
Paper 23-27

1

Programming Tricks For Reducing Storage And Work Space
Curtis A. Smith, Defense Contract Audit Agency, La Mirada, CA.

ABSTRACT
Have you ever had trouble getting a SAS® job to complete,
although your SAS code is bug-free? Often, especially when
processing large amounts of data, you can exhaust your storage
space or the WORK library. Likely, there is a SAS code solution.
Herein, the author will share some of his favorite tricks to
squeeze more out of storage and WORK library space using SAS
code to resolve resource limitations. All of the tricks will use SAS
code from base SAS. This paper will cover subjects such as
reducing the number of SAS data sets needed in the work space,
reducing the size of SAS data sets, and cleaning up the work
library. The author will concentrate on the DATASETS, DELETE,
SUMMARY, and SORT procedures, the DROP, KEEP,
COMPRESS, and OUT options of the Data Step, and the
WHERE statement. SAS programmers at any level can benefit
from these tips.

INTRODUCTION
In my endeavors to get my SAS jobs to complete when
processing large amounts of data, I encounter temporary work
space shortages as well as permanent storage space shortages.
SAS, of course, uses its WORK library as the place to create and
store temporary work data sets. A SAS job can require many
temporary SAS data sets, even some that you may not reference
in a DATA step or procedure. Of course, you decide where to
store permanent SAS data sets. But sometimes, you may not
have enough free space for the temporary or permanent SAS
data sets you want to create. Exhausting temporary and
permanent storage space is common. Many approaches to solve
these problems are available. Many solutions involve the
operating system. But, I will present solutions that involve only
using SAS code and fall into three categories:

‘ Reduce the size of the SAS data sets
‘ Reduce the number of SAS data sets
‘ Clean up the storage space

REDUCE THE SIZE OF THE SAS DATA SETS
There are many ways to reduce the size of SAS data sets that
you place in your temporary work space and in
permanent storage. Below I share my favorite
strategies.

COMPRESSING FILES
SAS can use compression algorithms to compress
SAS data sets. This is a process of reducing the
amount of space needed to store a SAS data set - it does not
affect the data stored within that SAS data set. Using the
COMPRESS= system or data set option, any SAS data set
created on disk will be compressed. SAS data set compression
can greatly reduce the size of SAS data sets. To use the
COMPRESS= system or data set option, set the option to either
"YES" or "BINARY." (In newer versions of SAS, “CHAR” can be
used as an alternative to “YES” with the same result.) The
COMPRESS=YES value uses an algorithm that works better with
SAS data sets that are primarily comprised of character
variables. On the other hand, COMPRESS=BINARY uses a
different algorithm that works better with SAS data sets that are
primarily comprised of many variables including many numeric
variables. My experience has been that COMPRESS=YES

reduces the size of the SAS data set by about 50 percent.

An option to use with COMPRESS= is REUSE=. Specifying this
option allows SAS to reuse space within the compressed SAS
data set that has been freed by deleted observations. Otherwise,
SAS cannot reclaim the space made available by deleted
observations.

Consider the following examples.

After running the DATA step with the COMPRESS= set to “YES”
or “BINARY” you will see a message in your SAS log that looks
something like this:

I thought you might want to see some benchmark results. I took
four SAS data sets with differing numbers of observations and
variables. I started with uncompressed SAS data sets, then
compressed with normal compression, then compressed with
binary compression. File1 and File3 have 20 variables, 5 of which
are numeric; and File2 and File4 have 29 variables, 10 of which
are numeric.

COMPRESS REDUCTION

Obs Char Num YES BINARY

File1 120,641 15 5 31.91% 23.72%

File2 183,476 19 10 52.10% 49.22%

File3 1,542,257 15 5 31.38% 21.02%

File4 6,976,838 19 10 48.81% 46.61%

In my examples, COMPRESS=YES always produced better
results. However, the files with more variables and more numeric
variables (File2 and File4) got almost the same benefit using

/*USE THE DATA STEP COMPRESS OPTION*/
DATA TEMP.FILE2(COMPRESS=BINARY
 REUSE=YES);
 SET WORK.FILE1;
 WHERE REC_TYPE='1';
RUN;
/*USE THE SYSTEM COMPRESS OPTION*/
OPTIONS COMPRESS=YES REUSE=YES;
DATA WORK.FILE3;
 SET WORK.FILE1;
 WHERE REC_TYPE='1';
RUN;

NOTE: The data set WORK.FILE3 has 117658
observations and 20 variables.
NOTE: Compressing data set WORK.FILE3
decreased size by 31.70 percent.
Compressed is 935 pages; un-compressed
would require 1369 pages.

SUGI 27 Applications Development

2

/*DROP UNNEEDED VARIABLES*/
PROC SORT DATA=DISK.WIP_DTL
 (DROP=TTDOTAMT TTDOTHRS TTDTOAMT
 TTDTOHRS TTDSRAMT)
 OUT=DISK.SORTED(DROP=REC_TYPE);
 BY POOL ACCOUNT DEPT DATE;
 WHERE REC_TYPE NE ' ';
RUN;
/*SUMMARIZE SORTED FILE*/
PROC SUMMARY DATA=DISK.SORTED MISSING;
 BY POOL ACCOUNT DEPT DATE;
 VAR YTDOTHRS YTDTOHRS YTDOTAMT
 YTDTOAMT YTDSRAMT;
 OUTPUT OUT=DISK.WIP_SUM
 (INDEX=(PBCODE) DROP=_TYPE_)
 SUM=YTDOTHRS YTDTOHRS YTDOTAMT
 YTDTOAMT;
RUN;

COMPRESS=BINARY. I recommend you try both methods with
your files to determine which provides the better performance.

In some cases, compressing a SAS data set will result in a file
that is larger in storage size than the uncompressed original.
When this happens, SAS will warn you with a message. Version
8 of the SAS System will not compress the SAS data set when
the result would be a larger file size.

Now take a look at the space savings (in this example, from MS-
Windows).

As you can see, the space savings are well worth
the effort. In the case of File4, a reduction of nearly
500MB is nothing to gloss over.

DELETE UNNEEDED VARIABLES
Deleting unneeded variables can have a dramatic
impact on the size of the SAS data set. For
example, a variable of only five bytes in a SAS
data set of one million observations will require five
million bytes, or approximately 5MB. As soon as
possible in your DATA steps and procedures, delete any SAS
data set variables that you do not need. Use the data set DROP=
option to identify which variables to delete, or use the KEEP=
option to identify which variables to retain. Both will accomplish

the same thing, one will be easier to use than the other
depending the number of the existing variables you want to
eliminate.

Frequently, when creating a subset or summary SAS data set or
just processing a SAS data set with a procedure, you do not need
all of the variables in the source SAS data set. So delete those
you do not need from the source SAS data set, and do so as
soon as possible. However, be careful not to delete any variables
that you will need. Many times I have fallen into the trap of
dropping a variable from my input SAS data set and then referred

to it in a WHERE statement. The solution, of
course, is to keep the variable in the input SAS
data set and drop it from the output SAS data
set. Consider the example at the bottom of the
previous column.

Notice in the SORT procedure that we do not
drop the REC_TYPE variable from the input
(DATA=) SAS data set because we need it for
the WHERE statement. If we had included it in
the DROP= option on the input SAS data set, we
would have received an error that the
REC_TYPE variable was not on the input SAS
data set. In this example, the SUMMARY
procedure will produce a SAS data set with only
the character variables identified in the BY
statements and the four numeric variables
identified on the VAR statement (plus, of course,
the _FREQ_ and _TYPE_ variables created by
the SUMMARY procedure, unless we drop
them). So, why bother dropping the unwanted

variables during the SORT procedure? Because by dropping
those variables in the SORT procedure, our intermediate WORK
SAS data set is greatly reduced in size. (And, we will also see a
reduction in the time and space needed for sorting.)

Let’s take a look at the WIP_DTL and the SORTED file from
Windows Explorer’s point of view. Dropping five variables made
a significant difference.

Now look at the file properties from SAS’ point of view. First
notice the SAS data set WIP_DTL. It contains 22 variables.

Do Not Overlook the
Obvious

Delete unneeded variables as
soon as possible. Even a two
character variable can add up

to a significant amount of
space if you have many

observations.

SUGI 27 Applications Development

3

Now, notice the SAS data set SORTED. It contains only 16
variables.

Deleting unneeded variables is such a great way to reduce
space, I really want to emphasize this trick. I really want to
emphasize this trick. When you reduce space, you can also
reduce processing time and I/O time. Let’s look at an example of
sorting a SAS data set. First, we will sort it without dropping any
of the unneeded variables. Second, we will drop the unneeded
variables, but will we do so using a KEEP= option on the output
SAS data set. Third, we will drop the unneeded variables, using
a KEEP option on the input SAS data set. Look at the SAS log
carefully, noticing the time and memory differences.

Here’s the SAS code for our first scenario, keeping everything.

And, here’s the SAS log for our first scenario.

Here’s the SAS code for our second scenario. Notice the KEEP=
option on the output SAS data set. In this scenario, we will be
sorting all of the variables from the input SAS data set, but not
writing all of them to the output SAS data set.

Now, here’s the SAS log from our second scenario. You will
notice some improvement in processing time over our first
scenario, but no memory improvement.

Now, here’s the SAS code for our third scenario. This time, we’re
being smart and dropping all of the unneeded variables from the
input SAS data set.

Finally, take a look at the SA Slog from our third scenario.

We do not see much difference in memory usage, but, wow, look
at the processing reduction! In our first scenario, processing time

/*KEEP ALL VARIABLES*/
PROC SORT DATA=SUGI.QUARTER1
 OUT=WORK.SORTED1A;
 BY WEEK PROJECT DEPT ACCOUNT;
RUN;

NOTE: There were 167184 observations
read from the data set SUGI.QUARTER1.
NOTE: The data set WORK.SORTED1A has
167184 observations and 24 variables.
NOTE: PROCEDURE SORT used:
 real time 1:11.01
 Memory 2130k

/*DROP VARIABLES ON OUTPUT*/
PROC SORT DATA=SUGI.QUARTER1
 OUT=WORK.SORTED1B
 (KEEP=WEEK PROJECT DEPT ACCOUNT
 MTDTOAMT MTDOTAMT MTDSRAMT);
 BY WEEK PROJECT DEPT ACCOUNT;
RUN;

NOTE: There were 167184 observations
read from the data set SUGI.QUARTER1.
NOTE: The data set WORK.SORTED1B has
167184 observations and 7 variables.
NOTE: PROCEDURE SORT used:
 real time 50.52 seconds
 Memory 2123k

/*DROP VARIABLES ON INPUT*/
 PROC SORT DATA=SUGI.QUARTER1
 (KEEP=WEEK PROJECT DEPT ACCOUNT
 MTDTOAMT MTDOTAMT MTDSRAMT)
 OUT=WORK.SORTED1C;
 BY WEEK PROJECT DEPT ACCOUNT;
RUN;

NOTE: There were 167184 observations
read from the data set SUGI.QUARTER1.
NOTE: The data set WORK.SORTED1C has
167184 observations and 7 variables.
NOTE: PROCEDURE SORT used:
 real time 14.56 seconds
 Memory 2236k

SUGI 27 Applications Development

4

was over 1 minute. In our second scenario, processing time was
over 50 seconds. But, by dropping the unneeded variables from
the input SAS data set, processing time went down to just over
14 seconds! Just imagine what you can do with those extra 36
seconds! But, seriously, the important thing to note here is the
percentage change. If the original sort had taken several minutes,
the reduction in time would be very noticeable. So, in addition to
reducing sort space, you can greatly reduce processing time as
a result of the reduced space.

Of course, when you drop unneeded variables from the input
SAS data set, you don’t affect the saved input SAS data set. SAS
will just drop the specified variables as it reads the input SAS
data set into the Program Data Vector.

DELETE UNNEEDED OBSERVATIONS
Any observations that are not needed in your
temporary or permanent SAS data sets just take
up space. So, delete them as soon as possible.
Do this with a WHERE statement when
processing SAS data sets in a DATA step or
procedure, or an IF statement when processing
external files in a DATA step. Consider your data
needs for the SAS data sets you will create in your temporary
work space and permanent storage space. If you will not need all
of the observations in the SAS data set, get rid of those you do
not need from your input SAS data set. Consider the sample
SORT procedure in the above section as an example of using the
WHERE statement to delete unneeded observations.

REDUCE THE NUMBER OF SAS DATA SETS
There are a number of strategies to use to reduce the number of
SAS data sets processed and stored within the same temporary
and permanent storage space. Let’s look at my favorite
strategies.

OUTPUT SORTED SAS DATA SETS
When you sort a SAS data set using the SORT procedure and
you do not specify an output SAS data set using the OUT=
option, SAS will overwrite the input SAS data set with the sorted
SAS data set. To do this, SAS must create a temporary sorted
SAS data set until the SORT procedure successfully completes.
Then SAS will overwrite the old input SAS data set with the
temporary sorted SAS data set. This method works, of course,
but creates a temporary sorted file in the WORK library. If you are
short on WORK space, this may be a problem. When you specify
an output file for the sorted SAS data set you will still have two
SAS data sets created: the input SAS data set and the sorted
output SAS data set. However, in this situation you can place the
sorted SAS data set somewhere other than the WORK library,
such as another temporary SAS data library, a tape SAS data
library, or a permanent disk SAS data library. Consider the
following example.

DELETE SAS DATA SETS BEFORE REPLACING THEM
Whenever you update or replace a SAS data set with new data,
SAS will create a temporary SAS data set to hold the new data
until the DATA step or procedure successfully completes. Then
SAS will overwrite the old input SAS data set with the one just

created. This causes SAS to create a temporary SAS data set in
the WORK library (I noticed that MS-Windows places this
temporary SAS data set in the same library as the permanent
SAS data set you are creating). Let’s look at a real-life example
under MS-Windows.

If the WIP_DTL SAS data set already existed in the DISK library,
the following would happen in the DISK library.

Notice the temporary file created because the target output SAS
data set already existed. This, of course, is wasting space.
Instead, delete the existing SAS data set using the DATASETS
or the DELETE procedure before running the DATA step or
procedure that will update or replace the SAS data set. This
method cannot be used, of course, if the existing SAS data set is
needed as the basis for updating or replacing the SAS data set.
Consider the following example.

USE AN ALTERNATE TEMPORARY LIBRARY
When you do not specify a library for a SAS data set, SAS will
place the data set in the WORK library. Of course, you can also
specify the WORK library in the two level SAS data set name to
place the SAS data set in the WORK library. When you are short
of space in the WORK library and need to have more than one
SAS data set in temporary storage simultaneously, an alternate
approach is to create alternate temporary libraries. Yes, you can
do this. Creating an alternate temporary library is a very simple
process. Just allocate a temporary SAS data library on a different
space than your library. How to do this is operating system
dependent. On a PC, you must allocate the alternate temporary
library on a hard disk drive other than the disk drive where the
WORK library is allocated. If you allocate the alternate temporary
library on the same hard disk drive, then the temporary library
you allocate and the WORK library will be competing for the
same limited space.

Once you have allocated one or more alternate
temporary libraries, use it for some SAS data sets that
you need to place in temporary work space. For
example (assuming your SAS WORK library is on
the C: drive and you have a D: drive available):

/*OVERWRITE AN EXISTING SAS DATA SET*/
DATA DISK.WIP_DTL;
 SET TAPE.WIP_DTL;
 WHERE REC_TYPE NE ' ';
RUN;

/*DELETE EXISTING FILE FIRST*/
PROC DATASETS LIBRARY=DISK NOLIST;
 DELETE WIP_DTL;
QUIT;
DATA DISK.WIP_DTL;
 SET TAPE.WIP_DTL;
 WHERE REC_TYPE NE ' ';
RUN;

/*SORT TO OUT= DESTINATION*/
PROC SORT DATA=WORK.WIP_DTL
 OUT=TAPE.SORTED;
 BY PBCODE ACCOUNT PRIME CDATE;
RUN;

SUGI 27 Applications Development

5

Then in your SAS program, you might do something like the
following:

In this example, you are reading a permanent
SAS data set stored on a CD and creating two
temporary SAS data sets. The first temporary
SAS data set is being written to the WORK
library (WORK.FILE1) and the second temporary
SAS data set is being written to the temporary
library “TEMP” (TEMP.FILE2), which you have allocated on a
hard disk drive other than the hard disk drive where SAS has
allocated its WORK library.

CLEAN UP THE STORAGE SPACE
This tip is so obvious that overlooking it is easy. Simply delete
SAS data sets in the WORK library, other temporary space, or
permanent space when you no longer need them. Do this, of
course, using the DATASETS or the DELETE procedure.

Consider the following typical job stream. Here you will sort a
permanent SAS data set to a SAS data set in the WORK library
that you will then summarize. Then, you will sort another
permanent SAS data set to a SAS data set in the WORK library
that you will then summarize. The first sorted SAS data set in the

WORK library is not needed again after the first SUMMARY
procedure has completed.

We can see the result in the WORK library,
in this example, from MS-Windows.

In this example, you have a very large file, SORTED1, that is just
taking up space while you sort and summarize your second SAS
data set. Take a look at the following alternative.

/*SORT THEN SUMMARIZE FIRST FILE*/
PROC SORT DATA=DISK.WIP_DTL
 OUT=WORK.SORTED1;
 BY POOL ACCOUNT DEPT DATE;
RUN:
PROC SUMMARY DATA=WORK.SORTED1 MISSING;
 BY POOL ACCOUNT DEPT DATE;
 VAR YTDTOAMT;
 OUTPUT OUT=DISK.WIP_SUM SUM=YTDTOAMT;
RUN;
/*SORT THEN SUMMARIZE SECOND FILE*/
PROC SORT DATA=DISK.IND_DTL
 OUT=WORK.SORTED2;
 BY POOL ACCOUNT DEPT DATE;
RUN:
PROC SUMMARY DATA=WORK.SORTED2 MISSING;
 BY POOL ACCOUNT DEPT DATE;
 VAR YTDTOAMT;
 OUTPUT OUT=DISK.IND_SUM SUM=YTDTOAMT;
RUN;

Do Not Overlook the
Obvious

Do just like your mama
told you...clean up after

yourself.

/*SORT THEN SUMMARIZE FIRST FILE*/
PROC SORT DATA=DISK.WIP_DTL
 OUT=WORK.SORTED1;
 BY POOL ACCOUNT DEPT DATE;
RUN:
PROC SUMMARY DATA=WORK.SORTED1 MISSING;
 BY POOL ACCOUNT DEPT DATE;
 VAR YTDTOAMT;
 OUTPUT OUT=DISK.WIP_SUM SUM=YTDTOAMT;
RUN;
/*DELETE USING PROC DATASETS*/
PROC DATASETS LIBRARY=WORK NOLIST;
 DELETE SORTED1;
QUIT;
RUN;
/*OR, DELETE USING PROC DELETE*/
/*
PROC DELETE DATA=WORK.SORTED1;
QUIT;
RUN;
*/
/*SORT THEN SUMMARIZE SECOND FILE*/ PROC
SORT DATA=DISK.IND_DTL
 OUT=WORK.SORTED2;
 BY POOL ACCOUNT DEPT DATE;
RUN:
PROC SUMMARY DATA=WORK.SORTED2 MISSING;
 BY POOL ACCOUNT DEPT DATE;
 VAR YTDTOAMT;
 OUTPUT OUT=DISK.IND_SUM SUM=YTDTOAMT;
RUN;

LIBNAME CD
 "D:\LONG\WINDOWS\FOLDERNAME\DATA";
/*SPLIT THE INPUT FILE TO MULTIPLE
STORAGE DESTINATIONS*/
DATA WORK.FILE1 TEMP.FILE2;
 SET CD.MASTER
 SELECT (DIVISION);
 WHEN ("01") OUTPUT WORK.FILE1;
 WHEN ("02") OUTPUT TEMP.FILE2;
 OTHERWISE DELETE;
 END;
RUN;

LIBNAME TEMP
 "D:\LONG\WINDOWS\FOLDERNAME";

SUGI 27 Applications Development

6

Instead, you can insert a DATASETS or DELETE procedure after
summarizing the first SAS data set to delete the unneeded file.
(Never heard of Proc DELETE? Neither had I until someone at
SUGI 25 pointed it out to me. It has not been documented since
version 5, but still works.)

CONCLUSION
SAS is such a powerful tool and functions so well with the
operating systems on which it runs (most everything except a
Commodore 64 and a TRSH 80) that there are ways around
every problem. The problems associated with limited work space
and limited permanent storage space can be resolved with a little
resourcefulness.

ACKNOWLEDGMENTS
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Curtis A. Smith
Defense Contract Audit Agency
P.O. Box 20044
Fountain Valley, CA 92728-0044
Work Phone: 714-896-4277
Fax: 413-383-6395
Email: casmith@mindspring.com

SUGI 27 Applications Development

	SUGI 27 Title Page

