
So You’re Running Out of Sort Work Space . . .
Reducing the Resources Used by PROC SORT

Bob Virgile
Robert Virgile Associates, Inc.

Overview

If you’re concerned about the storage space used
by PROC SORT, there may be hope. The SAS
software contains tools and strategies that reduce
or trade off the resources needed to sort data. This
tutorial explains these tools, with an emphasis on
reducing the amount of sort work space. Therefore
most of this paper applies specifically to the MVS
environment.

The Basics of Sort Work Space

When the SAS® software runs PROC SORT, the
operating environment reserves storage space to
perform the sorting. Unlike under other operating
systems, under MVS this space remains separate
from the WORK area. If you run out of sort work
space, increasing the WORK area (or deleting data
sets which are no longer needed) will not help. Sort
work space also has physical characteristics which
differ from the WORK area. This would be a typical
DD statement used by the SAS procedure to define
a sort work area:

//SORTWK01 DD UNIT=SYSDA,
// SPACE=(CYL,(&SORT),,CONTIG)

This JCL points out two key features of each sort
work area:

 ! it occupies a contiguous block of space, and

 ! its size (&SORT) is a parameter that the
programmer can pass to the operating
system when submitting a job

SAS programmers can adjust two numbers to
expand the total amount of sort work space:

 ! the size of each sort work area, and

 ! the maximum number of sort work areas
created by the program.

Specify the &SORT parameter to adjust the size of
each sort work area:

// EXEC SAS,SORT=8

Using this EXEC statement, the job would now
reserve 8 cylinders for each sort work area.

Limit the number of sort work areas in the SAS
code, not the JCL, either as a global option or as a
PROC SORT option:

options SORTWKNO=3;

proc sort data=sales SORTWKNO=5;

This option determines the maximum number of
sort work areas that PROC SORT is allowed to use.

These steps are effective as long as the operating
system can provide enough sort work space. But
what if it can’t? How can you reduce the amount of
sort work space your program requires?
Alternatively, how can you locate and use additional
sort work space which the operating system would
not normally find?

Going Beyond the Basics

A number of measures, over and above SORT=
and SORTWKNO=, can either increase available
sort work space or decrease the need for sort work
space. Here are some ideas.

Idea #1: Take a Systems Programmer to Lunch

Just for the record, I am not, nor have I ever been, a
systems programmer. Systems programmers often
know of disk packs with a lot of free space. Such
disk packs might be reserved for another use. But if
all the conditions are right (the pack is not being
used, you need the space for one day only, and the
systems programmer is inclined to locate such a
disk pack for you), you
might be able to code your JCL to utilize a specific
disk pack for sort work space:

//SORTWK01 DD UNIT=PACK35,
// SPACE=(CYL,800,,CONTIG)

For each disk pack, you will need to find out how

Advanced Tutorials

much space is available, and code a SORTWK DD instead of waiting until Monday, consider two
statement. Number the DD statements related approaches:
consecutively. The next one might be:

//SORTWK02 DD UNIT=PACK38,
// SPACE=(CYL,545,,CONTIG)

Once again, the key steps are locating (partially)
empty disk packs, obtaining permission to use
them, determining how much contiguous free space
they hold, and designating them in your JCL.
Remember that any permission you receive to use a
disk pack automatically comes with (approximately)
a ten-hour time limit. If you attempt to use the disk
pack the next day, but you haven’t obtained
permission for that day, it can cost many lunches to
repair the damage.

Idea #2: Wait Until Monday

No, the computer is not in a better mood after a
relaxing weekend. Normal activities during the
week can include deleting data sets and releasing
unused space from the end of data sets. As a
result, by Friday, disk packs contain unused space
interspersed between existing data sets. Since sort
work space consists of contiguous space, these
interspersed blocks of storage are not useful as sort
work space.

On a regular basis (typically over the weekend),
systems programmers run jobs to collect and
combine unused disk space. Actually, the jobs copy
all data sets off disk packs, then recopy them back
to the beginning of the disk pack. (Additional
maintenance may take place over the weekend as
well, such as deleting uncatalogued data sets or
archiving data sets which have not been used
recently.) In so doing, these jobs combine smaller
amounts of unused space, which on Friday
appeared in between data sets, into one large block
of unused space at the end of the disk pack. The
net result: the system has a lot more contiguous
free space available on a Monday compared to a
Friday. Thus the possible values for the SORT=
parameter are higher on Monday.

The type and frequency of maintenance varies from
one disk pool to another. For example, sort work
space may use disk packs from which all data sets
are deleted overnight. In this case,

 ! submit your job first thing in the morning

 ! submit your job to run overnight, but restrict it
so that it doesn’t begin until a nightly disk
cleaning program completes.

Talk with a systems programmer to discover the
disk pool used for sort work space, the timing of
disk maintenance programs on various disk pools,
and the JCL needed to release your job once
another job completes.

Idea #3: Subset the Variables

The smaller the data set, the less sort work space is
needed. By analyzing the program, you may
discover that you can drop some of the variables.
In that case, one possibility is to add a DATA step to
subset the variables:

data narrow;
set wide (keep=just three vars);

proc sort data=narrow;
by vars;

However, this DATA step now adds to the CPU time
for the program. Perhaps, that same DATA step
could perform necessary data manipulation,
eliminating the need for a DATA step following
PROC SORT. However, in many cases that DATA
step represents extra, unrecoverable CPU time.
Instead, another possibility would be to ask PROC
SORT to remove extra variables. Here are two
attempts:

proc sort data=wide
 (keep=just three vars)
 out=narrow;
by vars;

proc sort data=wide
 out=narrow
 (keep=just three vars);
by vars;

In theory, placement of the keep= data set option
should make a big difference. The first PROC
SORT should be sorting three variables, and
outputting the results. The second PROC SORT
should be sorting ALL the variables, but outputting
only three of them. In practice, under Version 6 of
the SAS software, it makes no difference where you
place the keep= data set

Advanced Tutorials

option. Both PROC SORTs sort all the variables,
and subset upon outputting to the new data set.
One reason for this (whether sufficient justification
or not) is that the NODUPLICATES option would
generate different results if it operated on three
variables as opposed to all the variables. Under
Version 7, you have the option of using the Version
6 behavior (sort all variables, subset upon output
only) or subsetting the variables entering PROC
SORT. If you are still working under Version 6, a
simple workaround lets you minimize the CPU time
for an extra DATA step. Use a view instead of a
data set to subset the variables:

data temp / view=temp;
set wide (keep=just three vars);

proc sort data=temp out=narrow;
by vars;

Now PROC SORT uses the instructions in the view
to retrieve observations from WIDE (retrieving only
the three desired variables), sort the observations,
and output them to NARROW. The DATA step runs
very quickly, since it stores instructions only, never
actually retrieving data from WIDE.

Another method to sort fewer variables in PROC
SORT is the TAGSORT option:

proc sort data=wide TAGSORT;
by vars;

TAGSORT does not sort all the variables. Instead,
it creates an identifier for each observation, and
then sorts just the BY variable(s) and the
observation identifier. Finally, after sorting, it uses
the observation identifier to retrieve the remaining
variables.

Unfortunately, TAGSORT can also use a lot of CPU
time. In one set of test runs, PROC SORT with
TAGSORT took 3.8 times the CPU time (compared
to PROC SORT without TAGSORT). This
observed increase took place under the MVS
operating system, using a data set with 100
variables and 100,000 observations. Under other
operating systems, TAGSORT can actually
DECREASE the necessary CPU time. You MUST
perform these types of tests on your own
hardware/operating system!

Instead of relying on canned software, you can
program your own version of TAGSORT. For
example:

data temp;
set wide (keep=vars);
recno=_n_;

proc sort data=temp;
by vars;

data wide;
set temp (keep=recno);
set wide point=recno;
drop recno;

The first DATA step keeps just the sort variables
plus a pointer to the current observation number.
PROC SORT sorts that information only, as
TAGSORT would have done. The final DATA step
uses the observation numbers in the new order to
retrieve all variables from the original data set in
sorted order.

The net results: under MVS, this workaround
performed considerably faster than TAGSORT.
Instead of requiring 3.8 times the CPU time, it
required 1.3 times the CPU time. Again, since
TAGSORT reduced CPU time under other operating
systems, this workaround was not efficient outside
of the MVS world.

Idea #4: Break Up the Data

Breaking up the data into subsets uses more CPU
time and storage space. However, it uses less sort
work space, since the program can sort smaller
subsets. When sort work space is the bottleneck,
the extra CPU time may transform a failing program
into a long but successful program. For example,
consider this original program which sorts one large
data set:

proc sort data=huge;
by id;

A replacement program could create three subsets,
each holding one third of the observations. Here is
one possibility, assuming that the original data set
contains 300,000 observations:

data subset1 subset2 subset3;
set huge;
if _n_ <= 100000 then output subset1;
else if _n_ <= 200000 then output
subset2;
else output subset3;

proc sort data=subset1;
by id;

proc sort data=subset2;
by id;

proc sort data=subset3;
by id;

data huge;
set subset1 subset2 subset3;

Advanced Tutorials

by id; %macro split (dsn=, sets=);

The program sorts each subset, then interleaves the
sorted subsets. In fact, that is the method that
PROC SORT uses when it must use multiple sort
work areas. PROC SORT uses each sort work area
to sort a subset of the observations, and then
interleaves the results.

This example could eliminate the first DATA step.
Instead, each of three PROC SORTs could have
selected 100,000 observations:

proc sort data=huge (FIRSTOBS=1
 OBS=100000) OUT=SUBSET1;
by id;

proc sort data=huge (FIRSTOBS=100001
 OBS=200000) OUT=SUBSET2;
by id;

proc sort data=huge (FIRSTOBS=200001
 OBS=300000) OUT=SUBSET3;
by id;

This approach requires prior knowledge of the
number of observations in the incoming data. If
your data are stored on disk, you can easily
discover the number of observations in a SAS data
set:

data _null_;
if 0 then set huge nobs=N;
put ’Total number of obs: ’ N;
stop;

The condition if 0 is always false. Therefore, the
SET statement never reads any observations.
Despite those facts, the nobs= option on the SET
statement still retrieves the number of observations
in the data set. The DATA step uses very little CPU
time, since it reads none of the observations.
Instead, the software examines the descriptor
portion of the SAS data set, which already stores
the number of observations in the data set.

This technique readily lends itself to macro
language, where the parameters are the data set &dsn
name and the number of subsets to use when
splitting up the data set. For the sake of simplicity,
this macro hard codes one BY variable named ID:

 %local first /* first observation */
 last /* last observation */
 n /* number of obs */
 subset /* numbers subsets */
 perblock /* obs per subset */
 ;
 %let first=1;
 %let subset=1;

 data _null_;
 if 0 then set &DSN nobs=nobs;
 call symput(’N’, put(nobs, 9.));
 call symput(’perblock’,
 put(ceil(nobs/&SETS), 9.));
 stop;
 run;

 %if &N > 500 and &SETS > 1 %then
 %do %until (&LAST >= &N);

 %let last = %eval(&FIRST +
 &PERBLOCK - 1);

 proc sort data=&DSN
 (firstobs=&FIRST obs=&LAST)
 out=subset&SUBSET;
 by id;
 run;

 %let first = %eval(&last + 1);
 %let subset = %eval(&subset + 1);

 %end;

 %else %do;

 proc sort data=&dsn;
 by id;
 run;

 %end;

%mend split;

This macro executes PROC SORT as many times
as necessary, each time sorting a different subset of
observations. The key macro variables and their
roles are:

The name of the incoming data set being split into
subsets (with each subset being individually sorted).

&sets
The number of subsets to create when splitting the
data.

&n
The number of observations in the incoming data
set.

&perblock
The number of observations per subset. (The final

Advanced Tutorials

subset may contain fewer observations due to
rounding.)

For each PROC SORT, three additional macro
variables come into play:

&first
The first observation to select, when creating the
current subset.

&last
The last observation to select, when creating the
current subset.

&subset
Numbers the subsets (1, 2, 3, etc.) For example,
when &subset is 3, PROC SORT creates an output
data set named subset3.

Many variations exist on these techniques. Here
are some possibilities to consider:

 ! For data sets stored on tape, a DATA step
could count the number of observations.

 ! Instead of breaking up the data into &sets
subsets, create as many subsets as needed.
Each subset would hold the next 100,000
observations.

 ! Instead of basing a subset’s size on the
number of observations, also factor in the size
of an observation. Remember, PROC
CONTENTS can output a data set which
includes the length of each variable.

Let’s examine a special situation that permits an
interesting split of the data. Here is the original
program that fails because of a lack of sort work
space:

proc sort data=caribbean;
by state city;

Notice two key conditions. First, the program sorts
by multiple variables. Second, the primary sort key
(STATE) takes on a limited set of values, and thus
represents a good mechanism for splitting the data.

A replacement program would begin by splitting the
data according to the primary sort key:

data AL FL LA MS TX;
set caribbean;
select (state);
 when (’AL’) output AL;
 when (’FL’) output FL;
 when (’LA’) output LA;
 when (’MS’) output MS;
 when (’TX’) output TX;
end;

After splitting the data, the program can sort each of
the smaller subsets:

proc sort data=AL;
by city;

proc sort data=FL;
by city;

proc sort data=LA;
by city;

proc sort data=MS;
by city;

proc sort data=TX;
by city;

Notice that the BY statement now uses just one
variable for sorting. Because the primary key
(STATE) was used to split the data, it no longer
needs to appear in the BY statement, thus reducing
some of the sorting requirements.

Finally, assemble the pieces. The lazy way is to
use a DATA step:

data caribbean;
set AL FL LA MS TX;

A shorter method (in terms of CPU time) would
append the data sets:

proc append data=FL base=AL;
proc append data=LA base=AL;
proc append data=MS base=AL;
proc append data=TX base=AL;

Of course, now the name of the final data set is AL
instead of CARIBBEAN. However, PROC
DATASETS can easily change (or exchange) the
names of data sets.

Idea #5: Let the SAS Software Sort

The SAS software includes a sorting routine which it
uses to sort small data sets. Typically, the
operating system also provides a sorting routine
which is more efficient for sorting larger data sets.
When your program invokes PROC SORT, the SAS
software evaluates the SAS data set as being

Advanced Tutorials

"large" or "small" and chooses the sorting routine it ! What is the mathematical relationship between
expects to be more efficient. (Actually, the software the number of observations in a SAS data set
looks at the number of observations in the SAS data and the amount of CPU time used by various
set and compares that number to the setting for the sorting routines?
global option SORTCUTP. An OPTIONS statement ! Sort work space gets allocated as contiguous
can control the value of SORTCUTP, although such with no secondary allocation. Is this a
a step is rarely taken.) requirement, or is it related to speed or other

Your program can control whether the program
uses the SAS sorting routine for a given PROC ! What is the name and usage of the Version 7
SORT. Just modify the global option sortpgm: option that lets PROC SORT subset variables

options sortpgm=SAS; /* host, best */

The SAS software sorting routine uses memory,
rather than sort work space, for sorting. In test runs
(again, the test data set contained 100 variables
and 100,000 observations), it took 1.5 times the
CPU time. Beware! The CPU time may increase
exponentially using the SAS sorting routine. Some
sorting routines require CPU time proportional (in
part) to the square of the number of observations.
However, if sort work space (not CPU time) is the
bottleneck, the SAS sorting routine becomes a
viable option.

Some Final Notes

This paper raises many technical issues which
stretch the scope of my knowledge. It might take a
panel of experts rather than one individual to fully
answer related questions. Here are some questions
that I was still working on when I hit the deadline for
submitting a final draft:

 ! With multiple sort work areas, does PROC
SORT (as I have claimed) sort a portion of the
data set in each, then interleave the results?

 ! Is PROC SORTT any different from the global
option sortpgm=SAS?

 ! How often does sort work space default to
using the same disk pool used for permanent
data sets? What routine maintenance normally
gets performed on different varieties of disk
pools? What other functions can use various
disk pools?

considerations?

from the incoming data set?

Finally, there may be analogous issues that apply
under other operating systems. For example, must
other operating systems use contiguous space?
Can other operating systems swap space between
the Work area and sort work space? One known
"feature" is that other operating systems don’t
always release storage space that was temporarily
needed by earlier PROC SORTs. In practice, you
might gain space for PROC SORT by permanently
saving your data, closing down your current
session, and opening a new SAS session.

Remember, saving your results is easy if you plan
ahead. First, define a permanent library:

libname perm ’path to directory’;

To save your SAS data sets permanently, you don’t
have to change all the one-level data set names to
two-level names. Instead, add one statement at the
right point in the program:

options user=perm;

From that point in the program, all SAS data sets
with one-level names get saved in the designated
library.

I may have answers for these questions by the time
the conference begins. Any information I collect will
be presented at SUGI, and may also appear in a
subsequent publication of this paper. All comments,
questions, and suggestions are always welcome.
Feel free to call or write:

Bob Virgile
Robert Virgile Associates, Inc.
3 Rock Street
Woburn, MA 01801
(781) 938-0307

Advanced Tutorials

	Main TOC
	Section Contents

	p: Paper 39

