SUGI 27 Advanced Tutorials

Paper 11-27

Table Lookup: Techniques Beyond the Obvious
Nancy Croonen, CC Training Services, Belgium
ir. Henri Theuwissen, SOLID Partners, Belgium

ABSTRACT

Table lookup operations are often the most time consuming part

of many SAS® programs. In this paper we will combine two SAS
data sets by using the value of a specific variable to locate

information in an auxiliary or lookup SAS data set and add it to

information from the primary SAS data set. Base SAS software

offers a broad range of techniques to perform table lookup

operations. Do you use the most obvious technique or do you

evaluate multiple techniques and determine which technique is

the most efficient way to perform the lookup?

INTRODUCTION

This paper discusses seven different approaches to perform the
table lookup in terms of processing time and the complexity of
coding. The following programming techniques, ranging from
fairly straightforward to more complicated but also from less to
more efficient, are discussed using examples:

DATA step MERGE statement

SQL inner join

SQL subquery

FORMAT procedure and PUT function
SET statements and KEY = option
CALL EXECUTE routine

SQL INTO clause

Nooapswbz

Benchmarking results are summarized with graphs and tables.
The paper addresses base SAS and is intended for intermediate
users of SAS.

TERMINOLOGY

The following terms are frequently used throughout the paper:

e The primary file is the file for which you want to obtain
auxiliary information.

e The lookup file is an auxiliary file that is maintained
separately from the primary file and that is referenced for
one or more of the observations of the primary file.

e The key variable is the variable or variables whose values
are the common elements between the primary file and the
lookup file. Typically, key values are unique in the lookup file
but not necessarily unique in the primary file.

e The lookup result is the auxiliary information obtained using
the key variable or variables as reference into the lookup file.

INPUT SAS DATA SETS

The examples in this paper use the following input SAS data sets
containing fictitious data:

e The lookup SAS data set SUGI27.COMPANY contains
address information of all Belgian companies. The SAS data
set contains 273.709 observations and the following
variables:

- VAT_NUMBER

- COMPANY_NAME
- STREET

- POSTAL_CODE

- CITY

The key variable VAT_NUMBER uniquely identifies a
company. Each VAT number only appears once in the input
SAS data set SUGI27.COMPANY.

e The SAS data set SUGI27.COMPANY_INDEXED is a copy
of the SAS data set SUGI27.COMPANY, but contains a
unique index on the variable VAT_NUMBER. The index is a
separate structure that contains the data values of the
variable VAT_NUMBER paired with a location identifier for
the observations containing the value.

e The primary SAS data set SUGI27.BAD_DEBTOR contains
a list of companies that are registered as bad debtors. The
SAS data set contains 200 observations and contains only
the key variable VAT_NUMBER. Each VAT number only
appears once in the SAS data set SUGI27.BAD_DEBTOR.

. The SAS data set SUGI27.SALES contains sales
information in the year 2001 of all Belgian companies. The
SAS data set contains 1.506.206 observations and the
following variables:

- VAT_NUMBER
- DATE
- SALES

The combination of the variables VAT_NUMBER and DATE
uniquely identifies a transaction. Each VAT number can
appear multiple times in the SAS data set SUGI27.SALES.

The SAS data set SUGI27.SALES contains an index on the
variable VAT_NUMBER.

Observations in SUGI27.BAD_DEBTOR and SUGI27.COMPANY
or SUGI27.COMPANY_INDEXED are related by common values
for VAT_NUMBER. There is a one-to-one relationship between
the primary SAS data set SUGI27.BAD_DEBTOR and the lookup
SAS data set SUGI27.COMPANY or the indexed lookup SAS
data set SUGI27.COMPANY_INDEXED which implies that each
value of the variable VAT_NUMBER occurs no more than once in
each SAS data set. In other words, a single observation in the
SAS data set SUGI27.BAD_DEBTOR is related to a single
observation in the SAS data set SUGI27.COMPANY or the SAS
data set SUGI27.COMPANY_INDEXED. We will use the value of
the key variable VAT_NUMBER from the primary SAS data set
SUGI27.BAD_DEBTOR to locate the associated address
information in the lookup SAS data set SUGI27.COMPANY or
SUGI27.COMPANY_INDEXED and add it to information from the

primary SAS data set.

Observations in the SAS data sets SUGI27.BAD_DEBTOR and
SUGI27.SALES are also related by common values for
VAT_NUMBER. There is a one-to-many relationship between
SUGI27.BAD_DEBTOR and SUGI27.SALES which implies that
each value of the variable VAT_NUMBER occurs no more than
once in the SAS data set SUGI27.BAD_DEBTOR but may occur
more than once in the SAS data set SUGI27.SALES. In other
words, a single observation in BAD_DEBTOR may be related to
multiple observations in SUGI27.SALES. We will combine the
two SAS data sets by using the value of the key variable
VAT_NUMBER from the SAS data set SUGI27.BAD_DEBTOR to
locate the associated sales information in the SAS data set
SUGI27.SALES.

SETTING SAS SYSTEM OPTIONS

Before getting started, we will turn on some SAS system options
to make as much information as possible available about the
execution of the SAS programs:

e The FULLSTIMER system option writes all the system
performance statistics to the LOG window. The SAS System
writes to the LOG a complete list of computer resources
used for each step and the entire SAS session. The type of
statistics written varies with host systems. Computer
resources can be measured in the following terms:

- CPU time is the actual time spent on a task. The CPU
time is the amount of time the Central Processing Unit
uses to perform the requested tasks, including
calculations, reading and writing data, ...

- 1/O is a measurement of the Input (read) and Output
(write) operations as data and programs are moved
from a storage device to memory (input) or from
memory to a storage or display device (output).

- Memory is the size of the work area that the CPU
requires to hold the executable program modules, data,
and buffers.

e The MSGLEVEL = system option controls the level of detail
in messages that are written to the LOG window.
MSGLEVEL = N prints notes, warnings, and error messages
only. This is the default. MSGLEVEL = | prints additional
notes pertaining to index usage, merge processing, and sort
utilities along with standard notes, warnings, and error
messages.

e The SYMBOLGEN system option writes the results of
resolving macro variable references to the LOG window.

OPTIONS FULLSTIMER MSGLEVEL = I SYMBOLGEN;

SUGI 27 Advanced Tutorials

DATA STEP MERGE STATEMENT

The first technique, which is very easy to code, uses the MERGE
and BY statements in a DATA step. The observations from the
SAS data sets SUGI27.BAD_DEBTOR and SUGI27.COMPANY
or SUGI27.COMPANY_INDEXED are combined into a single
observation in the new SAS data set according to the values of
the common variable VAT_NUMBER. Before you can perform a
match-merge, both SAS data sets must be sorted by the variable
VAT_NUMBER or they must have an index on the variable
VAT_NUMBER.

In the following example, both input SAS data sets are not
arranged in order of the values of the variable VAT_NUMBER
and they also have no index on the variable VAT_NUMBER. So
before match-merging the two SAS data sets in a DATA step, we
must sort the SAS data sets.

PROGRAM 1-A

PROC SORT DATA = SUGI27.COMPANY
OUT = COMPANY;
BY VAT NUMBER;
RUN;

PROC SORT DATA = SUGI27.BAD DEBTOR
OUT = BAD_DEBTOR;
BY VAT_NUMBER;
RUN;

DATA MERGE SORTED;
MERGE BAD DEBTOR (IN = BD)
COMPANY ;
BY VAT NUMBER;
IF BD;
RUN;

The IN = data set option creates and names a variable BD that
indicates whether the input SAS data set BAD_DEBTOR
contributed data to the current output observation. BD is a
temporary numeric variable with values of 0 or 1. The value 0
indicates that the input SAS data set BAD_DEBTOR did not
contribute to the current output observation whereas the value 1
indicates that the input SAS data set BAD_DEBTOR contributed
to the current output observation. The variable BD is available to
programming statements during the DATA step, but is not
included in the SAS data set being created.

The subsetting IF statement causes the DATA step to continue
processing only those observations that meet the condition of the
expression specified in the IF statement. Therefore, the resulting
SAS data set contains only observations to which the input SAS
data set BAD_DEBTOR contributed.

Because no index exists on the variable VAT_NUMBER in neither
of both input SAS data sets, the observations are read
sequentially in the order in which they appear in the input SAS
data sets.

In the following example, SUGI27.COMPANY _INDEXED contains
an index on the variable VAT_NUMBER. Before match-merging
the two SAS data sets in a DATA step, we must only sort the
input SAS data set SUGI27.BAD_DEBTOR.

PROGRAM 1-B

PROC SORT DATA = SUGI27.BAD DEBTOR
OUT = BAD_DEBTOR;
BY VAT NUMBER;
RUN;

DATA MERGE_INDEXED;
MERGE BAD DEBTOR (IN = BD)
SUGI27.COMPANY_ INDEXED;
BY VAT NUMBER;
IF BD;
RUN;

SQL INNER JOIN

The second technique, which is also fairly easy to code and
understand, uses an SQL inner join. If you are familiar with SQL
(Structured Query Language), you may want to use PROC SQL
instead of the DATA step.

PROGRAM 2-A

PROC SQL;
CREATE TABLE JOIN_SORTED AS
SELECT BD.*
FROM BAD DEBTOR BD,
COMPANY C
WHERE BD.VAT NUMBER = C.VAT NUMBER;
QUIT;

Conceptually, a query with a join and a WHERE expression is
evaluated in two phases. First the FROM clause is processed.
SQL internally builds a virtual, temporary join table by combining
each row from BAD_DEBTOR with every row from COMPANY.
The result of this combination is the Cartesian product of the two
tables. Next, the WHERE expression is processed. Only rows
that satisfy the WHERE clause condition are selected from this
join table.

While it is helpful to imagine that SQL builds a temporary, internal
join table for every join, this is often not the case. In reality, the
SQL procedure optimizer breaks the Cartesian product into
smaller pieces. SAS data sets are stored in pages that contain a
certain number of observations. To reduce /O, the SQL
procedure optimizer makes use of these pages in its processing.
During a two-way join, the following tasks are completed:

1. The first page from the first table is read into memory,
together with as many of the first pages from the second
table as will fit into available memory.

2. Valid rows are selected.

3. The first page of the first table is kept in memory. As many
subsequent pages from the second table that will fit into
memory are read and step 2 is repeated.

4. All pages from the second table are processed in
combination with page 1 from the first table. Steps 1 through
4 are then repeated for page 2 from the first table. The entire
process stops once all rows in both tables are processed.

SUGI 27 Advanced Tutorials

The SQL procedure optimizer can process an equi-join (a join on
an equals condition) even more efficiently. During a two-way equi-
join, the following tasks are completed:

1. Both tables are sorted by the matching column (if
necessary) and are grouped by the matching column’s value
into chunks.

2. The Cartesian product is only performed on matching
chunks of data.

3. Once a chunk of data is processed, it is not processed
again.

In the previous example, both tables were already sorted by
VAT_NUMBER. The next example will illustrate that this is not a
prerequisite for an SQL join.

PROGRAM 2-B

PROC SQL;
CREATE TABLE JOIN_UNSORTED AS
SELECT BD.*
FROM SUGI27.BAD DEBTOR BD,
SUGI27.COMPANY C
WHERE BD.VAT NUMBER = C.VAT NUMBER;
QUIT;

An index can improve the processing of an SQL join. In the
following example, the column VAT_NUMBER that participates in
the join is indexed in the table SUGI27.COMPANY _INDEXED.

PROGRAM 2-C

PROC SQL;
CREATE TABLE JOIN_INDEXED AS
SELECT BD. *
FROM SUGI27.BAD DEBTOR BD,
SUGI27.COMPANY INDEXED C
WHERE BD.VAT_NUMBER = C.VAT_NUMBER;
QUIT;

SQL SUBQUERY

The third technique uses an SQL subquery. Often an SQL join
can also be expressed as a subquery. While an SQL join
combines multiple tables into a new table, an SQL subquery
(enclosed in parentheses) selects rows from one table based on
values in another table. A subquery, or inner query, is a query-
expression that is nested as part of another query-expression.
Depending on the clause that contains it, a subquery can return a
single value or multiple values. The IN condition is used to
include a subquery that returns multiple values. Subqueries are
most often used in the WHERE and the HAVING expressions.

The following example uses a subquery to connect the VAT
numbers from the SUGI27.BAD_DEBTOR table with their
address information in the SUGI27.COMPANY table. VAT
numbers appear in both tables and therefore link the tables. The
subquery is evaluated first and builds a virtual, internal table
consisting of the VAT numbers from the SUGI27.BAD_DEBTOR
table. These VAT numbers become the set of values for the IN
condition in the WHERE expression of the outer query and are
used to select rows from the SUGI27.COMPANY table.

PROGRAM 3-A

PROC SQL;
CREATE TABLE SUBQUERY UNSORTED AS
SELECT *
FROM SUGI27.COMPANY
WHERE VAT NUMBER IN
(SELECT VAT_NUMBER
FROM SUGI27.BAD DEBTOR) ;

QUIT;

An index may also improve the processing of an SQL subquery.
In the following example, the column VAT_NUMBER in the
WHERE expression of the outer query is indexed.

PROGRAM 3-B

PROC SQL;
CREATE TABLE SUBQUERY_ INDEXED AS
SELECT *
FROM SUGI27.COMPANY INDEXED
WHERE VAT NUMBER IN
(SELECT VAT_NUMBER
FROM SUGI27.BAD DEBTOR) ;

QUIT;

FORMAT PROCEDURE AND PUT FUNCTION

The fourth technique, which is a little harder to code and
understand, relates data using a user-written format. Dynamically
build the format and retrieve the formatted values. This technique
is efficient when you have a large lookup SAS data set whose
retrieved values remain fairly constant.

First, create the input control data set FMTIN that you can use to
pass information from the SAS data set SUGI27.BAD_DEBTOR
to the FORMAT procedure to dynamically build the format. The
input control data set should at least contain the variables
FMTNAME, START, and LABEL. Define the format $VAT_FMT,
which associates the character string 'BAD DEBTOR' with all the
VAT numbers listed.

PROGRAM 4-A

DATA FMTIN;
SET SUGI27.BAD DEBTOR
(RENAME = (VAT_NUMBER = START)) ;
RETAIN LABEL 'BAD DEBTOR'
FMTNAME 'SVAT FMT';
RUN;

The input control data set assumes that the ending value of the
format range is equal to the value of START if no variable named
END is found. The input control data set does not require the
remaining variables created for an output control data set.

Specify the FMTIN data set in the CNTLIN = option as input to
the FORMAT procedure. PROC FORMAT uses the data in the
input control data set to dynamically build the format.

PROC FORMAT LIB = SUGI27
CNTLIN = FMTIN
FMTLIB;

RUN;

SUGI 27 Advanced Tutorials

The LIB = option in the PROC FORMAT statement specifies the
data library, and optionally, the catalog in which to store the
formats. Without the LIB = option, formats are stored in the
WORK.FORMATS catalog and only exist for the duration of the
SAS session.

The FMTLIB option prints information about all the formats and
informats in the catalog that is specified in the LIB = option. The
printed output is a table for each format or informat entry in the
catalog. The output also contains global information and the
specifics of each range and value (LABEL) pair defined for the
format or informat. To get information only about specific formats
or informats, subset the catalog using the SELECT or EXCLUDE
statement.

By default, only the WORK.FORMATS catalog is searched for
user-written formats. Set the FMTSEARCH = system option to
identify the catalogs to be searched for formats. The
WORK.FORMATS catalog is always searched first, unless it
appears in the FMTSEARCH = list. The LIBRARY.FORMATS
catalog is searched after WORK.FORMATS and before anything
else in the FMTSEARCH = list, unless it appears in the
FMTSEARCH = list. Catalogs in the list are searched in the order
in which they appear in the list. If only the libref is given, SAS
assumes that FORMATS is the catalog name.

OPTIONS FMTSEARCH = (SUGI27 WORK LIBRARY) ;

Finally, to create a subset of the lookup SAS data set
SUGI27.COMPANY based on the formatted values, use the user-
written format $VAT_FMT within a subsetting IF statement. Apply
the user-written format $VAT_FMT to the data values of the
variable VAT_NUMBER by using the PUT function. Here, the
subsetting IF statement causes the DATA step to continue
processing only those observations for which the formatted value
of VAT_NUMBER is BAD DEBTOR. If the expression is false, the
current observation is not written to the output SAS data set.

DATA FORMAT DATA_ IF;
SET SUGI27.COMPANY ;
IF PUT (VAT NUMBER, $VAT FMT.)
= 'BAD DEBTOR';
RUN;

Repeat the previous example but use a WHERE statement
instead of a subsetting IF statement. Using the WHERE
statement may improve the efficiency of your SAS program
because the SAS System is not required to read all observations
from the input SAS data set SUGI27.COMPANY. The WHERE
statement selects observations before they are brought into the
program data vector. The subsetting IF statement selects
observations after they have been read into the program data
vector.

PROGRAM 4-B

DATA FMTIN;
SET SUGI27.BAD_DEBTOR
(RENAME = (VAT _NUMBER = START)) ;

RETAIN LABEL 'BAD DEBTOR'
FMTNAME 'SVAT FMT';
RUN;

PROC FORMAT LIB = SUGI27
CNTLIN = FMTIN
FMTLIB;

RUN;

OPTIONS FMTSEARCH = (SUGI27 WORK LIBRARY) ;

DATA FORMAT DATA WHERE;
SET SUGI27.COMPANY;
WHERE PUT (VAT_NUMBER, $VAT_FMT.)
= 'BAD DEBTOR';
RUN;

You could also create a subset of the lookup SAS data set
SUGI27.COMPANY based on the formatted values by using the
PUT function in the WHERE clause of an SQL query.

PROGRAM 4-C

DATA FMTIN;
SET SUGI27.BAD_DEBTOR
(RENAME = (VAT NUMBER = START)) ;

RETAIN LABEL 'BAD DEBTOR'
FMTNAME '$VAT FMT';
RUN;

PROC FORMAT LIB = SUGI27
CNTLIN = FMTIN

FMTLIB;
RUN;
OPTIONS FMTSEARCH = (SUGI27 WORK LIBRARY) ;
PROC SQL;
CREATE TABLE FORMAT_SQL AS
SELECT *
FROM SUGI27.COMPANY
WHERE PUT (VAT_NUMBER, $VAT_FMT.)
= 'BAD DEBTOR';
QUIT;

Repeat PROGRAM 4-B but use the indexed SAS data set
SUGI27.COMPANY_INDEXED instead of SUGI27.COMPANY.
The LOG window will not display any messages that the index
VAT_NUMBER was selected for WHERE clause optimization.
The index VAT_NUMBER is not considered for use because the
PUT function appears in the WHERE expression.

PROGRAM 4-D

DATA FMTIN;
SET SUGI27.BAD_DEBTOR
(RENAME = (VAT NUMBER = START)) ;

RETAIN LABEL 'BAD DEBTOR'
FMTNAME '$VAT FMT';
RUN;

PROC FORMAT LIB = SUGI27
CNTLIN = FMTIN
FMTLIB;

RUN;

OPTIONS FMTSEARCH = (SUGI27 WORK LIBRARY) ;

DATA FORMAT DATA WHERE_ INDEXED;
SET SUGI27.COMPANY INDEXED;
WHERE PUT (VAT_NUMBER, $VAT_FMT.)
= 'BAD DEBTOR';
RUN;

Also repeat PROGRAM 4-C but replace the SAS data set
SUGI27.COMPANY with the indexed SAS data set
SUGI27.COMPANY_INDEXED. Again the index VAT_NUMBER
is not considered for use because the PUT function appears in
the WHERE expression.

SUGI 27 Advanced Tutorials

PROGRAM 4-E

DATA FMTIN;
SET SUGI27.BAD_DEBTOR
(RENAME = (VAT NUMBER = START)) ;

RETAIN LABEL 'BAD DEBTOR'
FMTNAME '$VAT FMT';
RUN;

PROC FORMAT LIB = SUGI27
CNTLIN = FMTIN
FMTLIB;

RUN;

OPTIONS FMTSEARCH = (SUGI27 WORK LIBRARY) ;

PROC SQL;
CREATE TABLE FORMAT_ SQL_INDEXED AS
SELECT *
FROM SUGI27.COMPANY INDEXED
WHERE PUT (VAT_NUMBER, $VAT_FMT.)
= 'BAD DEBTOR';
QUIT;

SET STATEMENTS AND KEY = OPTION

The fifth technique, which is more complicated to understand,
uses an index to perform the table lookup. This technique is
especially appropriate when the lookup SAS data set is large and
has an index.

The first SET statement reads observations from the primary
SAS data set SUGI27.BAD_DEBTOR sequentially. The second
SET statement with the KEY = option reads observations from
the lookup SAS data set SUGI27.COMPANY_INDEXED directly
based on the value of the key variable VAT_NUMBER. In other
words, the index VAT_NUMBER is used to locate observations in
the lookup SAS data set SUGI27.COMPANY_INDEXED that
have key values equal to the current value of the key variable
VAT_NUMBER supplied by the primary SAS data set
SUGI27.BAD_DEBTOR. Observations are written to the output
SAS data set only when a match occurs in the lookup SAS data
set.

PROGRAM 5-A

DATA SET SET_KEY;
SET SUGI27.BAD_DEBTOR;
SET SUGI27.COMPANY INDEXED
KEY = VAT NUMBER;
RUN;

This program works as expected only if the indexed SAS data set
contains at most one observation with the same value for the key
variable. The SAS data set SUGI27.SALES contains an index on
the variable VAT_NUMBER. However, there is a one-to-many
relationship between the SAS data sets SUGI27.BAD_DEBTOR
and SUGI27.SALES. This means that a single observation in
BAD_DEBTOR may be related to multiple observations in
SUGI27.SALES. Use the same technique as in the previous
example to combine the SAS data set SUGI27.BAD_DEBTOR
and the indexed SAS data set SUGI27.SALES.

DATA SALES SET SET KEY;
SET SUGI27.BAD DEBTOR;
SET SUGI27.SALES KEY = VAT NUMBER;
RUN;

Although you do not receive any error messages, the program
above will not produce the desired result. The first SET statement
reads observations from SUGI27.BAD_DEBTOR sequentially.
The second SET statement with the KEY = option locates and
reads only the first observation in SUGI27.SALES that has the
key value equal to the current value of the key variable
VAT_NUMBER. However, all other techniques discussed in this
paper could be used to combine the SAS data sets
SUGI27.BAD_DEBTOR and SUGI27.SALES in a correct way.
For example, use an SQL inner join to obtain the desired result.

PROC SQL;
CREATE TABLE SALES JOIN AS
SELECT S.*
FROM SUGI27.BAD DEBTOR BD,
SUGI27.SALES S
WHERE BD.VAT_NUMBER = S.VAT_NUMBER;
QUIT;

CALL EXECUTE ROUTINE

The sixth technique, which is less obvious but often very efficient,
uses the CALL EXECUTE routine to create dynamic SAS code in
a DATA step. The list of VAT numbers in the primary SAS data
set SUGI27.BAD_DEBTOR is used to dynamically generate the
WHERE statement to subset the lookup SAS data set
SUGI27.COMPANY. CALL EXECUTE adds the generated SAS
statement(s) to the input stack. The SAS statement(s) will
execute immediately after the end of the DATA step containing
the CALL EXECUTE routine.

During the first iteration of the DATA step, the following SAS code
should be generated and added to the input stack:

DATA CALL_EXECUTE;
SET SUGI27.COMPANY ;
WHERE VAT NUMBER IN (

During each iteration of the DATA step, an observation of the
primary SAS data set SUGI27.BAD_DEBTOR is read. Each time
the current value of the variable VAT _NUMBER should be
enclosed in quotes and also added to the input stack:

"426.126.740"
"454.010.874"
"444 .925.439"

"459.650.534"

During the last iteration of the DATA step, the following SAS code
should be generated and added to the input stack:

)i
RUN;

Use the CALL EXECUTE routine to create the WHERE clause
dynamically in the DATA step.

SUGI 27 Advanced Tutorials

PROGRAM 6-A

DATA NULL_;
SET SUGI27.BAD DEBTOR END = EOF;
IF N = 1 THEN DO;

CALL EXECUTE ('DATA CALL EXECUTE;');
CALL EXECUTE ('SET SUGI27.COMPANY;') ;
CALL EXECUTE ('WHERE VAT NUMBER IN ('

END;

CALL EXECUTE (QUOTE (VAT NUMBER)) ;

IF EOF THEN DO;
CALL EXECUTE (');');
CALL EXECUTE ('RUN;');

END;

RUN;

)i

The END = data set option is used in the SET statement to create
and name a variable EOF whose value is used to detect the end-
of-file. EOF is a temporary numeric variable with values of 0 or 1.
The value 0 indicates the SET statement did not read the last
observation in the SAS data set SUGI27.BAD_DEBTOR yet
whereas the value 1 indicates the SET statement read the last
observation in the SAS data set. The variable EOF is available
anywhere in the DATA step, but is not added to the new SAS
data set being created.

The automatic variable _N_ is created for each DATA step. The
variable _N_ is initially set to 1. Each time the DATA step loops
past the DATA statement, the variable _N_ is incremented by 1.
So the value of _N_ represents the number of times the DATA
step has iterated.

The CALL EXECUTE routine specifies a character expression
that yields one or more SAS statements. The character
expression can consist of constant text enclosed in single or
double quotes, SAS variables, and SAS expressions. The
QUOTE function adds double quotation marks to the current
value of the variable VAT_NUMBER.

Repeat the previous example but use the indexed SAS data set
SUGI27.COMPANY_INDEXED instead of SUGI27.COMPANY.
Verify in the LOG window whether the index VAT_NUMBER was
selected for WHERE clause optimization.

PROGRAM 6-B

DATA NULL_;
SET SUGI27.BAD DEBTOR END = EOF;
IF N = 1 THEN DO;
CALL EXECUTE
('DATA CALL_EXECUTE_INDEXED;') ;
CALL EXECUTE
('SET SUGI27.COMPANY INDEXED;');
CALL EXECUTE
('WHERE VAT NUMBER IN (');
END;
CALL EXECUTE (QUOTE (VAT NUMBER)) ;
IF EOF THEN DO;
CALL EXECUTE (');');
CALL EXECUTE ('RUN;');
END;
RUN;

SQL INTO CLAUSE

Last but not least, the seventh technique, which is also less
known but proven to be very efficient, is the INTO clause with the
SEPARATED BY keyword in the SELECT statement of the SQL
procedure. This form of the INTO clause takes the values of a
column and concatenates them into one macro variable. Always
keep in mind that the maximum length of a macro variable value
is 32K characters. This macro variable is then referenced in the
WHERE statement to subset the lookup SAS data set.

This technique is especially appropriate when the lookup file is a
large DBMS table and you use the SQL Procedure Pass-Through
Facility to retrieve data from the DBMS table. The PROC SQL
Pass-Through facility passes an SQL query from a SAS program
directly to the DBMS, which performs the processing and returns
the query result to SAS software for display or further analysis.

Use the SQL procedure to create the macro variable named
VAT _LIST that contains a list of all VAT numbers that exist in the
primary SAS data set SUGI27.BAD_DEBTOR. Each VAT number
should be enclosed in double quotes and separated from the next
by a comma.

PROGRAM 7-A

PROC SQL NOPRINT;
SELECT DISTINCT VAT NUMBER
INTO :VAT_LIST SEPARATED BY '", "'
FROM SUGI27.BAD DEBTOR;
QUIT;

Because each VAT number only appears once in the SAS data
set SUGI27.BAD_DEBTOR, you could omit the DISTINCT
keyword.

By default, the results of a SELECT statement are displayed in
the OUTPUT window. The NOPRINT option in the PROC SQL
statement is useful when you are selecting values from a table
into a macro variable and you do not want anything to be
displayed in the OUTPUT window.

$LET VAT LIST = &VAT_LIST;

This form of the INTO clause does not trim leading or trailing
blanks. The %LET statement removes any leading or trailing
blanks that may be stored in the macro variable value.

Use the new macro variable VAT_LIST to subset the lookup SAS
data set SUGI27.COMPANY.

DATA SQL_INTO;

SET SUGI27.COMPANY ;

WHERE VAT NUMBER IN ("&VAT_LIST");
RUN;

The SYMBOLGEN system option writes the results of resolving
the macro variable reference &VAT_LIST to the LOG window.
Note that the opening quote is missing for the first VAT number
and the closing quote is missing for the last VAT number.
Enclose the macro variable reference &VAT_LIST in double
quotes in the WHERE Statement to add these missing quotes.
Make sure that you use double quotes. The word scanner
continues to tokenize literals enclosed in double quotes,
permitting the macro variable to resolve. The word scanner does
not tokenize literals enclosed in single quotes, so the macro
variable would not resolve.

SUGI 27 Advanced Tutorials

Repeat the previous DATA step but use the indexed SAS data
set SUGI27.COMPANY_INDEXED instead of the SAS data set
SUGI27.COMPANY. Verify in the LOG window whether the index
VAT_NUMBER was selected for WHERE clause optimization.

PROGRAM 7-B

PROC SQL NOPRINT;
SELECT DISTINCT VAT NUMBER
INTO :VAT_LIST SEPARATED BY '", "!'
FROM SUGI27.BAD DEBTOR;
QUIT;

$LET VAT _LIST = &VAT_LIST;

DATA SQL_INTO_ INDEXED;

SET SUGI27.COMPANY INDEXED;

WHERE VAT NUMBER IN ("&VAT_LIST");
RUN;

CONCLUSION

To determine which technique is the most efficient, we measured
and compared the resource usage of each technique. We ran
each program 5 times on a Windows NT PC and based our
conclusions on averages, not on one individual execution.

The following table summarizes the average real time needed by
each program ranked from low to high:

PROGRAM INDEX ON LOOKUP REAL TIME
NUMBER SAS DATA SET? (SECONDS)
7-B YES 0:00:00.40
6-B YES 0:00:00.53
2-C YES 0:00:11.66
5-A YES 0:00:12.02
6-A NO 0:00:19.78
7-A NO 0:00:19.88
4-C NO 0:00:26.15
4-D YES 0:00:28.53
4-E YES 0:00:28.81
4-B NO 0:00:28.91
2-B NO 0:00:29.14
4-A NO 0:00:32.18
3-B YES 0:00:33.06
2-A NO 0:00:34.11
3-A NO 0:00:35.10
1-B YES 0:00:53.25
1-A NO 0:03:22.10

The following graph summarizes the average real time needed by
each program in the order they were discussed in this paper:

RESOURCE USAGE
REAL TIME (SECONDS)

1-A 0:03:22,10
1-B 0:00:53,25
2A 0:00:34,11
2B 0:00:29,14
2C 0:00:11,66
3A 0:00:35,10
3B 0:00:33,06
4A 0:00:32,18
4B 0:00:28,91
4c 0:00:26,15
4D 0:00:28,53
4E 0:00:28,81
5A 0:00:12,02
BA 0:00:19,78
6-B 0:00:00,53
7A 0:00:19,88
7B 0:00:00,40

1 T T T T
0:00:00,00 0:01:00,00 0:02:00,00 0:03:00,00 0:04:00,00

The following table summarizes the average memory needed by
each program ranked from low to high:

PROGRAM INDEX ON LOOKUP MEMORY

NUMBER SAS DATA SET? (K)
4-A NO 134
4-B NO 143
4-C NO 144
4-D YES 144
4-E YES 145
5-A YES 163
3-A NO 183
3-B YES 184
2-C YES 213
6-B YES 244
6-A NO 247
1-B YES 258
2-A NO 314
7-A NO 318
7-B YES 318
2-B NO 653
1-A NO 2159

SUGI 27 Advanced Tutorials

The following graph summarizes the average memory needed by
each program in the order they were discussed in this paper:

RESOURCE USAGE
MEMORY (K)

2159

T T T T T
0 500 1000 1500 2000 2500

We can conclude that it is often more efficient to subset the large
lookup SAS data set based on the list of unique key values that
exist in the primary SAS data set instead of combining the two
SAS data sets. The INTO clause with the SEPARATED BY
keyword in the SELECT statement of the SQL procedure and the
CALL EXECUTE routine have proven to be the most efficient.
Keep in mind that both techniques are only appropriate if the list
of unique key values that exist in the primary SAS data set is
limited in size.

We can also conclude that in general the ease of writing
programs is often inversely proportional to its efficiency. In other
words, fairly straightforward programs often consume more
computer resources than more complicated programs. However,
writing programs that use fewer computer resources, but use
more complex programming techniques, may result in an
increase in development time. You should consider spending
more development time to reduce computer resource usage in
programs that are run frequently or process large amounts of
data.

REFERENCES

SAS Institute Inc., Combining and Modifying SAS Data Sets:
Examples, Version 6, First Edition, Cary, NC: SAS Institute Inc.,
1995. 197 pp.

SUGI 27 Advanced Tutorials

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Please feel free to contact the authors at:

Nancy CROONEN

CC Training Services BVBA
Kesseldallaan 12/202

B-3010 KESSEL-LO

BELGIUM

Work Phone: +32 496 28 45 28

Fax: +32 2 706 03 09

Email: nancy.croonen@solidpartners.be
Web: www.solidpartners.be

Henri THEUWISSEN

SOLID Partners NV

Minervastraat 14 bis

B-1930 ZAVENTEM

BELGIUM

Work Phone: +32 495 54 52 53

Fax: +32 2 706 03 09

Email: henri.theuwissen@solidpartners.be
Web: www.solidpartners.be

	SUGI 27 Title Page

