(25, 26, 27, 28)

In (26) SymG indicates that a grouping is involved. Stat=5 is a code indicating that an average is calculated for the groups. The left
0 in the (0,0) after age indicates the source of the data (position 0 in the slist). The right 0 indicates non-unique. There are three
result sets here. (15) (5) and (3) are physical files.

(0,0) The left 0 indicates
position on on Slist the right

0 indicates non-unique.

AGGR = Aggregate

If there are no
having clauses,
and no re-merge,
SQL can do this in
one pass with a
pipeline. Tlist and
Slist contain info
to be used by the
AGGR

Should be
(1,0)

Line
Wrapping

GRP (7) is Not a process!
Passing info to higher level.

Tlst=TempLiST

Slist=Non-unique list

Can also have Dlst= unique list

Slist Numbering starts at 0
height is position 1

Stat=3 -> mean function

stat function: Stat=5 -> max

Sex is just a Variable from
a data set. We have
Assigned values to
Maxage and Avg_ht.
through grouping.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 21 of 57

*****Example 8 Having **************;
proc sql _method _tree;
*title Ex8 - Grouping and calculations; /*create table ex7 as*/

select NAME, sex , height, age FROM class_W_indx
 GROUP BY SEX HAVING AGE=MAX(AGE);
NOTE: The query requires remerging summary statistics back with the original data.

NOTE: SQL execution methods chosen are:
 Sqxslct (1) this indicates a selection of observations
 Sqxsumg (4) Summary Statistics With Grouping
 Sqxsort (6) this indicates a sorting of observations
 sqxsrc(WORK.CLASS_W_INDX) (20)indicates a selection of observations

 Tree as planned /-SYM-V-(class_W_indx.Name:1 flag=0001)
 /-OBJ----|
 | (5) |--SYM-V-(class_W_indx.Sex:2 flag=0001)
 | |--SYM-V-(class_W_indx.Height:4 flag=0001)
 | \-SYM-V-(class_W_indx.Age:3 flag=0001)
 /-AGGR---| (12)
 | (4) | /-SYM-V-(class_W_indx.Age:3 flag=0001)
 | | /-OBJ----| (19)
 | | | (13) |--SYM-V-(class_W_indx.Sex:2 flag=0001)
 | | | |--SYM-V-(class_W_indx.Name:1 flag=0001)
 | | | \-SYM-V-(class_W_indx.Height:4 flag=0001)
 | |--SORT---|
 | | (6) | /-SYM-V-(class_W_indx.Age:3 flag=0001)
 | | | /-OBJ----|
 | | | | (20) |--SYM-V-(class_W_indx.Sex:2 flag=0001)
 | | | | |--SYM-V-(class_W_indx.Name:1 flag=0001)
 (3) | | | | \-SYM-V-(class_W_indx.Height:4 flag=0001)
 (23)
 (2) | | |--SRC----|
 | | | (14) \-TABL[WORK].class_W_indx opt=''
 | | |--empty- (21)
 | | | /-SYM-V-(class_W_indx.Sex:2)
 | | | /-ASC----|
 | | \-ORDR---| (22)
 | | (15)
 | | /-SYM-V-(class_W_indx.Age:3)
 | |--CEQ----| (16)
 | | (7) \-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |
 | | /-SYM-V-(class_W_indx.Sex:2)
 | |--GRP----|
 | | (8)
 | |--empty-
 | |--empty-
 | |--empty-
 | |--empty-
 | | (9) /-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |--TLST---| (17)
 | | (10) /-SYM-S-(Age:2 ss=0008x)
 | \-SLST---| (18)
 --SSEL---| (11)
 (1)

We start with table (21) and create a result set (RS) (14). The contents of (14) are sorted (6) and then summarized in (20). The max
age is stored in a pipeline named #TEMG001 (17). The CEQ (7) operator, and information to the right on its branch, is information
passed to the higher level. Grp (8) is information passed to a higher level.

This takes a pass
through the data
to apply the
criteria

Line
Wrapping

(0,0) The left 0 indicates position on on Slist the right 0 indicates
non-unique.

Passing info. to (6)

Slist Numbering starts at 0 Age is position 0

Stat=5 -> max

Stat=5 -> max

Remerging is associated with the
AGGR and takes another pass

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 22 of 57

Example 9 exploring index use in a join *******;
Create data for join. Note that in the data set Left, we have an indexed variable
called LindxName. Note that in the data set Right, we have an indexed variable
called RindxName.

When we merge the two datasets, left will always be to the left of the join
indicator and right will always be to the right.

E.G. (From left as L, right as R)

*left and right both have an un-idexed variable called name and a variable with a two part name
L or R and the suffix IndName ;

This naming convention will make it easier to understand if a variable has an index or not.

data left_class(drop= RIndxName index=(LIndxName))
 Right_class(drop= LIndxName index=(RIndxName));

 length name $ 13;
 set sashelp.class;

 do i=1 to 1200; /*expand file so we do not hash*/
 name=name||put(i,5.0);
 RIndxName=name;
 LIndxName=name;
 Output;
 end;

run;

The data step above just expands the class data set (it uses a loop to increase the file size in an effort to have files so
large that 1% of the file is larger than the buffersize) to reduce the chance of using a hash in the merging. The
concatenation is done so that there are unique values of name so that we can make a unique index.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 23 of 57

Proc SQL _method _tree;

title "EX9A inner join without an index on the variable";
create table hope as
select coalesce(l.name, r.name), l.sex, r.age
 From left_class as l inner join right_class as r
 on l.name=r.name; /*these are not indexed*/
NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations
Sqxjm (2) this indicates a Merge join
 Sqxsort (10) SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L))(14)observations
 sqxsort (11) SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R))(19)observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)
 /-OBJ----| (9)
 | (3) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V-(r.Age:3 flag=0001)
 /-JOIN---|
 | (2) | /-SYM-V-(l.name:1 flag=0001)
 | | /-OBJ----| (24)
 | | | (14) \-SYM-V-(l.Sex:2 flag=0001)
 | | /-SORT---|
 | | | (10) | /-SYM-V-(l.name:1 flag=0001)
 | | | | /-OBJ----| (33)
 | | | | | (25) \-SYM-V-(l.Sex:2 flag=0001)
 | | | |--SRC----|
 | | | | (15) \-TABL[WORK].left_class opt=''
 | | | |--empty- (26)
 | | | | (16) /-SYM-V-(l.name:1)
 | | | | /-ASC----| (34)
 | | | \-ORDR---| (27)
 | |--FROM---| (17)
 | | (4) | /-SYM-V-(r.name:1 flag=0001)
 | | | /-OBJ----| (28)
 | | | | (18) \-SYM-V-(r.Age:3 flag=0001)
 | | \-SORT---|
 | | (11) | /-SYM-V-(r.name:1 flag=0001)
 | | | /-OBJ----| (35)
 | | | | (29) \-SYM-V-(r.Age:3 flag=0001)
 | | |--SRC----|
 | | | (19) \-TABL[WORK].right_class opt=''
 | | |--empty- (30)
 | | | (20) /-SYM-V-(r.name:1)
 | | | /-ASC----| (36)
 | | \-ORDR---| (31)
 | |--empty- (21)
 | | (5) /-SYM-V-(l.name:1)
 | |--CEQ----| (12)
 | | (6) \-SYM-V-(r.name:1)
 | |--empty-
 | |--empty-
 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)
 | | /-ASGN---| (22)
 | | | (13) | /-SYM-V-(l.name:1)
 | | | \-FCOA---| (32)
 | | | (23) \-SYM-V-(r.name:1)
 | \-OBJE---|
 --SSEL---| (8)
 (1)

NOTE that and OBJE, as well as an OBJ, can be passed to left.

Note variables passed on to (2).
Note l. & r. prefix for variables.
Very nice touch. See (22)

Optimizer does
not find an INDEX
TO USE. DATA IS
SORTED and SQL
uses a join merge

Inner Join.
Left as L

right as R

Coalesce two name
variables and Assign
them to #TEMA001.

See (9)

Passing info to (11)

Passing
info to

(10)

Vars sent
to (10)

Vars sent
to (11)

Passing info to join (2). Note l. & r. prefix for
variables to show data source. Very nice touch.

No
JTAG
info

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 24 of 57

Proc SQL _method _tree;

title "EX9B inner join with an index on the variable from LEFT table";
create table hope as
 select coalesce(l.name, r.name), l.sex, r.age
 From left_class as l inner join right_class as r
 on l.LIndxName=r.name; /* LIndxName IS indexed*/

NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations
 Sqxjhsh (2) this indicates a HASH join
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (9)indicates a selection of observations
 sqxsrc(WORK.RIGHT_CLASS(alias=R))(10)indicates a selection of observations

Tree as planned.
 /-SYM-A-(#TEMA001:1 flag=0035)
 /-OBJ----| (8)
 | (3) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V-(r.Age:3 flag=0001)
 /-JOIN---|
 | (2) | /-SYM-V-(l.LIndxName:7 flag=0001)
 | | /-OBJ----|
 | | | (13) |--SYM-V-(l.name:1 flag=0001)
 | | | \-SYM-V-(l.Sex:2 flag=0001)
 | | /-SRC----|
 | | | (9) \-TABL[WORK].left_class opt=''
 | |--FROM---| (14)
 | | (4) | /-SYM-V-(r.name:1 flag=0001)
 | | | /-OBJ----|
 | | | | (15) \-SYM-V-(r.Age:3 flag=0001)
 | | \-SRC----|
 | | (10) \-TABL[WORK].right_class opt=''
 | |--empty- (16)
 | | (5) /-SYM-V-(l.LIndxName:7)
 | |--CEQ----| (11)
 | | (6) \-SYM-V-(r.name:1)
 | |--empty-
 | |--empty-
 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)
 | | /-ASGN---| (17)
 | | | (12) | /-SYM-V-(l.name:1)
 | | | \-FCOA---| (19)
 | | | (18) \-SYM-V-(r.name:1)
 | \-OBJE---|
 --SSEL---| (8)
 (1)

INFO: Index LIndxName selected for WHERE clause optimization.
 What happened is that, after tentatively trimming rows and columns from both files, the Optimizer estimated that 1%, of the smaller
of the files being joined, would fit in a buffer.

This is a strong hint/instruction for the Optimizer to use a hash join and so SQL loaded the smaller table into a hash table. The
Optimizer, as the hash table was being created, counted the number of unique key-variable values being loaded into the hash table.
If the number of unique values loaded into the hash table is small (maybe below 1024), the Optimizer will dynamically change the
plan to take account of this information.

If there fairly few unique values key in the hash table, the Optimizer will take the values from the hash table and use them to build an
in phrase for a where clause (e.g. where state in(PA , TX)). The Optimizer dynamically adjusted the plan to use an index lookup

to effect the merge.

Note variables passed on (L. & R.
prefixes). Note #TEMA See (17)

HASH
JOIN
above
and

index
below

HASH J OIN ind ic a t ed inc or rec t ly

Coalesce two name
variables and Assign
them to #TEMA001.
See the OBJE at (8)

Passing info to (2). Note L. & R. prefix for
variables to show data source. Nice touch.

(8) is an object created by an evaluation process

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 25 of 57

Proc SQL _method _tree;

title "EX9C inner join with an index on the variable from RIGHT table";
 create table hope as
 select coalesce(l.name, r.name), l.sex, r.age
 From left_class as L inner join right_class as r
 on L.name=r.RIndxName; /* RIndxName IS indexed*/
NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a MERGE join
 Sqxsort (11) SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L))))(15)indicates a selection of observations
 sqxsort (12) SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R))))(19)indicates a selection of observations
Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)
 /-OBJ----| (10)
 | (4) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V-(r.Age:3 flag=0001)
 /-JOIN---|
 | (3) | /-SYM-V-(l.name:1 flag=0001)
 | | /-OBJ----| (25)
 | | | (15) \-SYM-V-(l.Sex:2 flag=0001)
 | | /-SORT---|
 | | | (11) | /-SYM-V-(l.name:1 flag=0001)
 | | | | /-OBJ----| (34)
 | | | | | (26) \-SYM-V-(l.Sex:2 flag=0001)
 | | | |--SRC----|
 | | | | (16) \-TABL[WORK].left_class opt=''
 | | | |--empty- (27)
 | | | | (17) /-SYM-V-(l.name:1)
 | | | | /-ASC----| (35)
 | | | \-ORDR---| (28)
 | |--FROM---| (18)
 | | (5) | /-SYM-V-(r.RIndxName:7 flag=0001)
 | | | /-OBJ----| (29)
 | | | | (19) |--SYM-V-(r.name:1 flag=0001)
 | | | | \-SYM-V-(r.Age:3 flag=0001)
 | | \-SORT---|
 | | (12) | /-SYM-V-(r.RIndxName:7 flag=0001)
 | | | | (36)
 | | | /-OBJ----|
 | | | | (30) |--SYM-V-(r.name:1 flag=0001)
 | | | | \-SYM-V-(r.Age:3 flag=0001)
 | | |--SRC----|
 | | | (20) \-TABL[WORK].right_class opt=''
 | | |--empty- (31)
 | | | (21) /-SYM-V-(r.RIndxName:7)
 | | | /-ASC----| (37)
 | | \-ORDR---| (32)
 | |--empty- (22)
 | | (5) /-SYM-V-(l.name:1)
 | |--CEQ----| (13)
 | | (7) \-SYM-V-(r.RIndxName:7)
 | |--empty-
 | |--empty-
 | | (8) /-SYM-A-(#TEMA001:1 flag=0031)
 | | /-ASGN---| (23)
 | | | (14) | /-SYM-V-(l.name:1)
 | | | \-FCOA---| (33)
 | | | (24) \-SYM-V-(r.name:1)
 | \-OBJE---|
 --SSEL---| (9)
 (1)

Even
though

an
index

existed,
it was

not
used
here.

Method
shows a
Merge
join.

Note variables passed on to (4).
Note l. & r. prefix for variables.
Very nice touch. See (22)

Inner Join.
Left as L

right as R

Passing info to (3)

Vars sent
to (12)

Names are passed up
to the coalesce and
dropped ASAP. We
Coalesce the names

and store in
SYM-A-(#TEMA001

(11) sorts by name

(12) sorts by RIndxName

No RindxName in (4)

No RindxName in (4)

Vars sent
to (11)

Please note that the optimizer gets rid of
RindxName as soon as it can. At (4) there is
no need for Rindx Nam e t o be passed up .

(9) is an object created by an evaluation

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 26 of 57

Proc SQL _method _tree;
title "EX9D inner join with an index on the variables from BOTH tables";
create table hope as
select coalesce(l.name, r.name), l.sex, r.age
 From left_class as l inner join right_class as r
 on l.LIndxName=r.RIndxName; /* Both variables are indexed */

NOTE: SQL execution methods chosen are:
 Sqxcrta (1) this indicates a selection of observations
 Sqxjhsh (2) this indicates a HASH join
 sqxsrc(WORK.RIGHT_CLASS(alias = R)) (10)indicates a selection of observations
 sqxsrc(WORK.LEFT_CLASS(alias = L))(11)indicates a selection of observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)
 /-OBJ----| (9)
 | (3) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V-(r.Age:3 flag=0001)
 /-JOIN---|
 | (2) | /-SYM-V-(r.RIndxName:7 flag=0001)
 | | /-OBJ----| (20)
 | | | (14) |--SYM-V-(r.name:1 flag=0001)
 | | | \-SYM-V-(r.Age:3 flag=0001)
 | | /-SRC----|
 | | | (10) \-TABL[WORK].right_class opt=''
 | |--FROM---| (15)
 | | (4) | /-SYM-V-(l.LIndxName:7 flag=0001)
 | | | /-OBJ----| (21)
 | | | | (16) |--SYM-V-(l.name:1 flag=0001)
 | | | | \-SYM-V-(l.Sex:2 flag=0001)
 | | \-SRC----|
 | | (11) \-TABL[WORK].left_class opt=''
 | |--empty- (17)
 | | (5) /-SYM-V-(r.RIndxName:7)
 | |--CEQ----| (12)
 | | (6) \-SYM-V-(l.LIndxName:7)
 | |--empty-
 | |--empty-
 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)
 | | /-ASGN---| (18)
 | | | (13) | /-SYM-V-(l.name:1)
 | | | \-FCOA---| (22)
 | | | (19) \-SYM-V-(r.name:1)
 | \-OBJE---|
 --SSEL---| (8)
 (1)

INFO: Index RIndxName selected for WHERE clause optimization.
What happened is that, after tentatively trimming rows and columns from both files, the Optimizer estimated that 1%, of the smaller
of the files being joined, would fit in a buffer.

This is a strong hint/instruction for the Optimizer to use a hash join and so SQL loaded the smaller table into a hash table. The
Optimizer, as the hash table was being created, counted the number of unique key-variable values being loaded into the hash table.
If the number of unique values loaded into the hash table is small (maybe below 1024), the Optimizer will dynamically change the
plan to take account of this information.

If there fairly few unique values key in the hash table, the Optimizer will take the values from the hash table and use them to build an
in phrase for a where clause (e.g. where state in(PA , TX)). The Optimizer dynamically adjusted the plan to use an index lookup

to effect the merge.

HASH J OIN ind ic a t ed inc or rec t ly

Name is
Passed up,
& dropped
after
coalesce

Name is
Passed up,
& dropped
after
coalesce

The indexed variables are
passed up to the CEQ and

dropped ASAP

HASH
JOIN
above
and

index
join

below

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 27 of 57

example 10 **when does select happen???*********;

proc SQL _method _tree; /*EX10A the timing of the selects: variables is early */
select name , sex, age

 from sashelp.class

 order by sex, age;

NOTE: SQL execution methods chosen are:

 Sqxslct (1) this indicates a selection of observations
 Sqxsort (2) this indicates a Sort
 sqxsrc(SASHELP.CLASS)) (3) indicates a selection of observations
Tree as planned. /-SYM-V -(class.Name:1 flag=0001)

 /-OBJ----| (7)

 | (3) |--SYM-V-(class.Sex:2 flag=0001)

 | \-SYM-V -(class.Age:3 flag=0001)

 /-SORT---|

 | (2) | /-SYM-V -(class.Name:1 flag=0001)

 | | /-OBJ----| (12)

 | | | (8) |--SYM-V-(class.Sex:2 flag=0001)

 | | | \-SYM-V -(class.Age:3 flag=0001)

 | |--SRC----|

 | | (4) \-TABL[SASHELP].class opt=''

 | |--empty- (9)

 | | (5) /-SYM-V-(class.Sex:2)

 | | /-ASC----| (13)

 | \-ORDR---| (10)

 | (6) | /-SYM-V-(class.Age:3)

 | \-ASC----| (14)

 --SSEL---| (11)

 (1)

NOTE: PROCEDURE SQL used (Total process time) : real time 1.66 seconds cpu time 0.45 seconds

Note how the Optimzer only brings in variables it needs for the query.
*DYNAMICALLY Trimming Extra (not needed) variables As they become redundant ;

proc sql _method _tree;title "EX10B timing of selects:of observations";
select name from sashelp.class

where sex="M" order by age;
NOTE: The query as specified involves ordering by an item that doesn't appear in its SELECT clause.
NOTE: SQL execution methods chosen are:
sqxslct
 sqxsort
 sqxsrc(SASHELP.CLASS)

Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (7)
 /-SORT---| (3)
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (12)
 | | | (6) \-SYM-V-(class.Age:3 flag=0001)
 | |--SRC----|
 | | (4) |--TABL[SASHELP].class opt=''
 | | | (9) /---(Sex:2)
 | | \-CEQ----| (13)
 | | (10) \-LITC('M')
 | |--empty-
 | | (5) /-SYM-V-(class.Age:3)
 | | /-ASC----| (14)
 | \-ORDR---| (11)
 --SSEL---| (6)
 (1)
NOTE: PROCEDURE SQL used (Total process time): real time 1.43 sec. cpu time 0.01 sec.

Note how the optimizer trims variables that it no longer needs. It needs to select for sex= M ,
and then drops sex. It orders by age, and then drops it as well.

The Optimizer implements good
programming practices. Variables are
Selected Early. Un-needed variables
(height, weight) are not brought into
the SQL space.

(6, 10,11,13 &14) show
information that is passed onto
the sort (2). Sorting is done by
Proc Sort.

Age Not Needed in output and
is not stored here

Age Needed for
ordering

Age Not Needed after ordering

Note is from SQL

OBS. & Vars. are Selected Early. Base
SAS Compares the value in sex to the
l i t e ra l c harac t er va lue M

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 28 of 57

*****example 11***The Having Clause *******************************;
proc sql _Method _tree;
title "EX11 this illustrates a having clause";
 select name, sex, age from sashelp.class
 group by sex having age=max(age);

NOTE: The query requires remerging summary statistics back with the original data.

NOTE: SQL execution methods chosen are:
Sqxslct (1) this indicates a selection of observations
 Sqxsumg (2) Aggreagate is associated with a having- requires a pass through the data
 sqxsort (4) this indicates a Sort
 sqxsrc(SASHELP.CLASS) (12) this indicates a selection of observations

Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (10)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | \-SYM-V-(class.Age:3 flag=0001)
 /-AGGR---|
 | (2) | /-SYM-V-(class.Age:3 flag=0001)
 | | /-OBJ----| (19)
 | | | (11) |--SYM-V-(class.Sex:2 flag=0001)
 | | | \-SYM-V-(class.Name:1 flag=0001)
 | |--SORT---|
 | | (4) | /-SYM-V-(class.Age:3 flag=0001)
 | | | /-OBJ----| (23)
 | | | | (20) |--SYM-V-(class.Sex:2 flag=0001)
 | | | | \-SYM-V-(class.Name:1 flag=0001)
 | | |--SRC----|
 | | | (12) \-TABL[SASHELP].class opt=''
 | | |--empty- (21)
 | | | (13) /-SYM-V-(class.Sex:2)
 | | | /-ASC----|
 | | \-ORDR---| (22)
 | | (14)
 | | /-SYM-V-(class.Age:3)
 | |--CEQ----| (15)
 | | (5) \-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | | /-SYM-V-(class.Sex:2)
 | |--GRP----| (16)
 | | (6)
 | |--empty-
 | |--empty-
 | |--empty-
 | |--empty-
 | | (7) /-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |--TLST---| (17)
 | | (8) /-SYM-S-(Age:2 ss=0008x)
 | \-SLST---| (18)
 --SSEL---| (9)
 (1)

The data was re-merged and a second pass was required to get the results.

SQL avoids temp files if it can.

SYM-G-(#TEMG001:1
Max(Age) not in Obj
passed to left.

(14) is information for the sort (4)

Data is
sorted
and max
ages by
sex are
in
Pipeline.
Take a
pass to
find the
correct
observati
ons.

Age in to be compared (5) within Sex

The (5) equality
comparison will be done
between age in the table
and the values of max
age in t he p ipe l ine by
sex (6).

Remerging is associated with the AGGR and
takes another pass through the data

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 29 of 57

*****example 12 **illustrates the and clause ***************;
proc sql _Method _tree;
title "EX12 this illustrates a AND clause";
 select name, sex, age from sashelp.class
 group by sex

 having age=max(age) and sex="F";
NOTE: The query requires remerging summary statistics back with original data.

NOTE: SQL execution methods chosen are:
Sqxslct (1) this indicates a selection of observations
 Sqxsumg (2) Aggreagate is associated with a having- requires a pass through the data
 Sqxsort (4) this indicates a SORT
 sqxsrc(SASHELP.CLASS) (12) this indicates a selection of observations

Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (10)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | \-SYM-V-(class.Age:3 flag=0001)
 /-AGGR---|
 | (2) | /-SYM-V-(class.Age:3 flag=0001)
 | | /-OBJ----| (20)
 | | | (11) |--SYM-V-(class.Sex:2 flag=0001)
 | | | \-SYM-V-(class.Name:1 flag=0001)
 | |--SORT---|
 | | (4) | /-SYM-V-(class.Age:3 flag=0001)
 | | | /-OBJ----| (26)
 | | | | (21) |--SYM-V-(class.Sex:2 flag=0001)
 | | | | \-SYM-V-(class.Name:1 flag=0001)
 | | |--SRC----|
 | | | (12) \-TABL[SASHELP].class opt=''
 | | |--empty- (22)
 | | | (13) /-SYM-V-(class.Sex:2)
 | | | /-ASC----| (27)
 | | \-ORDR---| (23)
 | | (14) /-SYM-V-(class.Age:3)
 | | /-CEQ----| (24)
 | | | (15) \-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |--LAND---|
 | | (5) | /-SYM-V-(class.Sex:2)
 | | \-CEQ----| (25)
 | | (16) \-LITC('F')
 | | /-SYM-V-(class.Sex:2)
 | |--GRP----| (17)
 | | (6)
 | |--empty-
 | |--empty-
 | |--empty-
 | |--empty-
 | | (7) /-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))
 | |--TLST---| (18)
 | | (8) /-SYM-S-(Age:2 ss=0008x)
 | \-SLST---| (19)
 --SSEL---| (9)
 (1)

Having is applied in the AGGR (2) and requires a pass through the sorted data and remerging.
The key to the having is the LAND (logical And) is at (5). We do not de-dupe in this query. Everyone having an age= max(age) gets
passed on.

Result of query

without the

 and sex= F

in the where clause

Name Sex Age

Mary F 15

Janet F 15

Philip M 16

EX12 this illustrates the

AND clause

Name Sex Age

Mary F 15

Janet F 15

R
E
S
U
L
T

Remerging is associated with the AGGR and
takes another pass through the data

Max(Age) is stored in a var called
SYM-G-(#TEMG001:1

2 equalities w/ a Logical And (5)

Summarizing what gets passed up.
No max(age)

Summarizing what
gets sorted

The
Data
(12)

Info to Aggr (2)-Group by sex (6)

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 30 of 57

example 13 **illustrates variable=literal & sorting;
proc sql _Method _tree;
title "EX13 this illustrates a = literal and sorting";
 select name, sex, age from sashelp.class
 where age = 12 order by name desc , height asc ;
NOTE query as specified involves ordering by an item that doesn't appear in its SELECT
 clause.
NOTE: SQL execution methods chosen are:
Sqxslct (1) this indicates a selection of observations
 Sqxsort (2) this indicates a SORT
 sqxsrc(SASHELP.CLASS) (4) this indicates a selection of observations

Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (7)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | \-SYM-V-(class.Age:3 flag=0001)
 /-SORT---|
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (13)
 | | | (8) |--SYM-V-(class.Sex:2 flag=0001)
 | | | |--SYM-V-(class.Age:3 flag=0001)
 | | | \-SYM-V-(class.Height:4 flag=0001)
 | |--SRC----|
 | | (4) |--TABL[SASHELP].class opt=''
 | | | (9) /-NAME--(Age:3)
 | | \-CEQ----| (14)
 | | (10) \-LITN(12)
 | |--empty- (15)
 | | (5)
 | |
 | | /-SYM-V-(class.Name:1)
 | | /-DESC---| (16)
 | \-ORDR---| (11)
 | (6) | /-SYM-V-(class.Height:4)
 | \-ASC----| (17)
 --SSEL---| (12)
 (1)

The checking of single observations against the criteria age=12 is done early by the data engine. The optimizer wants to make
tables as small as possible and will filter out observations (and variables) as soon as possible. Since obs with age NE 12 have been
removed, SRC (4) is a small data set.

To increase speed, the Optimizer has eliminated both variables and observations.

Where age =12 is a numeric literal (LITN)
comparison. SQL also supports character
literals LITC.

We sort
by a var.
(height)
not in
the final
output

Height is not passed on to
the higher level (1)

Height is used by the
sort and is passed to
the sort through (4).

We sort by a var. (height) not
in the final output

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 31 of 57

 *****example 14 ***This shows a calculation*********;
proc sql _Method _tree;
title "EX14 this illustrates a = calculation";
 select name, sex, age*12 as agemo
 from sashelp.class ;

NOTE: SQL execution methods chosen are:
Sqxslct (1) this indicates a selection of observations
 Sqxfil (2) this indicates the application of a predicate late in the process
 sqxsrc(SASHELP.CLASS) (12) this indicates a selection of observations

Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (7)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | \-SYM-A-(agemo:1 flag=0031)
 /-FIL----|
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (11)
 | | | (8) |--SYM-V-(class.Sex:2 flag=0001)
 | | | \-SYM-V-(class.Age:3 flag=0001)
 | |--SRC----|
 | | (4) \-TABL[SASHELP].class opt=''
 | |--empty- (9)
 | |--empty-
 | |--empty-
 | |--empty-
 | | (5) /-SYM-A-(agemo:1 flag=0031)
 | | /-ASGN---| (12)
 | | | (10) | /-SYM-V-(class.Age:3)
 | | | \-AMUL---| (14)
 | | | (13) \-LITN(12)
 | \-OBJE---|
 --SSEL---| (6)
 (1)

Here we see the multiplication calculation and assignment (AMUL)in the SYM-A (10, 12, 13). The variable age is required in object
(8) but is not passed through to object (3) Note that the variable, agemo, is passed through summary object (3).

Fil means that there is a filter that is applied here, that can not be applied earlier (to the right).

Since age is not in the output of the query, the data engine would like to not bring age into the result set. However, the data engine
can not do the multiplication required for agemo. The Optimizer directs that the data engine bring in age so that SQL can use it in
the multiplication. SQL calculates agemo and passes up the result. At the next higher level, the filter (2) on the variable age can be
applied to reduce the size of the data set.

NOTE that an OBJE, as well as an OBJ, can be passed to the left.

Fil
is the late
application

of a
predicate

A Calculation in SQL

The optimizer passed Agemo
to (2) but not age

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 32 of 57

*****example 15 *******This illustrates a division************;
proc sql _Method _tree;
title "EX15 this illustrates a = division";

 select name, sex, height/12 as Ht_feet
 from sashelp.class
 where age = 12
 order by name desc ;

NOTE: SQL execution methods chosen are:
 Sqxslct (1) this indicates a selection of observations
 Sqxsort (2) this indicates a SORT
 Sqxfil (4) this indicates the application of a predicate late in the process
 sqxsrc(SASHELP.CLASS) (9) this indicates a selection of observations

Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (7)
 | (3) |--SYM-V-(class.Sex:2 flag=0001)
 | \-SYM-A-(Ht_feet:1 flag=0031)
 /-SORT---|
 | (2) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (13)
 | | | (8) |--SYM-V-(class.Sex:2 flag=0001)
 | | | \-SYM-A-(Ht_feet:1 flag=0031)
 | |--FIL----|
 | | (4) | /-SYM-V-(class.Name:1 flag=0001)
 | | | /-OBJ----| (19)
 | | | | (14) |--SYM-V-(class.Sex:2 flag=0001)
 | | | | \-SYM-V-(class.Height:4 flag=0001)
 | | |--SRC----|
 | | | (9) |--TABL[SASHELP].class opt=''
 | | | | (15) /-NAME--(Age:3)
 | | | \-CEQ----| (20)
 | | | (16) \-LITN(12)
 | | |--empty-
 | | |--empty-
 | | |--empty-
 | | |--empty-
 | | | (10) /-SYM-A-(Ht_feet:1 flag=0031)
 | | | /-ASGN---| (21)
 | | | | (17) | /-SYM-V-(class.Height:4)
 | | | | \-ADIV---| (23)
 | | | | (22) \-LITN(12)
 | | \-OBJE---|
 | |--empty- (11)
 | | (5) /-SYM-V-(class.Name:1)
 | | /-DESC---| (18)
 | \-ORDR---| (12)
 --SSEL---| (6)
 (1)

Note the ordering (12) and the division (ADIV).

Fil means that there is a filter that is applied here, that can not be applied earlier (to the right). The data engine handles the age=12
restriction.

Since height is not in the output of the query, the data engine would like to not bring height into the result set. However, the data
engine can not do division for Ht_feet. The Optimizer directs that the data engine bring in height so that SQL can use it in the
division. SQL calculates Ht_feet and passes up the result. At the next higher level, the filter on the variable height, can be applied to
reduce the size of the data set.

Assign to a
variable called
Ht_feet the
result of an
Arithmetic
Division (ADIV)
of Height/ 12 (a
numeric
literal).

A Calculation in SQL

The optimizer passed Ht_feet to
(2) but not Height

Note how early the
Optimizer applies the
where age=12 to
make the file small.

Fil
is the late
application

of a
predicate

Assign to a variable called
agemo the result of an
Arithmetic Multiplication (AMUL)
of age * 12 (a numeric literal).

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 33 of 57

*****example 16 ***SUMMARY WITHOUT GROUPING***************;
proc sql _Method _tree;
title "EX16 this illustrates a = summary without grouping";
 select name, sex, height, min(height) as shortest , max(height) as tallest
 from sashelp.class order by name ;
NOTE: The query requires remerging summary statistics back with original data.

NOTE: SQL execution methods chosen are:
Sqxslct (1) this indicates a selection of observations
 Sqxsort (4) this indicates a SORT
 Sqxsumn (6) this indicates summation without grouping a summary of the whole table
 sqxsrc(SASHELP.CLASS) (11) this indicates a selection of observations
Tree as planned. /-SYM-V-(class.Name:1 flag=0001)
 /-OBJ----| (9)
 | (5) |--SYM-V-(class.Sex:2 flag=0001)
 | |--SYM-V-(class.Height:4 flag=0001)
 | |--SYM-A-(shortest:1 flag=0039)
 | \-SYM-A-(tallest:2 flag=0039)
 /-SORT---|
 | (4) | /-SYM-V-(class.Name:1 flag=0001)
 | | /-OBJ----| (18)
 | | | (10) |--SYM-V-(class.Sex:2 flag=0001)
 | | | |--SYM-V-(class.Height:4 flag=0001)
 | | | |--SYM-A-(shortest:1 flag=0039)
 | | | \-SYM-A-(tallest:2 flag=0039)
 | |--AGGR---|
 | | (6) | /-SYM-V-(class.Height:4 flag=0001)
 | | | /-OBJ----| (26)
 | | | | (19) |--SYM-V-(class.Name:1 flag=0001)
 | | | | \-SYM-V-(class.Sex:2 flag=0001)
 | | |--SRC----|
 | | | (11) \-TABL[SASHELP].class opt=''
 | | |--empty- (20)
 | | |--empty-
 | | |--empty-
 | | |--empty-
 | | | (12) /-SYM-A-(shortest:1 flag=0039)
 | | | /-ASGN---| (27)
 | | | | (21) \-SYM-G-(#TEMG001:1 stat=6,0 from
Height(0,0))
 (3) | | |--OBJE---|
 | | | (13) | /-SYM-A-(tallest:2 flag=0039)
 | | | \-ASGN---| (28)
 | | | (22) \-SYM-G-(#TEMG002:2 stat=5,0 from
Height(0,0))
 (2) | | |--empty-
 | | | (14) /-SYM-G-(#TEMG001:1 stat=6,0 from Height(0,0))
 | | |--TLST---| (23)
 | | | (15) \-SYM-G-(#TEMG002:2 stat=5,0 from Height(0,0))
 | | | /-SYM-S-(Height:3 ss=0018x)
 | | \-SLST---| (24)
 | |--empty- (16)
 | | (7) /-SYM-V-(class.Name:1)
 | | /-ASC----| (25)
 | \-ORDR---| (17)
 --SSEL---| (8)
 (1)
Note the creation of the variables shortest and tallest in ASGNs (21) and (22)).)

Wra
ppin

g
:-0

Wra
ppin

g
:-0

Create two variables via statistical functions.

Tlst (15)
and
Slst (16)
help
manage
the
criteria

Function 6 is
f ind m in im um

Function 5 is find maximum

New assignment
vars. passed to (6)

New ly c reat ed ass ignm ent
variables continue to be
passed leftward

Remerging is associated with the AGGR
and takes another pass through the data

This is
a pass
through
the data
to apply
the
criteria

Info. For sorting/ordering

TLST & SLST hold
parameters for the
aggr subroutine

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 34 of 57

**;
**;
**;
************ JOINS **********************************;

data left_class(drop= RIndxName index=(LIndxName))
 Right_class(drop= LIndxName index=(RIndxName));
 length name $ 13;
 set sashelp.class;

 do i=1 to 1200; /*expand file so we do not hash*/
 name=name||put(i,5.0);
 RIndxName=name;
 LIndxName=name;
 Output;
 end;
run;

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.LEFT_CLASS has 22800 observations and 7 variables

NOTE: Simple index LIndxName has been defined.

NOTE: The data set WORK.RIGHT_CLASS has 22800 observations and 7 variables.

NOTE: Simple index RIndxName has been defined.

NOTE: DATA statement used (Total process time):
 real time 4.05 seconds
 cpu time 0.27 seconds

Create two tables that allow us to examine joins done in several ways. We will examine joins with indexes in Left position, in right
position, and in both positions.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 35 of 57

*****example 17 ***** left join ****************;
 Proc SQL _method _tree; title "EX17 Illustrating a left join" ;
create table hope as select coalesce(l.name, r.name), l.sex, r.age
 From left_class as l left join right_class as r on l.name=r.name;
NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 sqxsort (11) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R))(16) this indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (20) this indicates a selection of observations
Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)
 /-OBJ----| (10)
 | (3) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V-(r.Age:3 flag=0001)
 /-OTRJ---|
 | (2) | /-SYM-V-(r.name:1 flag=0001)
 | | /-OBJ----| (25)
 | | | (15) \-SYM-V-(r.Age:3 flag=0001)
 | | /-SORT---|
 | | | (11) | /-SYM-V-(r.name:1 flag=0001)
 | | | | /-OBJ----| (34)
 | | | | | (26) \-SYM-V-(r.Age:3 flag=0001)
 | | | |--SRC----|
 | | | | (16) \-TABL[WORK].right_class opt=''
 | | | |--empty- (27)
 | | | | (17) /-SYM-V-(r.name:1)
 | | | | /-ASC----| (35)
 | | | \-ORDR---| (28)
 | |--FROM---| (18)
 | | (4) | /-SYM-V-(l.name:1 flag=0001)
 | | | /-OBJ----| (29)
 | | | | (19) \-SYM-V-(l.Sex:2 flag=0001)
 | | \-SORT---|
 | | (12) | /-SYM-V-(l.name:1 flag=0001)
 | | | /-OBJ----| (36)
 | | | | (30) \-SYM-V-(l.Sex:2 flag=0001)
 | | |--SRC----|
 | | | (20) \-TABL[WORK].left_class opt=''
 | | |--empty- (31)
 | | | (21) /-SYM-V-(l.name:1)
 | | | /-ASC----| (37)
 | | \-ORDR---| (32)
 | |--empty- (22)
 | | (5) /-SYM-V-(r.name:1)
 | |--CEQ----| (13)
 | | (6) \-SYM-V-(l.name:1)
 | |
 | |--JTAG(jds=1, tagfrom=1, flags=0)
 | | (7)
 | |--empty-
 | | (8) /-SYM-A-(#TEMA001:1 flag=0031)
 | | /-ASGN---| (23)
 | | | (14) | /-SYM-V-(l.name:1)
 | | | \-FCOA---| (33)
 | | | (24) \-SYM-V-(r.name:1)
 | \-OBJE---|
 --SSEL---| (9)
 (1)

No index. Use
Sort merge join

Coalesced Var.

Coalesc ed Var .
note: the query did
not specify a name
for it

JTAG if ends in
1= left join, 2=right join 3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

and we
have
variations
on above

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 36 of 57

*****example 17A **** right join ***************;
Proc SQL _method _tree; title "EX17A Illustrating a right join" ;
create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l right join right_class as r on l.name=r.name;

NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations

 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)
 /-OBJ----| (10)
 | (3) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V-(r.Age:3 flag=0001)
 /-OTRJ---|
 | (2) | /-SYM-V-(l.name:1 flag=0001)
 | | /-OBJ----| (25)
 | | | (15) \-SYM-V-(l.Sex:2 flag=0001)
 | | /-SORT---|
 | | | (11) | /-SYM-V-(l.name:1 flag=0001)
 | | | | /-OBJ----| (34)
 | | | | | (26) \-SYM-V-(l.Sex:2 flag=0001)
 | | | |--SRC----|
 | | | | (16) \-TABL[WORK].left_class opt=''
 | | | |--empty- (27)
 | | | | (17) /-SYM-V-(l.name:1)
 | | | | /-ASC----| (35)
 | | | \-ORDR---| (28)
 | |--FROM---| (18)
 | | (4) | /-SYM-V-(r.name:1 flag=0001)
 | | | /-OBJ----| (29)
 | | | | (19) \-SYM-V-(r.Age:3 flag=0001)
 | | \-SORT---|
 | | (12) | /-SYM-V-(r.name:1 flag=0001)
 | | | /-OBJ----| (36)
 | | | | (30) \-SYM-V-(r.Age:3 flag=0001)
 | | |--SRC----|
 | | | (20) \-TABL[WORK].right_class opt=''
 | | |-- empty- (31)
 | | | (21) /-SYM-V-(r.name:1)
 | | | /-ASC----| (37)
 | | \-ORDR---| (32)
 | |--empty- (22)
 | | (5) /-SYM-V-(l.name:1)
 | |--CEQ----| (13)
 | | (6) \-SYM-V-(r.name:1)
 | |
 | |--JTAG(jds=2, tagfrom=2, flags=0)
 | | (7)
 | |--empty-
 | | (8) /-SYM-A-(#TEMA001:1 flag=0031)
 | | /-ASGN---| (23)
 | | | (14) | /-SYM-V-(l.name:1)
 | | | \-FCOA---| (33)
 | | | (24) \-SYM-V-(r.name:1)
 | \-OBJE---|
 --SSEL---| (9)
 (1)

No index.
Use Sort merge join

Coalesced Var.

Coalesc ed Var .
note: the query did
not specify a name
for it

JTAG if ends in
1= left join, 2=right join 3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

and we
have
variations
on above

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 37 of 57

Proc SQL _method _tree;

title "EX17B Illustrating an INNER JOIN WITH COMMA with index on left table" ;
create table hope as

select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l , right_class as r

 where l.LindxName = r.name;

NOTE: SQL execution methods chosen are:

Sqxcrta (1) this indicates a selection of observations

 Sqxjhsh (2) is a hash join

 sqxsrc(WORK.LEFT_CLASS(alias = L)) (10) indicates a selection of observations

 sqxsrc(WORK.RIGHT_CLASS(alias = R)) (11) indicates a selection of observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | /-OBJ----| (20)

 | | | (14) |--SYM-V-(l.name:1 flag=0001)

 | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | /-SRC----|

 | | | (10) \-TABL[WORK].left_class opt=''

 | |--FROM---| (15)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (21)

 | | | | (16) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SRC----|

 | | (11) \-TABL[WORK].right_class opt=''

 | |--empty- (17)

 | | (5) /-SYM-V-(l.LIndxName:7)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(r.name:1)

 | |--empty-

 | |--empty-

 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)

 | | /-ASGN---| (18)

 | | | (13) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (22)

 | | | (19) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (8)

 (1)

L.name and R.name are coalesced (8, 13,18,19,22) and stored in a SYM-A variable (18) and kept as part
of the output (9). While an index exists on the variable on the left side of the join, a hash join was
selected by the optimizer.

Coalesced Var.

Coalesced Var.
But no Indexed Var.

We need the
Indexed
Var. for a
while.

NO Index Var. in
this SRC

Compare index var. with non-indexed var.
and then drop indexed var.

Indexed variable in where but SQL uses Hashing.

Hash

See
Method

s

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 38 of 57

 Proc SQL _method _tree;

title "EX17C Illustrating an INNER JOIN WITH COMMA with index on RIGHT table" ;
create table hope as

select coalesce(l.name, r.name), l.sex, r.age From left_class as l , right_class as r

 where l.name = r.RIndxName;
NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations

 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /-SYM-V -(l.name:1 flag=0001)

 | | /-OBJ----| (24)

 | | | (14) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (10) | /-SYM-V -(l.name:1 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (25) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (15) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (26)

 | | | | (16) /-SYM-V-(l.name:1)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (27)

 | |--FROM---| (17)

 | | (4) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (28)

 | | | | (18) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | \-SORT---| (29)

 | | (11) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (19) \-TABL[WORK].right_class opt=''

 | | |-- empty- (31)

 | | | (20) /-SYM-V-(r.RIndxName:7)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty- (21)

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(r.RIndxName:7)

 | |--empty-

 | |--empty-

 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)

 | | /-ASGN---| (22)

 | | | (13) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

 | | | (23) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (8)

 (1)

Coalesced Var. But no Index Var.

Index Var. passed up
for equality check

NO Index
Var. here

Compare index var. with non-indexed var.
and then drop indexed var.

Index Var. kept
just for sort &
equality check

Indexed variable in where but SQL uses merge join

Coalesced Var.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 39 of 57

Proc SQL _method _tree;

title "EX17D Illustrating an INNER JOIN WITH COMMA with index on BOTH tables" ;
create table hope as

 select coalesce(l.name, r.name), l.sex, r.age From left_class as l , right_class as r
 where l.LindxName = r.RIndxName;

NOTE: SQL execution methods chosen are:

Sqxcrta (1) this indicates a selection of observations

 Sqxjhsh (2) is a hash join

 sqxsrc(WORK.LEFT_CLASS(alias = L)) (10) indicates a selection of observations

 sqxsrc(WORK.RIGHT_CLASS(alias = R)) (11) indicates a selection of observations

Tree as planned.

 /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | /-OBJ----| (20)

 | | | (14) |--SYM-V-(r.name:1 flag=0001)

 | | | \-SYM-V -(r.Age:3 flag=0001)

 | | /-SRC----|

 | | | (10) \-TABL[WORK].right_class opt=''

 | |--FROM---| (15)

 | | (4) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | /-OBJ----| (21)

 | | | | (16) |--SYM-V-(l.name:1 flag=0001)

 | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | \-SRC----|

 | | (11) \-TABL[WORK].left_class opt=''

 | |--empty- (17)

 | | (5) /-SYM-V-(r.RIndxName:7)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(l.LIndxName:7)

 | |--empty-

 | |--empty-

 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)

 | | /-ASGN---| (18)

 | | | (13) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (22)

 | | | (19) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (8)

 (1)

Coalesced Var. But no Indexed Vars.

Indexed Var.
needed for
where CEQ

Index Var.
passed up
for equality
check

Index Vars. used in equality check

2 Indexed vars. in where, but SQL uses hash

Indexed Var.
needed for
where CEQ

Coalesced Var.

Hash
Join-
See

Methods

SQL uses hash

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 40 of 57

*****example 18 ***INNER JOIN specifying INNER JOIN Phrase ***********;
 Proc SQL _method _tree; title "EX18A Showing INNER JOIN W/ INNER JOIN Phrase-no index";
create table hope as select coalesce(l.name, r.name), l.sex, r.age

From left_class as l inner join right_class as r on l.name = r.name;
NOTE: SQL execution methods chosen are:
Sqxcrta (1) this indicates a selection of observations

 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /-SYM-V -(l.name:1 flag=0001)

 | | /-OBJ----| (24)

 | | | (14) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (10) | /-SYM-V-(l.name:1 flag=0001)

 | | | | /-OBJ----| (32)

 | | | | | (25) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (15) \-TABL[WORK].left_class opt=''

 | | | |-- empty-

 | | | | (16) /-SYM-V-(l.name:1)

 | | | | /-ASC----| (33)

 | | | \-ORDR---| (26)

 | |--FROM---| (17)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (27)

 | | | | (18) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (11) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (34)

 | | | | (28) \-SYM-V-(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (19) \-TABL[WORK].right_class opt=''

 | | |-- empty- (29)

 | | | (20) /-SYM-V-(r.name:1)

 | | | /-ASC----| (35)

 | | \-ORDR---| (30)

 | |--empty- (21)

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(r.name:1)

 | | -empty /-SYM-A-(#TEMA001:1 flag=0031)

 | | (7) /-ASGN---| (22)

 | | | (13) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (31)

 | | | (23) \-SYM-V-(r.name:1)

 (1) | \-OBJE---|

 --SSEL---| (8)

Coalesced Var.

Sort Info
passed up

equality check info passed up

No indexed variables. in the inner
jo in w here , SQL sor t s

Coalesced Var. passed up

Sort Info
passed up

Merge
Join

See
Methods

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 41 of 57

 Proc SQL _method _tree;

title "EX18B INNER JOIN W/ INNER JOIN Phrase w/ index on left table";
 create table hope as

 select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l inner join right_class as r

 on l.LindxName = r.name;

NOTE: SQL execution methods chosen are:

Sqxcrta (1) this indicates a selection of observations

 Sqxjhsh (2) is a hash join

 sqxsrc(WORK.LEFT_CLASS(alias = L)) (10) indicates a selection of observations

 sqxsrc(WORK.RIGHT_CLASS(alias = R)) (11) indicates a selection of observations

Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | /-OBJ----| (20)

 | | | (14) |--SYM-V-(l.name:1 flag=0001)

 | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | /-SRC----|

 | | | (1O) \-TABL[WORK].left_class opt=''

 | |--FROM---| (15)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (21)

 | | | | (16) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SRC----|

 | | (11) \-TABL[WORK].right_class opt=''

 | |--empty- (17)

 | | (5) /-SYM-V-(l.LIndxName:7)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(r.name:1)

 | |--empty-

 | |--empty-

 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)

 | | /-ASGN---| (18)

 | | | (13) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (22)

 | | | (19) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (8)

 (1)

Hash

See
Methods

Use the inner join phrase
Left var has index

equality check info passed up

2 Coalesced Vars.

Used and
discarded
ASAP

NO LindxName passed up

Put Into this var.

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 42 of 57

Proc SQL _method _tree; title "EX18C INNER JOIN W/INNER JOIN Phrase w/ index on RIGHT table " ;

create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l inner join right_class as r on l.name = r.RIndxName;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /-SYM-V -(l.name:1 flag=0001)

 | | /-OBJ----| (24)

 | | | (14) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (10) | /-SYM-V-(l.name:1 flag=0001)

 | | | | /-OBJ----| (33)

 | | | | | (25) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (15) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (26)

 | | | | (16) /-SYM-V-(l.name:1)

 | | | | /-ASC----| (34)

 | | | \-ORDR---| (27)

 | |--FROM---| (17)

 | | (4) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (28)

 | | | | (18) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (11) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (35)

 | | | | (29) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (19) \-TABL[WORK].right_class opt=''

 | | |-- empty- (30)

 | | | (20) /-SYM-V-(r.RIndxName:7)

 | | | /-ASC----| (36)

 | | \-ORDR---| (31)

 | |--empty- (21)

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(r.RIndxName:7)

 | |--empty-

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (7) /-ASGN---| (22)

 | | | (13) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (32)

 | | | (23) \-SYM-V-(r.name:1)

 (1) | \-OBJE---|

 --SSEL---| (8)

Merge
Join

See
Methods

Coalesced Var.

equality check info passed up

No indexed
variables. in the
inner join
w here , so SQL

sorts

Coalesced Var.

Used and
discarded
ASAP

NO RIndxName passed up

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 43 of 57

Proc SQL _method _tree; title "EX18D INNER JOIN W/INNER JOIN Phrase w/index on BOTH tables";

create table hope as

select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l inner join right_class as r

 on l.LindxName = r.RIndxName;

NOTE: SQL execution methods chosen are:

Sqxcrta (1) this indicates a selection of observations

 Sqxjhsh (2) is a hash join

 sqxsrc(WORK.LEFT_CLASS(alias = L)) (10) indicates a selection of observations

 sqxsrc(WORK.RIGHT_CLASS(alias = R)) (11) indicates a selection of observations

Tree as planned.

 /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (9)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-JOIN---|

 | (2) | /- SYM-V-(r.RIndxName:7 flag=0001)

 | | /-OBJ----| (21)

 | | | (15) |--SYM-V-(r.name:1 flag=0001)

 | | | \-SYM-V -(r.Age:3 flag=0001)

 | | /-SRC----|

 | | | (10) \-TABL[WORK].right_class opt=''

 | |--FROM---| (16)

 | | (4) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | /-OBJ----| (22)

 | | | | (17) |--SYM-V-(l.name:1 flag=0001)

 | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | \-SRC----|

 | | (11) \-TABL[WORK].left_class opt=''

 | |--empty- (18)

 | | (5) /-SYM-V-(r.RIndxName:7)

 | |--CEQ----| (12)

 | | (6) \-SYM-V-(l.LIndxName:7)

 | |--empty- (13)

 | |--empty-

 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)

 | | /-ASGN---| (19)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (23)

 | | | (20) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (8)

 (1)

equality check info passed up

Coalesced Var.

HASH
Join

See
Methods

Coalesced Var.

Used and
discarded
ASAP

Use INNER JOIN Phrase in this
example! Two vars have index

Used and
discarded
ASAP

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 44 of 57

*****example 19 ********LEFT JOINS ****************;

 Proc SQL _method _tree; title "EX19A Illustrating a left join with no indexes" ;
create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l left join right_class as r on l.name = r.name;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /- SYM-V-(r.name:1 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) \-SYM-V-(r.Age:3 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(r.name:1 flag=0001)

 | | | | /-OBJ----| (38)

 | | | | | (26) \-SYM-V-(r.Age:3 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].right_class opt=''

 | | | |--empty- (27)

 | | | | (17) /-SYM-V-(r.name:1)

 | | | | /-ASC----| (39)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(l.name:1 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) \-SYM-V-(l.Sex:2 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V-(l.name:1 flag=0001)

 | | | /-OBJ----| (40)

 | | | | (30) \-SYM-V-(l.Sex:2 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].left_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(l.name:1)

 | | | /-ASC----| (41)

 | | \-ORDR---| (32)

 | |--empty- (22)

 | | (5) /-SYM-V-(r.name:1)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(l.name:1)

 | |--JTAG(jds=1, tagfrom=1, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23) /-SYM-V-(l.name:1)

 | | | (14) \-FCOA---| (33)

 | \-OBJE--| (24) \-SYM-V-(r.name:1)

 --SSEL---| (9)

 (1)

equality check info passed up the query

Coalesce
Vars.

Use LEFT JOIN Phrase!
No index to use

R.Name is
Passed up, used
& discarded
after coalesce.

L.Name is
Passed up,
used &
discarded after
coalesce

Merge join has
notation of
JOIN
Or OTRJ

Merg joins can be
used for inner
join or outer joins

Coalesced Var.

JTAG: if ends
in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 45 of 57

Proc SQL _method _tree; title "EX19B Illustrating a right join with index on left table" ;

create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l left join right_class as r on l.LindxName = r.name;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V-(r.name:1 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) \-SYM-V-(r.Age:3 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(r.name:1 flag=0001)

 | | | | /-OBJ----| (36)

 | | | | | (26) \-SYM-V-(r.Age:3 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].right_class opt=''

 | | | |-- empty- (28)

 | | | | (17) /-SYM-V-(r.name:1)

 | | | | /-ASC----| (37)

 | | | \-ORDR---| (29)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | /-OBJ----| (30)

 | | | | (19) |--SYM-V-(l.name:1 flag=0001)

 | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | \-SORT---| (31)

 | | (12) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | /-OBJ----| (38)

 | | | | (32) |--SYM-V-(l.name:1 flag=0001)

 | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].left_class opt=''

 | | |-- empty- (33)

 | | | (21) /-SYM-V-(l.LIndxName:7)

 | | | /-ASC----| (39)

 | | \-ORDR---| (34)

 | |--empty- (22)

 | | (5) /-SYM-V-(r.name:1)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(l.LIndxName:7)

 | |--JTAG(jds=1, tagfrom=1, flags=0)

 | | (7) /-SYM-A-(#TEMA001:1 flag=0031)

 | | /-ASGN---| (23)

 | |--empty- | (14) | /-SYM-V-(l.name:1)

 | | (8) | \-FCOA---| (35)

 | | | (24) \-SYM-V-(r.name:1)

 (1) | \-OBJE---|

 --SSEL---| (9)

Use LEFT JOIN
Phrase! Left var
has index

equality check info passed up. Note LIndxName

Coalesced Var. uses
L.name and R.name
but NOT LIndxName

Coalesced Var.

R.Name is
passed up, used
& dropped after
coalesce.

L.Name and
Lindxname
are passed up,
used &
dropped
coalesce

Merge join has
notation of
JOIN
Or OTRJ

Merg joins can be
used for inner
join or outer joins

JTAG: if ends
in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 46 of 57

Proc SQL _method _tree; title "EX19C Illustrating a left join with index on RIGHT table" ;
create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l left join right_class as r on l.name = r.RIndxName;

Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /- SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(r.RIndxName:7 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) |--SYM-V-(r.name:1 flag=0001)

 | | | \-SYM-V -(r.Age:3 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V -(r.RIndxName:7 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (26) |--SYM-V-(r.name:1 flag=0001)

 | | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].right_class opt=''

 | | | |--empty- (27)

 | | | | (17) /-SYM-V-(r.RIndxName:7)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V -(l.name:1 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) \-SYM-V-(l.Sex:2 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V -(l.name:1 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) \-SYM-V-(l.Sex:2 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].left_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(l.name:1)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty- (22)

 | | (5) /-SYM-V-(r.RIndxName:7)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(l.name:1)

 | |--JTAG(jds=1, tagfrom=1, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

 | | | (24) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (9)

 (1)

Use LEFT JOIN Phrase!
Right var has index

equality check info passed up

Coalesced Var.

R.IndxName
and r.name are
passed up, used
& dropped after
coalesce. &CEQ

L.Name and is
passed up, used &
dropped after
coalesce and CEQ

Merge join has
notation of
JOIN
Or OTRJ

Merg joins can be
used for inner join
or outer joins

JTAG: if
ends in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 47 of 57

 Proc SQL _method _tree; title "EX19D Illustrating a left join with index on BOTH tables" ;
 create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l left join right_class as r on l.LindxName = r.RIndxName;

Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V-(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(r.RIndxName:7 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) |--SYM-V-(r.name:1 flag=0001)

 | | | \-SYM-V -(r.Age:3 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V -(r.RIndxName:7 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (26) |--SYM-V-(r.name:1 flag=0001)

 | | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].right_class opt=''

 | | | |-- empty- (27)

 | | | | (17) /-SYM-V-(r.RIndxName:7)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V -(l.LIndxName:7 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) |--SYM-V-(l.name:1 flag=0001)

 | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) |--SYM-V-(l.name:1 flag=0001)

 | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].left_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(l.LIndxName:7)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty- (22)

 | | (5) /-SYM-V-(r.RIndxName:7)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(l.LIndxName:7)

 | |--JTAG(jds=1, tagfrom=1, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

 | | | (24) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (9)

 (1)

Use LEFT JOIN
Phrase! Two vars
have index

equality check info passed up

Coalesced Var.

R.Name and
r.RIndxName
are passed up,
used & dropped
after coalesce.
&CEQ

L.Name and
Lindxname are
passed up, used
& dropped after
coalesce & CEQ

Merge join has
notation of
JOIN
Or OTRJ

Merg joins can
be used for
inner join or
outer joins

JTAG: if ends
in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 48 of 57

*****example 20 **** RIGHT JOIN ********************;

 Proc SQL _method _tree; title "EX20A Illustrating a right join no indexes" ;
 create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l right join right_class as r on l.name = r.name;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(l.name:1 flag=0001)

 | | /-OBJ----| (24)

 | | | (15) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.name:1 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (25) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (26)

 | | | | (17) /-SYM-V-(l.name:1)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (27)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (28)

 | | | | (19) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SORT---| (29)

 | | (12) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) \-SYM-V-(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(r.name:1)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty-

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.name:1)

 | |--JTAG(jds=2, tagfrom=2, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (22)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

 | | | (23) \-SYM-V-(r.name:1)

 (1) | \-OBJE---|

 --SSEL---| (9)

Use RIGHT JOIN
Phrase!

equality check info passed up

Coalesced Var.

r.name is
passed up, used
& dropped after
coalesce. &CEQ

L.Name is
passed up, used
& dropped after
coalesce & CEQ

Merge join
has notation
of
JOIN
Or OTRJ

Merg joins
can be used
for inner
join or outer
joins

JTAG: if
ends in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 49 of 57

Proc SQL _method _tree; title "EX20B Illustrating a right join witn index on left table" ;

create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l right join right_class as r on l.LindxName = r.name;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-(10) SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----|--SYM-V -(l.Sex:2 flag=0001)

 | (3) \-SYM-V-(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(l.LIndxName:7 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) |--SYM-V-(l.name:1 flag=0001)

 | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (26) |--SYM-V-(l.name:1 flag=0001)

 | | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (27)

 | | | | (17) /-SYM-V-(l.LIndxName:7)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) \-SYM-V-(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(r.name:1)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty- (22)

 | | (5) /-SYM-V-(l.LIndxName:7)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.name:1)

 | |--(7)JTAG(jds=2, tagfrom=2, flags=0)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

(1) | | | (24) \-SYM-V-(r.name:1)

--SSEL----| \-(9)OBJE-|

Use RIGHT JOIN Phrase!

equality check info passed up

Coalesced Var.

r.name is
passed up, used
& dropped after
coalesce & CEQ

L.Name and
L.LindxName are
passed up, used &
dropped after
coalesce & CEQ

Merge join
has
notation of
JOIN
Or OTRJ

Merg joins
can be used
for inner
join or outer
joins

JTAG: if ends in
1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 50 of 57

Proc SQL _method _tree; title "EX20C Illustrating a right join with index on RIGHT table " ;

create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l right join right_class as r on l.name = r.RIndxName;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)
 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V-(l.name:1 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.name:1 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (26) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (27)

 | | | | (17) /-SYM-V-(l.name:1)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(r.RIndxName:7)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty- (22)

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.RIndxName:7)

 | |--(7)JTAG(jds=2, tagfrom=2, flags=0)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

 | | | (24) \-SYM-V-(r.name:1)

 (1) | \-OBJE---|

 --SSEL---| (9)

Use RIGHT JOIN
Phrase!

equality check info passed up

Coalesced Var.

r.name and
R.RindxNam
e are passed
up, used &
dropped
after
coalesce.
&CEQ

L.Name is
passed up, used
& dropped after
coalesce & CEQ

Merge join has
notation of
JOIN
Or OTRJ

Merg joins can
be used for
inner join or
outer joins

JTAG: if
ends in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 51 of 57

Proc SQL _method _tree; title "EX20D Illustrating a right join witn index on BOTH tables" ;

 create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l right join right_class as r on l.LindxName = r.RIndxName;

Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A-(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V-(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) |--SYM-V-(l.name:1 flag=0001)

 | | | \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | | /-OBJ----| (35)

 | | | | | (26) |--SYM-V-(l.name:1 flag=0001)

 | | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (27)

 | | | | (17) /-SYM-V-(l.LIndxName:7)

 | | | | /-ASC----| (36)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | \-SORT---| (30)

 | | (12) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (37)

 | | | | (31) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (32)

 | | | (21) /-SYM-V-(r.RIndxName:7)

 | | | /-ASC----| (38)

 | | \-ORDR---| (33)

 | |--empty- (22)

 | | (5) /-SYM-V-(l.LIndxName:7)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.RIndxName:7)

 | |--JTAG(jds=2, tagfrom=2, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (34)

 | | | (24) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (9)

 (1)

NOTE: Table WORK.HOPE created, with 27360000 rows and 3 columns.

Use RIGHT
JOIN Phrase!

equality check info passed up

Coalesced Var.

L.Name is
passed up, used
& dropped after
coalesce & CEQ

Merge join
has notation
of
JOIN
Or OTRJ

Merg joins
can be used
for inner join
or outer joins

JTAG: if ends
in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 52 of 57

*****example 21 ***** FULL JOIN ******************;

 Proc SQL _method _tree; title "EX21A Illustrating a full join with no indexes" ;

create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l full join right_class as r on l.name = r.name;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations
Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(l.name:1 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.name:1 flag=0001)

 | | | | /-OBJ----| (35)

 | | | | | (26) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |--empty- (27)

 | | | | (17) /-SYM-V-(l.name:1)

 | | | | /-ASC----| (36)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SORT---| (30)

 | | (12) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (37)

 | | | | (31) \-SYM-V-(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (32)

 | | | (21) /-SYM-V-(r.name:1)

 | | | /-ASC----| (38)

 | | \-ORDR---| (33)

 | |--empty- (22)

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.name:1)

 | |--JTAG(jds=3, tagfrom=3, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (34)

 | | | (24) \-SYM-V-(r.name:1)

 -(1)-SSEL| \(9)OBJE-|

Use FULL
JOIN Phrase!

equality check info passed up

Coalesced Var.

L.Name is
passed up,
used &
dropped
after
coalesce
& CEQ

Merge join
has notation
of
JOIN
Or OTRJ

Merg joins
can be used
for inner join
or outer
joins

JTAG: if ends
in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 53 of 57

Proc SQL _method _tree; title "EX21B Illustrating a full join witn index on left table" ;

create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l full join right_class as r on l.LindxName = r.name;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(l.LIndxName:7 flag=0001)

 | | /-OBJ----| (23)

 | | | (15) |--SYM-V-(l.name:1 flag=0001)

 | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.LIndxName:7 flag=0001)

 | | | | /-OBJ----| (33)

 | | | | | (24) |--SYM-V-(l.name:1 flag=0001)

 | | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (25)

 | | | | (17) /-SYM-V-(l.LIndxName:7)

 | | | | /-ASC----| (34)

 | | | \-ORDR---| (26)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (27)

 | | | | (19) \-SYM-V-(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V-(r.name:1 flag=0001)

 | | | /-OBJ----| (35)

 | | | | (28) \-SYM-V-(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (29)

 | | | (21) /-SYM-V-(r.name:1)

 | |--empty- | /-ASC----| (36)

 | | (5) \-ORDR---| (30)

 | | /-SYM-V-(l.LIndxName:7)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.name:1)

 | |--JTAG(jds=3, tagfrom=3, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (21)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (31)

 (1) | \-OBJE(9)-| (22) \-SYM-V-(r.name:1)

 --SSEL---|

Use FULL
JOIN Phrase!

equality check info passed up

Coalesced Var.

Merge join
has notation
of
JOIN
Or OTRJ

Merg joins
can be used
for inner join
or outer
joins

JTAG: if
ends in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 54 of 57

Proc SQL _method _tree; Title "EX21C Illustrating a full join w/ index on RIGHT table" ;
 create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l full join right_class as r on l.name = r.RIndxName;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V-(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(l.name:1 flag=0001)

 | | /-OBJ----| (25)

 | | | (15) \-SYM-V-(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V-(l.name:1 flag=0001)

 | | | | /-OBJ----| (34)

 | | | | | (26) \-SYM-V-(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (27)
 | | | | (17) /-SYM-V -(l.name:1)

 | | | | /-ASC----| (35)

 | | | \-ORDR---| (28)

 | |--FROM---| (18)

 | | (4) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (29)

 | | | | (19) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V-(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (36)

 | | | | (30) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (31)

 | | | (21) /-SYM-V-(r.RIndxName:7)

 | | | /-ASC----| (37)

 | | \-ORDR---| (32)

 | |--empty- (22)

 | | (5) /-SYM-V-(l.name:1)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.RIndxName:7)

 | |--JTAG(jds=3, tagfrom=3, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (23)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (33)

 (1) | \-OBJE---| (24) \-SYM-V-(r.name:1)

 --SSEL-| (9)

equality check info passed up

Coalesced Var.

JTAG: if
ends in

1= left join,
2=right join
3=full join

Note sorting

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 55 of 57

Proc SQL _method _tree; title "EX21D Illustrating a full join w/ index on BOTH tables" ;
create table hope as select coalesce(l.name, r.name), l.sex, r.age

 From left_class as l full join right_class as r on l.LindxName = r.RIndxName;
Sqxcrta (1) this indicates a selection of observations
 Sqxjm (2) this indicates a sort-merge type of join
 Sqxsort (11) this indicates a SORT
 sqxsrc(WORK.LEFT_CLASS(alias=L)) (16) indicates a selection of observations
 sqxsort (12) this indicates a SORT
 sqxsrc(WORK.RIGHT_CLASS(alias=R)) (20) indicates a selection of observations

Tree as planned. /-SYM-A -(#TEMA001:1 flag=0035)

 /-OBJ----| (10)

 | (3) |--SYM-V-(l.Sex:2 flag=0001)

 | \-SYM-V -(r.Age:3 flag=0001)

 /-OTRJ---|

 | (2) | /-SYM-V -(l.LIndxName:7 flag=0001)

 | | /-OBJ----| (24)

 | | | (15) |--SYM-V-(l.name:1 flag=0001)

 | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | /-SORT---|

 | | | (11) | /-SYM-V -(l.LIndxName:7 flag=0001)

 | | | | /-OBJ----| (32)

 | | | | | (25) |--SYM-V-(l.name:1 flag=0001)

 | | | | | \-SYM-V -(l.Sex:2 flag=0001)

 | | | |--SRC----|

 | | | | (16) \-TABL[WORK].left_class opt=''

 | | | |-- empty- (26)

 | | | | (17) /-SYM-V-(l.LIndxName:7)

 | | | | /-ASC----| (32)

 | | | \-ORDR---| (27)

 | |--FROM---| (18)

 | | (4) | /-SYM-V -(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (28)

 | | | | (19) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | \-SORT---|

 | | (12) | /-SYM-V -(r.RIndxName:7 flag=0001)

 | | | /-OBJ----| (33)

 | | | | (29) |--SYM-V-(r.name:1 flag=0001)

 | | | | \-SYM-V -(r.Age:3 flag=0001)

 | | |--SRC----|

 | | | (20) \-TABL[WORK].right_class opt=''

 | | |-- empty- (30)

 | | | (21) /-SYM-V-(r.RIndxName:7)

 | | | /-ASC----| (33)

 | | \-ORDR---|

 | |--empty- (22)

 | | (5) /-SYM-V-(l.LIndxName:7)

 | |--CEQ----| (13)

 | | (6) \-SYM-V-(r.RIndxName:7)

 | |--JTAG(jds=3, tagfrom=3, flags=0)

 | | (7)

 | |--empty- /-SYM-A-(#TEMA001:1 flag=0031)

 | | (8) /-ASGN---| (22)

 | | | (14) | /-SYM-V-(l.name:1)

 | | | \-FCOA---| (31)

 | | | (23) \-SYM-V-(r.name:1)

 | \-OBJE---|

 --SSEL---| (9)

 (1)

Use FULL
JOIN Phrase!

equality check info passed up

Coalesced Var.

Merge join
has notation
of
JOIN
Or OTRJ

Merg joins
can be used
for inner join
or outer joins

JTAG: if
ends in

1= left join,
2=right join
3=full join

JTAG
if ends in
1= left join,
2=right join
3=full join

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 56 of 57

 *******Example 22 *** CORRELATED QUERY ******;

 * showing how CORREALTED QUERY is processed ;

proc sqL _METHOD _TREE; TITLE "EX25 A SIMPLE CORRELATED QUERY";

select * from sashelp.class as Outer

 Where Outer.AGE = (select Max(age) from sashelp.class as inner where outer.sex=inner.sex);

NOTE: SQL execution methods chosen are:

 Sqxslct (1) this indicates a selection of observations
 Sqxfil (2) this indicates the application of a ?????
 sqxsrc(SASHELP.CLASS(alias = OUTER)) (20) indicates a selection of observations

NOTE: SQL subquery execution methods chosen are:

 Sqxsubq (1) this indicates a selection of observations
 Sqxsumn (6) this indicates summation without grouping a summary of the whole table
 sqxsrc(SASHELP.CLASS(alias = INNER)) (20) indicates a selection of observations

Tree as planned. /-SYM-V -(Outer.Name:1 flag=0001)

 /-OBJ----| (6)

 | (3) |--SYM-V-(Outer.Sex:2 flag=0001)

 | |--SYM-V -(Outer.Age:3 flag=0001)

 | |--SYM-V -(Outer.Height:4 flag=0001)

 | \-SYM-V -(Outer.Weight:5 flag=0001)

 /-FIL----|

 | (2) | /-SYM-V-(Outer.Age:3 flag=0001)

 | | /-OBJ----| (11)

 | | | (7) |--SYM-V-(Outer.Sex:2 flag=0001)

 | | | |--SYM-V -(Outer.Name:1 flag=0001)

 | | | |--SYM-V -(Outer.Height:4 flag=0001)

 | | | \-SYM-V -(Outer.Weight:5 flag=0001)

 | |--SRC----|

 | | (4) \-TABL[SASHELP].class opt=''

 | | (8)

 | | /- SYM-V-(Outer.Age:3)

 | \-CEQ----| (9)

 | (5) | /-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0) flag=0001)

 | | /-OBJ----| (19)

 | | /-AGGR---| (14)

 | | | (12) |

 | | | | /-SYM-V -(inner.Age:3 flag=0001)

 | | | | /-OBJ----| (25)

 | | | |--SRC----| (20)

 | | | | (15) |--TABL[SASHELP].class opt=''

 | | | | |-- empty-

 | | | | | (21) /-SUBP(1)

 | | | | \-CEQ----| (26)

 | | | | (22) \-NAME--(Sex:2)

 | | | |-- empty- (27)

 | | | |-- empty-

 | | | |-- empty-

 | | | |-- empty-

 | | | |-- empty-

 | | | |-- empty-

 | | | | (16) /-SYM-G-(#TEMG001:1 stat=5,0 from Age(0,0))

 | | | |--TLST---| (23)

 | | | | (17) /-SYM-S-(Age:2 ss=0008x)

 | | | \-SLST---| (24)

 | \- SUBC---| (18)

 | (10) \-SYM-V-(Outer.Sex:2)

 --SSEL---| (13)

 (1)

Subquery

Subquery causes
the creation of a
temp, indexed
table

Simple Correlated Query

Select * from outer subject to the
condition that outer.age = the max age
for that sex.

Create a variable, using Grouping (SYM-G),
containing the max age (stat function=5)

SUBP: stands for
subroutine parameter

SUBC is
short for
SUBroutine
Call.
Printed out
as a
summary of
the process

Outer.age is part of outer query & used in the equality check

Pass to FIL

Get this from sashelp.class

Pretend that what is inside the paren, in the
query, is a function and we are passing , to the
function, a paramater- we pass outer.sex from
the outer query to the function.

Fil
is the late
application

of a
predicate

SUGI 30 Data Warehousing, Management and Quality

Appendix SQL Method and Tree Page 57 of 57

*******Example 23 *** calculated ******;

15 proc sql _method _tree;

16 select name, age*12 as age_mo

17 from sashelp.class

18 where calculated age_mo LE 144;

NOTE: SQL execution methods chosen are:

 sqxslct

 sqxfil

 sqxsrc(SASHELP.CLASS)

Tree as planned.

 /-SYM-V -(class.Name:1 flag=0001)

 /-OBJ----| (6)

 | (3) \-SYM-A-(age_mo:1 flag=0031)

 /-FIL----|

 | (2) | /-SYM-V -(class.Age:3 flag=0001)

 | | /-OBJ----| (11)

 | | | (7) \-SYM-V-(class.Name:1 flag=0001)

 | |--SRC----|

 | | (4) \-TABL[SASHELP].class opt=''

 | | /-SYM-A -(age_mo:1 flag=0070)

 | |--CLE----| (8)

 | | (5) \-LITN(144)

 | |--empty- (9)

 | |--empty-

 | | /-SYM-A -(age_mo:1 flag=0070)

 | | /-ASGN---| (12)

 | | | (10) | /-SYM-V-(class.Age:3)

 | | | \-AMUL---| (14)

 | | | (13) \-LITN(12)

 | \-ERLY---|

 --SSEL---| (6)

 (1)

"ERLY" is short for "early list."

It contains a list of expressions that must be evaluated before any other expressions on a step.

On that list the first one must be evaluated before the second one (if any), the second one must be
evaluated before the third one (if any), etc.

For example, "age_mo" must be calculated (it's on the early list) BEFORE its value can be referenced in
the "age_mo <= 144" expression.

Call FIL subroutine in SQL (2)
because the variable age_mo was
not available to the data engine.
It must be created by SQL and
then logic can be applied.

SUGI 30 Data Warehousing, Management and Quality

	SUGI 30 Proceedings Table of Contents

