Paper 127-26

Joining SAS® and DBMS Tables Efficiently
Garth W. Helf, IBM Corporation, San Jose, CA

ABSTRACT

A common task in Data Warehouse applications is joining a SAS
data set with tables in a relational database (DBMS), such as
DB2, Oracle, or Teradata. For example, you work for a company
that manufactures televisions, you have a SAS data set that
contains serial numbers of 100 televisions returned for warranty
repair, and you want to look up information for these 100
televisions in a DB2 table that contains the manufacturing history
of all 1 million TVs you made last year. SAS versions 6.12, 7,
and 8 provide tools in the SAS/ACCESS® Software for Relational
Databases product to transparently join SAS data sets with
DBMS tables in the SQL procedure or DATA steps. This paper,
intended for intermediate and advanced SAS users, describes
these tools, explains why performance can be very poor when
you join a SAS data set with a large DBMS table, and presents
some solutions to make the join more efficient. One solution is to
use the data set options DBINDEX= and DBKEY= in the
SAS/ACCESS LIBNAME Statement, which are new in Versions 7
and 8. Another solution is the %DBMSlist macro, which passes
SAS data set values in chunks to the SQL Procedure
Pass-Through Facility.

INTRODUCTION

There are many times when you want to write a query to a DBMS
table and return data only for the values of a variable in a SAS
data set. For example, you have a flat file of serial numbers from
which you create a SAS data set with INFILE and INPUT
statements in a DATA step. Or maybe you created a SAS data
set from a query against a DBMS table at another location in your
company, and now you want to query a DBMS table at your
location only for the key values in your SAS data set. SAS
provides tools for joining a SAS data set with a DBMS table.

PROC SQL CAN JOIN SAS AND DBMS TABLES, BUT BE
CAREFUL!

SAS versions 6.12, 7, and 8 can all join a SAS table to a DBMS
table in a PROC SQL step. For example, suppose we have a
SAS data set called Warranty that contains the serial numbers
(variable sn) for 100 televisions that were returned for warranty
service, and we want to join it with a DBMS table called MfgHist
which contains the manufacturing history for all one million TV
sets made so far. The following PROC SQL step would work:

Proc SQL;

create table History as

select * from Warranty a, dbms.MfgHist b
where a.sn=b.sn;

quit;

In SAS Version 6.12, dbms.MfgHist refers to a view descriptor,
which is associated with an access descriptor. A discussion of
access and view descriptors is beyond the scope of this paper.
In Version 7 and 8, dbms.MfgHist refers to a SAS/ACCESS
LIBNAME data set association, which is described in a later
section.

What's wrong with this PROC SQL approach to join a SAS data
set with a DBMS table? Nothing, if your DBMS table is fairly
small. However, when the DBMS table is large, this PROC SQL
step is very inefficient because every row in the DBMS table is
returned to your SAS session and joined with your SAS data set
by PROC SQL. In our TV warranty example, all one million rows
from the MfgHist DB2 table will be returned to your SAS session,
and all but 100 rows will be discarded because they don’t match
the serial numbers in our SAS data set.

There are two good ways to solve this problem. One solution for
versions 7 and 8 only is to use the DBKEY= and DBINDEX= data
set options with the SAS/ACCESS LIBNAME statement. Another
is to write a macro that passes the values in your SAS data set in
groups to an SQL Procedure Pass-Through Facility query. Such
a macro can be used with version 6.12 as well as versions 7 and
8. This paper includes one such macro called %DBMSlIist that |
use extensively.

SAS/ACCESS LIBNAME STATEMENT

Starting with Version 7, SAS provides a much better way to
access DBMS tables than access and view descriptors, through a
new feature called the SAS/ACCESS LIBNAME statement. This
statement allows you to assign a SAS libref directly to tables in a
DBMS. For example, if our TV table is in a DB2 database called
TVDB, a SAS/ACCESS libname statement would look like:

libname dbms db2 dsn=tvdb uid=helf pwd=mypw;

After this LIBNAME statement is issued, you can access DB2
tables in PROC and DATA steps by refering to data set
dbms.DB2_table_name.

There are system options, SAS/ACCESS LIBNAME statement
options, and data set options that monitor and affect the
efficiency of SAS steps that join SAS and DBMS tables. This
section describes the SASTRACE system option, and the
DBKEY= and DBINDEX= data set options.

SASTRACE: A GREAT OPTION FOR DEBUGGING
SAS/ACCESS LIBNAME STATEMENTS

How did | know that SAS retrieves an entire DBMS table in
certain situations? There is a fantastic system option called
SASTRACE that displays detailed information about the
commands that SAS/ACCESS sends to your DBMS. This option
is incredibly useful when you are debugging a program that is
using a SAS/ACCESS Libname statement. The syntax for this
option is:

options sastrace=',,,d' sastraceloc=saslog;

The SASTRACE option turns on detailed DBMS messages, and
the SASTRACELOC option tells SAS where to write the
messages, in this case the SAS log. For example, when you
submit a LIBNAME statement to assign a libref to a DB2
database, you will see the following messages in the SAS log:

TRACE: Successful connection made, connection id
0 0 1296057922 no _name 0 Submit
TRACE: Database/data source: tfdiskdb 1
1296057922 no_name 0 Submit
TRACE: USER=HELF, PASS=XXXXXXX 2 1296057922
no_name 0 Submit
TRACE: AUTOCOMMIT is NO for connection 0 3
1296057922 no_name 0 Submit
19 libname db2sys db2 &tfdiskdb schema=db2sys;
NOTE: Libref DB2SYS was successfully assigned as
follows:
Engine: DB2
Physical Name: tfdiskdb

Each line in the log that starts with TRACE: is a message about
how SAS interacts with the DBMS. Further examples of trace
output is shown in later sections. This trace information in the log
is very useful when you need to talk with SAS Technical Support,
and when you want to talk to your database administrator. The
administrator of your Oracle or DB2 database probably knows

nothing about SAS, but the SASTRACE information in the log will
be quite helpful for him or her to debug a database problem.

Hint: | could not find this anywhere in the documentation, but to
turn off tracing, submit the following statement:

options sastrace=',,,';

DBKEY= DATA SET OPTION

The DBKEY= option lets you specify the column(s) in the DBMS
table to use as a serach key. An actual index on this column in
the DBMS table is not required, and SAS does not attempt to
determine if one exists. It is used like this:

libname dbms db2 dsn=tvdb uid=helf pwd=mypw;
proc SQL;

create table History as

select * from Warranty a,

dbms .MfgHist (dbkey=sn) b

where a.sn=b.sn;

quit;

libname dbms clear;

In this example, the DBKEY= option instructs the SQL procedure
to pass the WHERE clause to the SAS/ACCESS engine in a form
similar to WHERE SN=host-variable. The engine then passes
this optimized query to the DBMS server. The host-variable is
substituted, one at a time, with SN values from the observations
in the SAS data set Warranty. As a result, only rows that match
the WHERE clause are retrieved from the DBMS. Without this
option, PROC SQL retrieves all the rows from the MfgHist table.

Here are some examples of the DBKEY= option. In these
exmaples, data set LOTS contains a variable called LOT whose
values will be used as a key to retrieve data from DB2 table
db2sys.disc_stat_history. | know that column LOT in this DBMS
table has an index.

Example 1 - Single Key Variable: This first example shows a
simple query with one variable as the search key:

proc sqgl;
create table lot_data3 as
select a.lot, a.trdate, a.trtime, a.resource
from db2sys.disc_stat_history (dbkey=lot) a,
lots b
where a.lot=b.lot;
quit;

TRACE: Using FETCH for file DISC STAT HISTORY on
connection 0 6 1296151584 no_name 0 SQL

TRACE: Change AUTOCOMMIT to YES for connection
id 0 7 1296151584 no _name 0 SQL

TRACE: SQL stmt prepared on statement O,
connection 0 is: SELECT * FROM
db2SyS.DISC_STAT_HISTORY 8 1296151584
no_name 0 SQL

TRACE: DESCRIBE on statement 0, connection 0. 9
1296151584 no name 0 SQL

TRACE: SQL stmt prepared on statement O,
connection 0 is: SELECT LOT, TRDATE,
TRTIME, RESOURCE FROM

db2sys.DISC_STAT HISTORY WHERE (((lot= ?)
OR ((lot IS NULL) AND (CAST(? AS LONG
VARCHAR) IS NULL)))) FOR READ ONLY 10

1296151584 no _name 0 SQL

TRACE: Open Cursor with new index value 12
1296151584 no _name 0 SQL

TRACE: Close cursor from statement 0 on
connection 0 13 1296151584 no name 0 SQL

Note that SAS first prepares a SELECT * statement and then
does a DESCRIBE to find the names and attributes of the DBMS
columns named in the query. Then, SAS prepares a statement
to actually retrieve data and constructs a WHERE condition of
LOT=?. SAS then uses OPEN CURSOR and CLOSE CURSOR
statements to pass each value of variable LOT in the SAS data
set to the DBMS and return the results to SAS.

The performance of queries using the DBKEY= options is usually
quite good. In this example, my LOTS dataset had 200 rows and
it took 3 seconds to return the data from the DBMS table that had
120K rows. Without the DBKEY= option, SAS retrieves all of the
rows in the DBMS table and applies the WHERE clause in SAS.
When | removed the DBKEY= option from this query, it took 41
seconds to complete. | also ran a similar query with the DBKEY=
option against a much larger table, about 5M rows, and this query
took only 4 seconds.

However, | have seen cases where a PROC SQL query with the
DBKEY= option takes 10 times longer than using the macro
%DBMSIist described in the next section. This generally
happens when the DBMS server is at a remote location with a low
bandwidth network connection. The message here is that you
need to carefully evaluate different methods for running queries
that join SAS and DBMS tables.

Example 2 - Multiple Key Variables: This example shows a
query where multiple variables in the SAS data set are used to
form the search key. Note that you must enclose two or more
column names in parentheses after the DBKEY= token. To save
space, | will list only the SASTRACE statement that shows the
statement SAS sends to the DBMS.

proc sql;
create table lot data as
select a.lot, a.trdate, a.trtime, a.resource
from db2sys.disc_stat_history (dbkey=(lot
trdate)) a, lots b
where a.lot=b.lot and a.trdate=b.trdate;
quit;

TRACE: SQL stmt prepared on statement O,
connection 0 is: SELECT LOT, TRDATE,
TRTIME, RESOURCE FROM
deSyS.DISC_STAT_HISTORY WHERE (((lot= ?)
OR ((lot IS NULL) AND (CAST(? AS LONG

VARCHAR) IS NULL))) AND ((trdate= ?) OR
((trdate IS NULL) AND (CAST(? AS
VARCHAR (50)) IS NULL)))) FOR READ ONLY 4

1296167379 no_name 0 SQL

It appears that PROC SQL with the DBKEY= option will only
create WHERE clauses when the join condition is equality, for
example A.LOT=B.LOT. If you want to use other SQL clauses
like BETWEEN or greater than, use SASTRACE and make sure
SAS is building an SQL statement that is efficient for your DBMS.

Example 3 - DBKEY= Option in a DATA step: You can also
use the DBKEY= data set option in a DATA step by using the
KEY=DBKEY option of the SET statement. This example uses a
data step to join the SAS data set with a DBMS table:

data lot_data;
set lots;
set db2sys.disc_stat history (dbkey=lot
keep=lot trdate trtime resource)
key=dbkey;
run;
TRACE: SQL stmt prepared on statement 0,

connection 0 is: SELECT TRDATE, TRTIME,
LOT, RESOURCE FROM db2sys.DISC_STAT_HISTORY

WHERE (((lot= ?) OR ((lot IS NULL) AND (
CAST (? AS LONG VARCHAR) IS NULL)))) FOR
READ ONLY

WARNING! Be very careful with this DATA step method when
the DBMS table may contain multiple rows for each value of your
key variable. This DATA step method returns only one row for
each value of the key variable, and the row returned may not
even be the same if you rerun the query! For example, when |
had 10 values of key variable LOT in the LOTS data set, the
PROC SQL method in Example 1 returned 202 rows from the
DB2 table (because many transactions are performed on each lot
during our manufacturing process), but the DATA step method
above returned only 10 rows. Also, queries to a DBMS table do
not return data in any particular order unless you use the ORDER

BY clause. Therefore, | saw cases where several rows in the
result set were different when | reran the DATA step compared to
the first time. The message here is that even though this DATA
step method is described in the SAS documentation and
supported by SAS Institute, it may be safer to always use the
PROC SQL method instead.

Example 4 - DBNULLKEYS= Data Set Option: In Example 1
we saw that SAS builds a WHERE expression like this when you
use the DBKEY= option:

WHERE (((lot= ?) OR ((lot IS NULL) AND (
CAST (? AS LONG VARCHAR) IS NULL))))

You can see that the WHERE clause is actually two clauses
separated by the OR operator. The first clause is for non-null
values of your key variable. The second clause is for null values
of the key variable. A compound clause like this is less efficient
for your DBMS to process than a simple clause, so SAS provides
another data set option called DBNULLKEYS= that tells PROC
SQL to create the non-null WHERE clause only. If you know that
your key variable does not contain null values, you should use
this option. The syntax for this option and the WHERE clause
created look like this:

proc sqgl;

create table lot_data as

select a.lot, a.trdate, a.trtime, a.resource
from db2sys.disc_stat_history (dbkey=lot
dbnullkeys=no) a, lots b

where a.lot=b.lot;

quit;

WHERE ((lot= ?))

Unfortunately, | cannot show you an actual TRACE statement for
this option because my SAS 8.1 system and SAS/ACCESS for
DB2 says that DBNULLKEYS= is an invalid option. Unpublished
documentation | received from SAS Technical Support shows this
option in an example using Oracle, so either this option is specific
to Oracle or it was introduced in Version 8.2.

DBINDEX= DATA SET OPTION

There is another data set option described in the SAS
documentation called DBINDEX= that can be used to improve
efficiency of PROC SQL queries that join SAS and DBMS tables.
Unfortunately, my experience with this option does not match the
documentation. The documentation for DBINDEX= shows that
you use this feature to tell SAS to query the DBMS to find
indexes on the DBMS table. SAS then attempts to use the
indexes on the DBMS table to improve performance. However,
my experience is that SAS constructs the same query no matter
what value you use with the DBINDEX= option, and that the
query SAS constructs depends only on the number of
observations in your key values SAS data set.

Example 5 - Small Key Values Data Set: \When my SAS data
set contains between 1 and 200 observations, SAS constructs a
WHERE statement that has an IN list of the key values. In this
example, my key values data set has 10 observations:

proc sql;
create table lot_data as

select a.lot, a.trdate, a.trtime, a.resource
from db2sys.disc_stat_history (dbindex=yes)

a, lots b
where a.lot=b.lot;
quit;

TRACE: SQL stmt prepared on statement 0,
connection 0 is: SELECT LOT, TRDATE,
TRTIME, RESOURCE FROM

db2sys.DISC_STAT HISTORY WHERE ((LOT IN
('DIO0036136"' , 'DIO0037986' , 'DIN0038082'
, 'DI0O0038359' , 'DIO0038836' , 'DI0O0038915'
, 'DI0O0038929' , 'DI0O0039471' , 'DI00039476'
, 'DI00039480'))) FOR READ ONLY 611

1296429914 no _name 0 SQL

Example 6 - Large Key Values Data Set: \WWhen my SAS data
set contains 201 or more observations, SAS creates an SQL
statement to return all rows from the DBMS table and processes
the join in SAS! This is not what you want SAS to do if your
DBMS table is large. Here is the TRACE output for the PROC
SQL step from Example 5, but with 201 observations in my key
values data set:

TRACE: SQL stmt prepared on statement 0,
connection 0 is: SELECT LOT, TRDATE,
TRTIME, RESOURCE FROM
db2sys.DISC_STAT HISTORY FOR READ ONLY 617
1296430260 no_name 0 SQL

This query took 55 seconds to run because it brought all 200K
rows from the DBMS table into SAS. With 200 observations in
my key values dataset, the query ran in 8 seconds because it
submitted a WHERE statement to the DBMS. The message here
is be sure to use SASTRACE to test your query to see if the
DBINDEX= option does what you want. It may work differently
with different DBMS systems.

MACRO %DBMSLIST GENERATES PROC SQL
PASS-THROUGH QUERIES

Most of the function of macros like %DBMSlist has been replaced
by the more elegant techniques just described in the
SAS/ACCESS LIBNAME statement in versions 7 and 8.

The SQL Procedure Pass-Through Facility was an enhancement
to the SQL procedure starting in Version 6 that enables you to
send DBMS-specific SQL statements to a DBMS server and
retrieve DBMS data directly to SAS. Pass-through queries can
take advantage of indexes on DBMS columns to process a query
more quickly and efficiently. For example, consider the following
query to return data from our MfgHist DB2 table for these three
TV serial numbers:

proc sql;
connect to db2 (dsn=tvdb uid=helf pwd=mypw) ;
create table History as select * from
connection to db2 (
select * from MfgHist where sn in
(" CGN213’,'SDA980’, 'WEF765")
for fetch only);
disconnect from db2;
Quit;

This is called a Pass-Through query because the entire query
within the outermost parentheses in the Create Table statement
is passed through to the DBMS server unaltered, except for
resolution of any macro variables that might be present. If the
column SN in table MfgHist has an index, this step should run in
a few seconds or less, even though there are a million rows in the
table.

The trick to writing a macro that generates SQL Pass-Through
queries is to format the key values in your SAS data set into an
appropriate WHERE clause for your DBMS. In our TV example,
the TV serial numbers are defined as character strings in the DB2
table, so the values of variable SN in the SAS data set must be
enclosed in single quotes and separated by commas. You might
also want your macro to handle key values that are defined as
other data types in the DBMS table, such as numeric, date, time,
or timestamp. A more complex macro would handle requests
based on multiple key columns, for example a serial number and
a manufacturing operation number. The %DBMSIlist macro
discussed next has all of these features.

Macro %DBMSIist has several arguments: the name of the SAS
data set your key values are in, the name(s) of the variable that
contain the values you want to pass to the DBMS, the type of
variables they are, the name of the SAS data set you want to
create, and the query you want to run. The macro builds your
key values into a list and assigns it to a macro variable, then
runs your query and puts the data from the DBMS into the SAS

data set you specified. The syntax of macro %DBMSlIist is:

%$DBMSlist (dsn, column, vtype, newdsn, dbname,
query, bitesize=200, test=no, dlm=%str (#));

These arguments to macro %DBMSIlist are described in detail in
Table 1.

Table 1: Syntax of the %DBMSlist Macro

Parameter Meaning
dsn Name of the existing SAS data set that contains
the values you want to include in a DBMS query.
May be a temporary data set (with a one-part
name) or a permanent data set (with a two-part
name).
Name of the variable (or variables) in the data set
named in dsn that contains the values you want to
submit to the DBMS. If more than one variable
name, column must be in the form of an SQL
template enclosed in the %str function, with
variable names delimited by a special character
(the # symbol by default). Refer to Table 2 for
more information.
vtype Type of variable(s) named in column, must have
one value for each variable named in column.
Not case sensitive. Currently, 5 types are
supported:
« ¢ - for character data, values are enclosed in
single quotes
* n - for numeric data
» d - for date data, values are put in DB2 query
format, like '1998-11-22".
« t - for time data, values are put in DB2 query
format, like '10.32.45'".
« dt - for timestamp data, values are put in DB2
query format, like '1998-10-11-21.34.54.234242'
Name of the new SAS data set you want the
macro to create. It may be either temporary or
permanent.
Connection information appropriate for your
DBMS. For DB2, it can be:

1) The word prompt, in which you will be
prompted for userid and password

2) Explicit connection information, like
%str(dsn=engdb uid=helf pwd=mypw)

3) A macro variable that contains your DBMS
connection information, like &engdb. These
macro variables should be placed in your
autoexec.sas file for security and
maintenance reasons.

The query you want the DBMS to process. Put the
macro variable &mylist in your WHERE statement
to specify your list of key values. The query must
be enclosed in the macro function %nrstr.
Optional parameter, default value is 200. Only this
many serial numbers are passed to the DBMS at a
time. Make this value smaller if the query takes
too long or you get any errors from the DBMS.
You can make it larger if you have a large list and
the query runs OK.

test Optional parameter, default value is no. Ifitis
anything else, like yes or Yes or YES, the macro
passes the first bitesize values to the DBMS and
does not create the output data set. | use this for
testing to see how long the query will take with
different values of bitesize.

dim Optional parameter, default value is the pound
symbol (#). Defines the delimiter to be used for
marking variables in the SQL template. To enter a
different character, use the %str function, for
example %str(@) to use the @ symbol as a

column

newdsn

dbname

query

bitesize

depending on whether one variable or more than one variable in
the SAS data set forms the key for the DBMS table query. This
argument is described in Table 2.

Table 2: Argument COLUMN for Macro %DBMSlist:

Number of
key variables

Value of &COLUMN

Contents of &mylist and
Where statement syntax

consists of static
text and variable
names. Each
variable name must
be delimited at start

1 variable Single name of the | &mylist contains values
name variable that of the variable you
contains the value specified, separated by
to be passed to the | commas, like:
DBMS, for "13001111HK',
examp|e: '13002222HK"',
"13003333HK'
file
Use a Where statement
like:
where file in
(&mylist)
More than An SQL template &mylist contains the SQL
one variable | enclosed in the template you specified,
name Y%str function that with variable names

substituted with the
values of those variables,
enclosed in parentheses
and separated by the
word OR, like:

delimiter.
Argument COLUMN of Macro %DBMSIlist takes different forms

and end by a (wafer=258053 and
special character (# | row=33) or

by default). (wafer=780784 and
Example: row=12)

$str (wafer=#my

waf# and Use a Where statement
row=#myrow#) like:

where (&mylist)

Note about Macros: There are several ways to make these
macros visible to your SAS program. The easiest way is to set
the SASAUTOS option to point to the directory where you put
them, like this:

options sasautos=(sasautos, 'C:\MYSAS\MACRO') ;

You need to run this only once in each session. Better yet, add it
to your AUTOEXEC.SAS file so it gets run every time you start
SAS.

You might see a warning message about string length. I've
noticed a warning message in the SAS 6.12 log about
concatenated string length longer than 200 characters, but the
macro still runs fine. | don’t get this message in SAS 7 or 8.

Example 7 - Single Character Key Variables: This macro call
takes a list of serial numbers in variable SHIPCASS in SAS data
set PACKPREP and creates a new SAS data set called
DISKSHIP that contains the data returned from the ENGDB
database. The DBMS connection information was previously
assigned to macro variable &ENGDB.

%$DBMS1list (packprep, shipcass, ¢, diskship,
&engdb, %nrstr(

select cassette, trdate, trtime, pwrpak
from d.current_status

where cassette in (&mylist)));

Example 8 - Multiple Numeric Key Variables: This macro call
takes a list of serial numbers in variables WAFER and ROW in
SAS data set MYDATA.SLIDER and creates a new SAS data set
called RAWQ that contains data returned from the FABDB2
database. The DBMS connection information was previously
assigned to macro variable &FABDB2. The BITESIZE parameter
is set to 40 input rows at a time becuase | got an application heap
storage size error from the DB2 server when | tried using more.

$DBMSlist (mydata.slider, %str(wafer=#wafer#

and row=#row#), n n, rawq, &fabdb2, %nrstr(
select wafer, row, columnn, wafersize as
size, date, time, stationid as station,

pl45201 as HT, pl45202 as EC,P145203,p145205
from hrs.opl452 where (&mylist)),
bitesize=40) ;

SOURCE CODE FOR MACROS

The source code for the three macros %DBMSlist, %MakeList,
and %RunQuery are included below. Copy and paste each one
to a file by the same name in your autocall macro library to make
them visible to your SAS programs. The macro you use is
%DBMSiIist, the other two are called by this macro. You can copy
this code from the CD copy of the Proceedings you receive at the
conference, or from the SUGI web site after the conference:
http://www.sas.com/usergroups/sugi/proceedings/index.html.

SOURCE CODE FOR MACRO %DBMSLIST

%$Macro DBMSlist (dsn, column, vtype, newdsn,
dbname, query, bitesize=200, test=no,
dlm=%str (#));

proc sgl noprint;
select count (*) into :gwhxxxxl
from &dsn;
quit;

$1if &gwhxxxx1=0 %then %do;

$put ====== WARNING: Input data set &dsn is
empty, macro ends =======;

%$goto exit;

%$end;

%let totpass=%sysevalf (&gwhxxxxl/&bitesize,
ceil) ;

%$if &test=no %then %do j=1 %to &gwhxxxxl $%$by

&bitesize;
%let p=%sysevalf (&j/&bitesize, ceil);
$put = Starting pass &p of

&totpass
data gwhxxxx2;
set &dsn (firstobs=&j
obs=%eval (&j+&bitesize-1)) ;
run;

$MakeList (mylist, gwhxxxx2, &column, &vtype);
$RunQuery (&dbname, gwhxxxx3, &query) ;

%$if &j=1 %then %do;

data &newdsn;

set gwhxxxx3;

run;

%end;

%else %do;

Proc append base=&newdsn data=gwhxxxx3;
run;

%end;

%end;

$else %do; %* Test=yes: do one query for timing;
data gwhxxxx2;

set &dsn (firstobs=1 obs=&bitesize) ;

Run;

$MakelList (mylist, gwhxxxx2, &column, &vtype);
%$RunQuery (&dbname, gwhxxxx3, &query) ;

%$end;
%exit: %$mend DBMSlist;

SOURCE CODE FOR MACRO %MAKELIST
You might need to adjust the formatting for the date, time, and

datetime SAS variable types for DBMS systems other than DB2.

$macro MakeList (globname, dsn, varinfo,
vartype) ;

%$local i j;
%$global &globname;

%let &globname=; /* return null if macro fails*/

%$let numvars=1; $%$* find number of variables

specified;

%$do $while (%scan(&vartype, %$eval (&numvars+1))
ne) ;

%let numvars=%eval (&numvars+1) ;

%$end;

/**
Single variable entered
**/

%if &numvars=1 %then %do;

[*FkKkkkkkkkkkkkk* Character **x*x*x*/
%$if %Supcase (&vartype)=C %$then %do;
proc sgl noprint;
Select
Distinct translate (quote (&varinfo),"'",'"")
into :&globname separated by ','
from &dsn;
quit;
%$end;

/**************** Numeric ********/
%else %$if %upcase (&vartype)=N %$then %do;
proc sgl noprint;

select distinct &varinfo

into :&globname separated by ','

from &dsn;

quit;

%$end;

/**************** Date ********/

%$else %$if %Supcase (&vartype)=D %then %do;
proc sgl noprint;

select distinct "'"||

put (&varinfo, yymmddio0.)||"'"

into :&globname separated by ','

from &dsn;

quit;

%$end;

/**************** Time ********/
%$else %$if %upcase (&vartype)=T %then %do;
proc sgl noprint;
select distinct "'"||
translate (put (&varinfo, time.),
P N AR
into :&globname separated by ','
from &dsn;
quit;
%$end;

[RrKkkkkkkkkkkkk** Datetime **rk*xk*x/
%else %$if %upcase (&vartype)=DT %then %do;
proc sgl noprint;

select distinct "'"||put (datepart (&varinfo),
yymmdd10.) | |"-"] |
translate (put (timepart (&varinfo),
timelS.G),'.',':','O',' |)||n|n

into :&globname separated by ',
from &dsn;

quit;
%$end;

%else $put ******x* Invalid variable type:
&vartype *xxkkskkkkkkkok

%$end; /* %$if &numvars=1 */

/**

Multiple variables entered
**/

%else %do;

/***** Parse SQL template ********************/

$let j=1;

%do $while (%$index (%quote (&varinfo), &dlm)>0);
%$let markloc=%index (%quote (&varinfo), &dlm);
%$let text&j=%substr (%quote (&varinfo), 1,

$eval (&markloc-1)) ;

%$let varinfo=%substr (%quote (&varinfo),
%eval (&markloc+1),

%$eval ($length (&varinfo) -&markloc)) ;
%$let markloc=%index (%quote (&varinfo), &dlm) ;
%$let var&j=%substr ($quote (&varinfo), 1,

$eval (&markloc-1)) ;

%$if %$length(&varinfo) >&markloc $then
%$let varinfo=%substr (%quote (&varinfo),
$eval (&markloc+1) ,

%$eval (%$length (&varinfo) -&markloc)) ;
%else %let varinfo=;
$let j=%eval (&j+1);

%$end;

/*** Build macro variable with Proc SQL ***#*x%/
proc sgl noprint;
select distinct ' (' ||

%$do i=1 %to &j-1;

/***** Character variable ****kxkkkkkkkkkkkkk* /

%$if %upcase(%scan(&vartype, &i))=C %then
"og&text&i " ||

translate (quote (&&vars&i) ,"'",'"") ||;

/**x*% Numeric variable Khkkkkkkkkkkkkkkkkkkk* /
%$else %$if %upcase($scan(&vartype, &i))=N %$then
" &&text&i " || compress (put (&&varsi,

best20.)) ||:

/***** Date variable ************************/

%else %if %upcase(%scan(&vartype, &i))=D %then
" &&text&i '" || put (&&var&i,
yymmdd1o0.) | ["'" | |;

/**x%% Time variable **x*kxkkkkkkkkkkkkkkkkkkx /

%$else %if %upcase(%scan(&vartype, &i))=T %then
" og&text&i ' ||
translate (put (&&var&i, time.),'.',':','0",

1 |)|||||n||;

/****x*% Datetime variable ***kkkkkkkkkkkkkkkk* /
%$else %if %Supcase(%scan(&vartype, &i))=DT %then

" &&text&i '" || put(datepart (&&var&i),
yymmdd1o0.) | |

"-" | |translate (put (timepart (&&var&i),
timel5.6), '.', 'z, r0)|

%$else %put ******xx***x Tnvalid variable type:
$scan (&vartype, &1) **kkkkkkkkkkk

%end; /* %do i=1 %to &j-1 */

" &varinfo)" into :&globname separated by
' or ' from &dsn;
quit;
%$end; /* %$else for %if &numvars=1 */
$mend MakeList;

SOURCE CODE FOR MACRO %RUNQUERY

Change the value for macro variable &DBMStype to the correct
value for your DBMS - DB2, Oracle, Teradata, etc.

$macro RunQuery (dbinfo, dsname, query);
%let DBMStype=DB2;
proc sql;
connect to &DBMStype (&dbinfo) ;
create table &dsname as select * from
connection to &DBMStype (
$unquote (&query) for fetch only);
%put &sqglxmsg;
disconnect from &DBMStype;
quit;
%$mend RunQuery;

CONCLUSION

SAS/ACCESS software provides powerful tools for retrieving data
from many heterogenous sources, including most relational
database software in use today. Using the techniques described
in this paper, you can efficiently join SAS data sets with DBMS
tables. If you are using SAS 7 or 8, try the SAS/ACCESS
LIBNAME statement with the DBKEY= or DBINDEX= data set
options. If you are still using SAS 6.12, try a macro like
%DBMSilist presented in this paper.

REFERENCES

SAS Institute Inc. (1999), SAS/ACCESS Software for Relational
Databases: Reference, Version 8, Cary, NC: SAS Institute Inc.

ACKNOWLEDGEMENTS

Many thanks to Donna Walker at SAS Institute Technical Support
for providing unpublished documentation about the
DBNULLKEYS= data set option.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

Garth W. Helf

IBM Corporation

5600 Cottle Road

San Jose, CA 95193

Work Phone: 408-256-7514
Fax: 408-256-2410

Email: helf@us.ibm.com

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

	SUGI 26 Title Page

