
Paper 234-25

Using KEY= to Perform Table Look-up

Sandra Lynn Aker, ASG, Inc., Vernon Hills, IL

Introduction

This paper demonstrates the use of indexes to
perform table look-up, the process of locating
observations in a table file based on values in a
master file. It begins by discussing how this is done
with the traditional MATCH-MERGE, including a
demonstration of tips and tricks for handling matches
and nonmatches. It then compares several different
techniques used to create an INDEX, explaining both
the simple and composite, and shows how to use
them in a MATCH-MERGE, and then in a KEY READ
with the KEY= data set option. It explains the
IORC and _ERROR_ automatic variables and
discusses how to use these to make the process
more efficient. It continues with demonstrations of
different ways to access a table, especially when the
key values are not unique on either the table or the
master file, and also shows how to process
nonmatches accurately. It concludes with a
demonstration of how to use a KEY READ to modify
data sets, and finally, a discussion of the overall
advantages and disadvantages of using indexes.

Simple Merge

This is the standard technique for comparing values
where data is read from a data set, or from an external
flat file, sorted by any number of variables, and merged
by those same variables. Note that the ability to flag
the data set from which the match occurs using the IN
operator, allows data manipulation contingent on the
match/nonmatch

DATA MASTER;
SET SASDATA.MASTER

(KEEP=DEPT ITEM SALES);

DATA TABLE;
INFILE FILEDATA;
INPUT @1 DEPT 2.

 @30 PERCENT 4.1;

PROC SORT DATA=MASTER;
BY DEPT;
PROC SORT DATA=TABLE;
BY DEPT;

DATA MERGE;
MERGE MASTER TABLE;
BY DEPT;

Merge with Output of Nonmatches
Using PROC PRINTO

Note in this example that the first PROC PRINTO
designates a new output file where the nonmatches are
printed, and the second PROC PRINTO returns
printing to the standard output file.

DATA MERGE NOTTABLE;
MERGE MASTER(IN=A) TABLE(IN=B);
BY DEPT;
IF A THEN DO;

IF B THEN OUTPUT MERGE;
ELSE OUTPUT NOTTABLE;

END;

PROC PRINTO NEW PRINT=NOMATCH;
PROC PRINT DATA=NOTTABLE;
PROC PRINTO;

Merge with Output of Nonmatches
Using FILE PRINT and PUT Statement

Note in this example, an output file is created where the
nonmatches are placed to be printed or viewed without
the need for a data set and a PROC PRINT procedure.

Also note that the PUT statement is used to print the
nonmatching observations and their total on the log.
(PUT _ALL_= would print all the variables without
specifying them).

FILENAME REPORT filespec;
DATA MERGE;
MERGE
MASTER(IN=A

KEEP=DEPT ITEM SALES)
END=EOF

TABLE(IN=B
KEEP=DEPT PERCENT);

BY DEPT;
FILE REPORT NOTITLES;
IF A THEN DO

IF B THEN OUTPUT MERGE;
ELSE DO;

COUNT + 1;
PUT 'NO MATCH WITH TABLE ' DEPT=;

END;
END;
IF EOF THEN
PUT 'NOMATCH COUNT ' COUNT COMMA5.;

Posters

Merge Using Indexes with Merge Statement

Although it is not efficient to create an index solely for
a MATCH-MERGE, because the resources will be
increased if the data is not in sort order, an index
allows table look-up with the MERGE statement
without first using the SORT.

Note that in this example the value of the system
option MSGLEVEL= is changed to I to display index
usage information in the log, and the option UNIQUE
is used in the table file, but not in the master where
the key variable has duplicate values.

Also note that both the INDEX= data set option and
the PROC DATASETS procedure are used to create
the indexes. Using the INDEX= data set option
tested slightly faster than using PROC DATASETS,
however, the advantage of using the latter is the
ability to gage whether or not there is enough space
in the library to create the index before using it.
Finally, note that this shows examples of simple
indexes, where variables are indexed independently
of one another.

OPTIONS MSGLEVEL = I;
DATA MASTER(INDEX=(DEPT));
SET SASDATA.MASTER

(KEEP=DEPT ITEM SALES);

DATA TABLE;
INFILE FILEDATA;
INPUT @1 DEPT 2. @30 PERCENT 4.1;

PROC DATASETS LIBRARY=WORK;
MODIFY TABLE;
INDEX CREATE DEPT / UNIQUE;

DATA MERGE;
MERGE MASTER(IN=A) TABLE(IN=B);
BY DEPT;
IF A AND B;

Merge Using Indexes with Key Read

A better use of the index would be to do a table look-
up with a KEY READ, particularly if the table is large
and relatively few variables need to be retrieved.
Here the SET statement uses the KEY= option and
the automatic variable _IORC_ with a return code of
zero (0) to determine when a match has occurred.

Note that the system option MSGLEVEL= does not
need to be set to I because the use of an index is
explicitly requested, and that only the table file needs
to be indexed. Also note that this example uses a
composite index where a unique name refers to two
or more variables which together make up the index.

DATA MASTER;
SET SASDATA.MASTER

(KEEP=DEPT LINE ITEM SALES);

DATA TABLE
(INDEX=(DEPTLINE=(DEPT LINE)/UNIQUE));
INFILE FILEDATA;
INPUT @1 DEPT 2.

@3 LINE $1
@30 PERCENT 4.1;

DATA MERGE;
SET MASTER;
SET TABLE KEY=DEPTLINE/UNIQUE;
IF _IORC_ = 0;

Merge Using Indexes with Key Read
By First LINE

Being more creative and efficient, the next example
only accesses the table on the first occurrence of
LINE, then turns on a flag when a match occurs and
retains it, and the variables input, across all items in
that LINE. When a match does not occur, the
ERROR automatic variable is set to zero to
continue processing and the flag is turned off.

All observations are output, to one file when the flag
is turned on, and to another when the flag is turned
off. Because of the BY processing in this example,
the master file must be sorted or indexed prior to the
table look-up, while again the table does not.

It is important to note in this example that when a task
follows a nonmatch, the _ERROR_ automatic
variable must be reset to 0, because a nonmatch is
treated as an error which causes SAS to set
ERROR to 1, and print an error message on the log
each time a nonmatch is encountered up to the limit
in the ERROR= option.

Also, note when a nonmatch occurs, that observation
would be propagated with variable values from the
last match, and to avoid this the variables are set to
blank or missing.

PROC SORT DATA=MASTER;
BY DEPT LINE ITEM;

DATA MERGE NOMERGE;
SET MASTER

(KEEP=DEPT LINE ITEM SALES);
BY DEPT LINE ITEM;
RETAIN FLAG PERCENT;
IF FIRST.LINE THEN DO;

SET TABLE
(KEEP=DEPT LINE PERCENT)
KEY=DEPTLINE/UNIQUE;

IF _IORC_ NE 0 THEN DO;

Posters

ERROR = 0;
FLAG = 'N';
PERCENT = .;

END;
ELSE FLAG = 'Y';

END;
IF FLAG = ‘Y’ THEN OUTPUT MERGE;
ELSE
IF FLAG = ‘N’ THEN OUPUT NOMERGE;

Merge Using Indexes with Key Read
By First LINE With a VSAM Table File

An even more creative and efficient method would not
only access the table on the first occurrence of LINE,
and only when a match occurs, but also avoid putting
the table to a data set. This can be achieved if the
table resides on an indexed VSAM file.

In this example, on the first occurrence of LINE when
a match with the key occurs, the remaining variables
are read from the VSAM table file and the input is
retained across all items in that LINE. When a match
does not occur, the _ERROR_ automatic variable is
set to zero to continue to the PUT statement where
the missing observation is printed, and then to the
RETURN statement which takes processing to the top
of the data step.

Note the creation of DEPTLINE to be used as the key
for the VSAM file, and that because the variable
DEPT is numeric the PUT function is used to retain
leading zeroes. Finally, note that again the variables
are set to missing or blank when a nonmatch occurs.

PROC SORT DATA=MASTER;
BY DEPT LINE ITEM;

DATA MERGE;
SET MASTER

(KEEP=DEPT LINE ITEM SALES);
BY DEPT LINE ITEM;
RETAIN PERCENT;
IF FIRST.LINE THEN DO;

DEPTLINE = PUT(DEPT,Z2.)||LINE;
INFILE FILEDATA VSAM KEY=DEPTLINE;
INPUT @;
IF _IORC_ NE 0 THEN DO;

ERROR = 0;
PERCENT=.;
PUT
‘NO MATCH WITH TABLE ‘

DEPTLINE= PERCENT=;
RETURN;

END;
INPUT @30 PERCENT 4.1;

END;

If you do not wish to process the nonmatches, then the
following will input only those observations from the
table where there is a match.

IF FIRST.LINE THEN DO;
DEPTLINE = PUT(DEPT,Z2.)||LINE;
INFILE FILEDATA VSAM KEY=DEPTLINE;
IF _IORC_ = 0 THEN

INPUT @30 PERCENT 4.1;
END;

Merge Using Indexes with Key Read / Both
Files have Unique Observations and Are Sorted

These examples showed multiple observations on the
master file and unique observations on the table file.
If there are also unique observations on the master
file, and both files are sorted in the order of the key
variable, it is faster to not use the UNIQUE option to
allow sequential processing.

PROC SORT DATA=MASTER;
BY DEPT LINE ITEM;
PROC SORT DATA=TABLE;
BY DEPT LINE ITEM;

DATA MERGE;
SET MASTER

(KEEP=DEPT LINE ITEM SALES);
SET TABLE

(KEEP = DEPT LINE ITEM PERCENT)
KEY=DEPTLINE;

IF _IORC_ = 0;

Merge Using Indexes with Key Read / Master File
has Unique Observations and Table File
Has Multiples

If there are unique observations on the master file
and multiple observations on the table file, a DO loop
is needed, otherwise only the first matching key value
from the table file is retrieved.

Note that again it is necessary to reset the _ERROR_
automatic variable to 0, and that because only
matches are kept, it is not necessary to set variables
to missing of blank.

Also note that UNIQUE is not used with the KEY=
option as this produces an infinite loop. Finally, note
that the files do not need to be sorted, although
processing is faster if they are.

DATA MERGE;
SET MASTER

(KEEP=DEPT LINE SALES);
DO UNTIL (_IORC_ NE 0);

SET TABLE
(KEEP = STORE DEPT LINE

Posters

PERCENT) KEY=DEPTLINE;
ERROR_ = 0;
IF _IORC_ = 0 THEN OUTPUT; END;

Updating Using Indexes with Key Read when the
Files are Too Large for Temporary Work Space

If the data sets are large, modifying them in place
would save a significant amount of temporary work
space by avoiding the creation of additional copies.
This is accomplished by performing a KEY READ with
the MODIFY statement, which updates or replaces
existing variables on the master file with those from the
update file.

This is in contrast to performing a KEY READ with a
SET statement, which merges the master with the
update, to create an output file with information from
both. With KEY= on the MODIFY statement, only
those observations where the key on the master file
matches the key on the update are changed in place,
while those that do not match remain as they were.

Note that when using the MODIFY statement with the
KEY= option, it is best to have unique observations on
both files. Also, note that the variable on the update file
is renamed so that It can be uniquely referred to in the
assignment statement.

Finally, note that the master file is backed up with the
COPY procedure, because should a system abort or
interrupt occur, the result would be an unrecoverable
loss of data.

PROC COPY IN=SASDATA.TABLE
OUT=BACKUP.TABLE;

DATA SASDATA.TABLE;
SET SASDATA.NEWTABLE

RENAME=(PERCENT=NEW_PCNT)
KEEP=DEPT LINE PERCENT);

MODIFY SASDATA.TABLE KEY=DEPTLINE;
PERCENT = NEW_PCNT;

Guidelines for Indexing

The SAS® System will decide whether to use an index
outside of a table lookup when it is referenced in a BY
Statement, A WHERE clause or WHERE data set
option, or an SQL join. Note, that an index is not used
with a subsetting IF statement. Using the
MSGLEVEL=I option, mentioned earlier, will display a
message in the log to indicate if the index was used.

Therefore, when selecting a variable to be indexed, it is
best to select one that is not only frequently queried
with a table lookup, but also one that is often subset on
with BY or WHERE. Also, an indexed variable should
have values that identify small subsets of the data set,

preferably where less than 25% of the observations
have the same value as the index variable.
Furthermore, an index should have a large number of
distinct values, and should be evenly distributed
throughout the data or, even better, the indexed
variable should be sorted.

Other guidelines to follow are that the number of
indexes should be kept small so as to reduce the
resources necessary for storage and maintenance.
Data sets that are indexed should be stable because
resources are required to rebuild the index each time
an observation is added or deleted. and, finally, small
data sets with only a few pages of memory should not
be indexed as any efficiencies would be minimal.

Advantages and Disadvantages of Indexing

The advantages of using an index for table lookup are
that only the observations where a match occurs are
read from the table, multiple values can be retrieved
from the table, and the appropriate master observation
is directly matched. This means that, if the guidelines
are adhered to, access to the table is made significantly
faster.

The disadvantages are that more CPU cycles and I/O
operations are needed to create and maintain the
index, and also that extra memory is needed to load the
index pages when processing code, and to store the
index on disk. Also, note that indexes cannot be used
with a table file that is on tape.

Conclusion

This paper demonstrated the use of indexes to
perform table look-up, with examples that showed the
many ways processing can be reduced by the use of
KEY= as opposed to the traditional MATCH-MERGE.
It also provided additional tips and tricks that can make
it’s use more efficient and accurate, and concluded with
its overall advantages and disadvantages, including
guidelines for its use.

Author Information

Sandra Lynn Aker
ASG, Inc.
175 East Hawthorne Parkway
Suite 155
Vernon Hills, IL 60061
(847) 982-7084
SANDRA.L.AKER@chi.monsanto.com

Trademarks

SAS is a registered trademark of SAS Institute, Inc.,
Cary, NC, USA. ® indicates USA registration

Posters

	CD Table of Contents

