
1

Paper SAS152-2017

Using Python with SAS® Cloud Analytic Services (CAS)
Kevin D Smith and Xiangxiang Meng, SAS Institute Inc.

ABSTRACT
With SAS® Viya™ and SAS® Cloud Analytic Services (CAS), SAS is moving into a new territory where
SAS® Analytics is accessible to popular scripting languages using open APIs. Python is one of those
client languages. We demonstrate how to connect to CAS, run CAS actions, explore data, build analytical
models, and then manipulate and visualize the results using standard Python packages such as Pandas
and Matplotlib. We cover a wide variety of topics to give you a bird's eye view of what is possible when
you combine the best of SAS with the best of open source.

INTRODUCTION
This paper is a gentle introduction to using Python to access analytics from CAS. We begin with
information on how to obtain the Python client and install it. We then show you how to connect to an
existing CAS server and run actions. With those basics out of the way, we move on to more interesting
subjects like loading data, performing simple analytics, and basic visualizations. We also demonstrate
how to operate on tables in CAS using the popular Pandas DataFrame API. Finally, we cover some basic
analytical modeling.

This might seem like a lot of territory to cover, but after working through it you’ll have a broad
understanding of how to interact with CAS and we hope you will be inspired to start using it in your own
processes.

DOWNLOADING AND INSTALLING THE PYTHON CAS CLIENT
The Python client to CAS treads on new ground for SAS. It is actually maintained in an open-source
project in GitHub. This means that you can browse the source, submit issues, and contribute code just as
with any other open-source project. The code submissions are vetted and verified by SAS before being
accepted just as if it were written in-house. Releases of the software are available from GitHub as well as
the SAS support website. However, in order to install it we first need to have a running Python installation.

The easiest way to get Python and all of the dependencies installed is to use the Anaconda distribution
from Continuum Analytics. This is a Python distribution intended for data science use. It includes dozens
of packages that you likely will want to use at some point anyway all packaged together in a single
installer. The Anaconda releases are available at the following address:

https://www.continuum.io/downloads

You simply download and install the appropriate package for your platform. Note that you should be using
the 64-bit version of Python. In addition, Python is delivered in two major versions: 2.7 and 3.x. There are
many people that still use the 2.7 release, but it is in maintenance mode. All current development of
Python is done in the 3.x track. If you are new to Python, you should probably start with version 3.x. If you
are already familiar with Python, you can use whichever version you are currently using.

Once you have Python installed, you can move on to installing the Python CAS client. Since the source
code and API documentation are available from GitHub, we’ll use that as the source for the download.
The URL for the Python client, known as the SAS Scripting Wrapper for Analytics Transfer (SWAT),
follows:

https://github.com/sassoftware/python-swat

2

On this page, you can see the README information about the SAS SWAT package that outlines the
requirements, the procedure for installing it, and a very short code example. The API documentation is
available at this address:

https://sassoftware.github.io/python-swat/

This page has much more complete information about the installation and usage of the SAS SWAT
package. It includes API documentation for all of the objects in the SAS SWAT package as well. You
definitely want to add this URL to your bookmarks.

Because we want to install the SAS SWAT package, we need to go to the page of releases at the
following URL:

https://github.com/sassoftware/python-swat/releases

This page contains the latest releases of the software. In most instances, you will want the latest
production release of the package. There are possibly two options for installation packages depending on
the platform that you are running Python on. Some platforms support binary and REST interfaces to CAS;
others support only REST. If there is a platform-specific installer listed in the release files (for v1.0.0, only
Linux 64 had a specific installer), you should use that. It enables you to connect to CAS using either the
binary interface or REST interface. If you don’t see a platform-specific file, you should just use the Source
Code distribution. The Source Code distribution is pure Python and works on any platform that Python
runs on, but it can connect only to the REST interface of CAS. The downside is that the REST interface
has more overhead when talking to the server, so it will be slower than the binary interface.

In either case, you can simply right-click the link to the installation file and copy the link. You then can
paste the link as an argument to the pip install command that came with your Python distribution. The
command below shows an example. The version number here has been removed. You should use
whatever the most recent release is. Note that the same package works with both the 2.7 and 3.x
versions of Python. The URL below is broken across the line for readability.

pip install https://github.com/sassoftware/python-swat
 /releases/download/vX.X.X/python-swat-X.X.X-linux64.tar.gz

After you have that installed, you should be able to import the package from Python. We use the ipython
interpreter in our examples. It’s a nice wrapper for the standard Python interpreter that makes interactive
use more user-friendly. On UNIX-based platforms, you simply execute the ipython command in the
terminal. On Windows, you should have an IPython choice in the Anaconda menu.

With Python up and running, you can now load the SWAT package as follows:

In [1]: import swat

Now that we have Python and SWAT installed, we can connect to CAS.

CONNECTING TO CAS
We assume that you already have a running CAS server you can connect to. Describing the installation
and startup of CAS is beyond the scope of this paper. There are four pieces of information that you need
to connect to CAS from SWAT: 1) host name, 2) port number, 3) user name, and 4) password. The host
name is the name of the server that CAS is running on. This can also be an IP address. The port number
is the port that SWAT connects to. As mentioned in the previous section, you might be able to connect to
only the REST port of CAS if a platform-specific SWAT installer was not available for your platform.
Finally, a user name and password are required to authenticate to the server.

3

The easiest way to create a connection to CAS is to specify all of these explicitly to the CAS class
constructor in the SWAT package:

In [2]: conn = swat.CAS('cas.mycompany.com', 5570, 'username', 'password')

After you have a connection to CAS, you can try running a simple action like serverstatus to verify that
the connection is working:

In [3]: conn.serverstatus()
Out[3]:
[About]

 {'CAS': 'Cloud Analytic Services',
 'Copyright': 'Copyright © 2014-2016 SAS Institute Inc. All Rights
 Reserved.',
 'System': {'Hostname': 'cas.mycompany.com',
 'Model Number': 'x86_64',
 'OS Family': 'LIN X64',
 'OS Name': 'Linux',
 'OS Release': '2.6.32-504.12.2.el6.x86_64',
 'OS Version': '#1 SMP Sun Feb 1 12:14:02 EST 2015'},
 'Version': '3.02',
 'VersionLong': 'V.03.02M0D12082016',
 'license': {'expires': '02Feb2017:00:00:00',
 'gracePeriod': 62,
 'site': 'SAS Institute Inc.',
 'siteNum': 1,
 'warningPeriod': 31}}

[server]

 Server Status

 nodes actions
 0 1 10

[nodestatus]

 Node Status

 name role uptime running stalled
 0 cas.mycompany.com controller 387.823 0 0

+ Elapsed: 0.000662s, mem: 0.0934mb

If you feel uneasy about putting your user name and password in your program, SWAT supports Authinfo
files for storing that information so it can be looked up in a more secure manner. We won’t go into the
details of that here. The documentation in the GitHub project outlines the details of setting that up.

Now that we have a connection to a CAS server, let’s try working with some CAS actions.

WORKING WITH CAS ACTIONS
We have seen the output of the serverstatus action, but you might be wondering what other actions are
available. There are a few ways of displaying them. The first is using the tab completion feature of
IPython:

4

In [4]: conn.<tab>
Display all 374 possibilities? (y or n)
conn.about conn.listnodes
conn.accesscontrol.addacaction conn.listresults
conn.accesscontrol.addacactionset conn.listsasopts
conn.accesscontrol.addaccaslib conn.listservopts
conn.accesscontrol.addaccolumn conn.listsessions
conn.accesscontrol.addactable conn.listsessopts
conn.accesscontrol.assumerole conn.loadactionset
conn.accesscontrol.checkinallobjects conn.loaddatasource
conn.accesscontrol.checkoutobject conn.loadindex
conn.accesscontrol.commitactrans conn.loadlibrefs
conn.accesscontrol.completebackup conn.loadsasstate
conn.accesscontrol.createbackup conn.loadtable
conn.accesscontrol.deletebwlist conn.log

... truncated ...

This displays all CAS action sets, actions, and other attributes on the connection, but it does give you a
general idea of what’s available. You can also ask CAS directly what actions are available by using the
help action.

In [5]: conn.help()
NOTE: Available Action Sets and Actions:
...
NOTE: builtins
NOTE: addNode - Adds a machine to the server
NOTE: removeNode - Remove one or more machines from the server
NOTE: help - Shows the parameters for an action or lists all
 available actions
NOTE: listNodes - Shows the host names used by the server
NOTE: loadActionSet - Loads an action set for use in this session
NOTE: installActionSet - Loads an action set in new sessions
 automatically
NOTE: log - Shows and modifies logging levels
NOTE: queryActionSet - Shows whether an action set is loaded
NOTE: queryName - Checks whether a name is an action or action set
name
NOTE: reflect - Shows detailed parameter information for an action or
 all actions in an action set
NOTE: serverStatus - Shows the status of the server
NOTE: about - Shows the status of the server
NOTE: shutdown - Shuts down the server
NOTE: userInfo - Shows the user information for your connection
NOTE: actionSetInfo - Shows the build information from loaded action
sets
NOTE: history - Shows the actions that were run in this session
NOTE: casCommon - Provides parameters that are common to many actions
NOTE: ping - Sends a single request to the server to confirm that the
 connection is working
NOTE: echo - Prints the supplied parameters to the client log
NOTE: modifyQueue - Modifies the action response queue settings
NOTE: getLicenseInfo - Shows the license information for a SAS
 product
NOTE: refreshLicense - Refresh SAS license information from a file
NOTE: httpAddress - Shows the HTTP address for the server monitor

5

... truncated ...

The help action prints a lot of information like tab-completion, but in this case you also get a short
description of each action. To get help for a particular action, the easiest way is to use IPython’s ?
operator. This displays the Python docstring on the object.

In [6]: conn.addnode?
Type: builtins.Addnode
String form: ?.builtins.Addnode()
File: actions.py
Signature: conn.addnode(role=None, node=None, **kwargs)
Docstring:
Adds a machine to the server

Parameters

role : string, optional
 specifies the role for the machine. Controllers are added as backup
 controllers. Only two controllers are supported.
 Default: captain
 Values: captain, controller, general, worker

node : list, optional
 specifies the host names of the machines to add to the server.
 Default: []
 Note: Value range is 1 <= n < inf

Returns

Addnode object

... truncated ...

All of this information is downloaded from the CAS server and formatted when the actions are loaded on
the server. This gives the benefit that the documentation displayed on the client can never be out of date
with the actions on the server.

The keyword arguments to a Python method (such as addnode, serverstatus, or help) are used as the
parameters to the corresponding CAS action. Let’s try a new action called getsessopt. This action
retrieves the value of a session option. It takes a single argument called name. We can get the value of
the locale option as follows:

In [7]: conn.getsessopt(name='locale')
Out[7]:
[locale]

 'en_US'

+ Elapsed: 0.000253s, mem: 0.0634mb

Parameters can be in the form of many data types such as strings, integers, floating point numbers, lists,
and dictionaries. The documentation for each action specifies which data type is required for each
parameter. We will get into more advanced parameters in later sections, but first let’s look at the return
values of CAS actions.

6

HANDLING CAS ACTION RESULTS
So far we have simply allowed IPython to display the output of our actions. The result of a CAS action call
is always a CASResults object. The CASResults object is a subclass of Python’s
collections.OrderedDict (which is a dictionary with keys that stay in the order in which they were
inserted). Let’s look at the output of the serverstatus action again. However, this time we will capture the
output into a variable first.

In [8]: status = conn.serverstatus()

In [9]: status
Out[9]:
[About]

 {'CAS': 'Cloud Analytic Services',
 'Copyright': 'Copyright © 2014-2016 SAS Institute Inc. All Rights
 Reserved.',
 'System': {'Hostname': 'cas.mycompany.com',
 'Model Number': 'x86_64',
 'OS Family': 'LIN X64',
 'OS Name': 'Linux',
 'OS Release': '2.6.32-504.12.2.el6.x86_64',
 'OS Version': '#1 SMP Sun Feb 1 12:14:02 EST 2015'},
 'Version': '3.02',
 'VersionLong': 'V.03.02M0D12082016',
 'license': {'expires': '02Feb2017:00:00:00',
 'gracePeriod': 62,
 'site': 'SAS Institute Inc.',
 'siteNum': 1,
 'warningPeriod': 31}}

[server]

 Server Status

 nodes actions
 0 1 10

[nodestatus]

 Node Status

 name role uptime running stalled
 0 cas.mycompany.com controller 387.823 0 0

+ Elapsed: 0.000662s, mem: 0.0934mb

In the output above, the keys of the result are displayed in brackets. The values of the result are
displayed after the key name that they belong to. We can look at the keys programmatically using the
keys method of the CASResults object1:

In [10]: list(status.keys())

1 We use the list function around the call to the keys method to cover rendering differences between
Python 2 and Python 3.

7

Out[10]: ['About', 'server', 'nodestatus']

We can access keys individually using Python’s dictionary syntax as well.

In [11]: status['server']
Out[11]:
[server]

 Server Status

 nodes actions
 0 1 10

The values of the CASResults object vary from action to action. They can be a scalar-valued items such
as a string or floating point value, or they can be more complex objects such as dictionaries or Pandas
DataFrames. We can print the types of the values of the results above using Python’s type function.

In [12]: for key, value in status.items():
 ...: print(key, type(value))
Out[12]:
About <class 'dict'>
server <class 'swat.dataframe.SASDataFrame'>
nodestatus <class 'swat.dataframe.SASDataFrame'>

In this case, the ‘About’ key contains a dictionary, and the ‘server’ and ‘nodestatus’ keys contain
DataFrames. A SASDataFrame is equivalent to a Pandas DataFrame. It simply contains extra metadata
about the table and columns such as labels, formats, and so on.

Since the value in ‘nodestatus’ is a DataFrame, we can perform typical DataFrame operations on it just
as we would with any other DataFrame. In the code below, we show the results of the columns attribute
and the info method.

In [13]: status['nodestatus'].columns
Out[13]: Index(['name', 'role', 'uptime', 'running', 'stalled'],
 dtype='object')

In [14]: status['nodestatus'].info()
Out[14]:
<class 'swat.dataframe.SASDataFrame'>
RangeIndex: 1 entries, 0 to 0
Data columns (total 5 columns):
name 1 non-null object
role 1 non-null object
uptime 1 non-null float64
running 1 non-null int32
stalled 1 non-null int32
dtypes: float64(1), int32(2), object(2)
memory usage: 112.0+ bytes

In additon to the actual values returned, CAS also returns metrics about the action execution. Let’s look at
those next.

CAS ACTION METRICS
At the end of each CAS action execution, you might have noticed a line at the end that looks like the
following:

8

+ Elapsed: 0.0196s, user: 0.019s, sys: 0.001s, mem: 0.315mb

This gives you a brief summary of various timings and memory consumption statistics. There are several
other pieces of information available about performance and the disposition of the result as well. The
most commonly accessed attributes on the CASResults object are severity, status, and messages.
The severity attribute contains a return code that is either 0 (for no reported problems), 1 (warnings were
produced), or 2 (errors were produced). The status attribute contains a human-readable message
summarizing the reason for any errors; if no errors were produced, the string is empty. The messages
attribute contains any messages that were generated by the action. These are typically printed to the
terminal as well, but it is sometimes handy to have them in a variable that you can use in post-processing.

In addition to basic information about the result of the action, there is also a performance attribute on the
CASResults object. It contains various pieces of information about timings, memory usage, and grid
usage.

In [15]: status.performance
Out[15]: CASPerformance(cpu_system_time=0.001, cpu_user_time=0.018997,
data_movement_bytes=0, data_movement_time=0.0, elapsed_time=0.019644,
memory=330688, memory_os=8441856, memory_quota=12111872, system_cores=32,
system_nodes=1, system_total_memory=202931654656)

Each of the parameters shown in Out[15], is available as an attribute on the performance object.

In [16]: status.performance.cpu_system_time
Out[16]: 0.001

These attributes should give you enough diagnostic information to handle errors, or simply report relevant
performance information about your analyses. With all of this information under our belts, we can move
on to loading some data and doing some real work.

LOADING DATA
Before we can do any sort of statistical analyses, we need to get some data loaded into CAS first. There
are many ways to load data, so we’ll just cover the simplest methods here. For larger data sets, you will
likely want to have the data located on the same machine that CAS is running on so that you don’t have
to transfer the data each time it is loaded into a CAS table. For smaller data sets, it might not matter as
much. We will start with smaller data sets located on the client side first.

LOADING DATA SETS FROM THE CLIENT SIDE
Loading data from the client side into CAS is fairly easy if it’s in a common format such as CSV. You can
use the read_csv method on your CAS connection object to read a CSV file (or URL) and load it into a
CAS table.

In [17]: tbl = conn.read_csv('https://raw.githubusercontent.com/'
 : 'sassoftware/sas-viya-programming/'
 : 'master/data/cars.csv')

In [18]: tbl
Out[18]: CASTable('_T_5FEPFN5Y_DPXS4G22_6PPE7JDUCF',
 caslib='CASUSER(kesmit)')

Loading a table in this manner creates a table on the server with a generated table name in the active
caslib. We won’t go into detail about caslibs in this paper. They are essentially resources in the server
that configure data sources, authentication, and authorization settings for the data source and loaded

9

tables. They also act as namespaces for in-memory tables, which is what we are using them for here. We
use the default caslib for all of our examples in this paper.

It is possible to set a specific name for the output table using the casout= parameter so that you don’t
have to look at obscure generated table names.

In [19]: tbl = conn.read_csv('https://raw.githubusercontent.com/'
 : 'sassoftware/sas-viya-programming/'
 : 'master/data/cars.csv', casout='cars')

In [20]: tbl
Out[20]: CASTable('cars', caslib='CASUSER(kesmit)')

The result of the read_csv method is a CASTable object. The CASTable object is a very rich interface to
tables in the CAS server. CAS actions can be executed through the CASTable object, and it supports
much of the Pandas DataFrame API so that it looks and feels like a DataFrame, but the processing is
done within CAS.

Now that we have a CASTable object that references a table in our CAS server, let’s get some
information about it. The tableinfo and columninfo actions give you information about the table as a
whole and the columns in the table, respectively.

In [21]: tbl.tableinfo()
Out[21]:
[TableInfo]

 Name Rows Columns Encoding CreateTimeFormatted \
 0 CARS 428 15 utf-8 16Dec2016:15:43:47

 ModTimeFormatted JavaCharSet CreateTime ModTime \
 0 16Dec2016:15:43:47 UTF8 1.797522e+09 1.797522e+09

 Global Repeated View SourceName SourceCaslib Compressed \
 0 0 0 0 0

 Creator Modifier
 0 kesmit

+ Elapsed: 0.000625s, mem: 0.1mb

In [22]: tbl.columninfo()
Out[22]:
[ColumnInfo]

 Column ID Type RawLength FormattedLength NFL NFD
 0 Make 1 varchar 13 13 0 0
 1 Model 2 varchar 39 39 0 0
 2 Type 3 varchar 6 6 0 0
 3 Origin 4 varchar 6 6 0 0
 4 DriveTrain 5 varchar 5 5 0 0
 5 MSRP 6 double 8 12 0 0
 6 Invoice 7 double 8 12 0 0
 7 EngineSize 8 double 8 12 0 0
 8 Cylinders 9 double 8 12 0 0
 9 Horsepower 10 double 8 12 0 0
 10 MPG_City 11 double 8 12 0 0

10

 11 MPG_Highway 12 double 8 12 0 0
 12 Weight 13 double 8 12 0 0
 13 Wheelbase 14 double 8 12 0 0
 14 Length 15 double 8 12 0 0

+ Elapsed: 0.000753s, user: 0.001s, mem: 0.172mb

We can fetch a sample of the data using the fetch action.

In [23]: tbl.fetch(to=3)
Out[23]:
[Fetch]

 Selected Rows from Table CARS

 Make Model Type Origin DriveTrain MSRP Invoice \
 0 Acura MDX SUV Asia All 36945.0 33337.0
 1 Acura RSX Type S 2dr Sedan Asia Front 23820.0 21761.0
 2 Acura TSX 4dr Sedan Asia Front 26990.0 24647.0

 EngineSize Cylinders Horsepower MPG_City MPG_Highway Weight \
 0 3.5 6.0 265.0 17.0 23.0 4451.0
 1 2.0 4.0 200.0 24.0 31.0 2778.0
 2 2.4 4.0 200.0 22.0 29.0 3230.0

 Wheelbase Length
 0 106.0 189.0
 1 101.0 172.0
 2 105.0 183.0

+ Elapsed: 0.00403s, user: 0.001s, sys: 0.002s, mem: 1.7mb

Now that we have verified that the table exists in the server and contains the expected data, let’s look at
the next method of loading data.

LOADING DATA SETS FROM THE SERVER SIDE
As we mentioned in the previous section, if you have large data sets, you probably want to load the data
files on to the CAS server and load them from there so that you don’t have to transfer the data from the
client each time it is loaded. To load data from a file, the file must be in a location that is accessible from a
caslib. To keep things simple, we are going to assume that you have the data file in your home directory
which is accessible through the Casuser caslib.

To load data files from the server side, you use the loadtable action.

In [24]: out = conn.loadtable(path='cars.csv', casout='cars2')

In [25]: out
Out[25]:
[caslib]

 'CASUSER(kesmit)'

[tableName]

 'CARS2'

11

[casTable]

 CASTable('CARS2', caslib='CASUSER(kesmit)')

+ Elapsed: 0.11s, user: 0.056s, sys: 0.043s, mem: 64.8mb

In this case, we are calling a CAS action rather than a method on the connection object so the result is a
CASResults object. However, we can get the CASTable object from the casTable key in the result.

In [26]: tbl2 = out['casTable']

In [27]: tbl2
Out[27]: CASTable('CARS2', caslib='CASUSER(kesmit)')

Loading tables from the server and getting the CASTable from the result is such a common thing to do
that a small wrapper method was added to the connection object in order to simplify the process. The
method is called load_path. It takes the same parameters as the loadtable action, but just returns the
CASTable object.

In [28]: tbl3 = conn.load_path(path='cars.csv', casout='cars3')

In [29]: tbl3
Out[29]: CASTable('CARS3', caslib='CASUSER(kesmit)')

Of course, once the table is loaded, it works just like the CASTable that was loaded from the client side.

In [30]: tbl3.tableinfo()
Out[30]:
[TableInfo]

 Name Rows Columns Encoding CreateTimeFormatted \
 0 CARS3 428 15 utf-8 16Dec2016:16:06:30

 ModTimeFormatted JavaCharSet CreateTime ModTime \
 0 16Dec2016:16:06:30 UTF8 1.797524e+09 1.797524e+09

 Global Repeated View SourceName SourceCaslib \
 0 0 0 0 data/cars.csv CASUSER(kesmit)

 Compressed Creator Modifier
 0 0 kesmit

+ Elapsed: 0.00084s, user: 0.001s, mem: 0.102mb

In [31]: tbl3.columninfo()
Out[31]:
[ColumnInfo]

 Column ID Type RawLength FormattedLength NFL NFD
 0 Make 1 varchar 13 13 0 0
 1 Model 2 varchar 39 39 0 0
 2 Type 3 varchar 6 6 0 0
 3 Origin 4 varchar 6 6 0 0
 4 DriveTrain 5 varchar 5 5 0 0
 5 MSRP 6 double 8 12 0 0

12

 6 Invoice 7 double 8 12 0 0
 7 EngineSize 8 double 8 12 0 0
 8 Cylinders 9 double 8 12 0 0
 9 Horsepower 10 double 8 12 0 0
 10 MPG_City 11 double 8 12 0 0
 11 MPG_Highway 12 double 8 12 0 0
 12 Weight 13 double 8 12 0 0
 13 Wheelbase 14 double 8 12 0 0
 14 Length 15 double 8 12 0 0

+ Elapsed: 0.000759s, mem: 0.17mb

The examples of loading data in this section and the previous section demonstrate only the simplest
methods of loading data. There are various data file formats that can be read, many options to modify the
data types and column metadata, as well as ways of loading data from non-file-based sources such as
databases. These topics are much too large to go into in this paper, so we’ll refer you to the SAS
documentation for more information.

Now that we have some data to work with, we can move on to some more interesting work of performing
analytics on it.

COMPUTING SIMPLE STATISTICS
Before getting into more advanced modeling, we can obtain quite a bit of information about our data using
CAS actions for simple statistics. These actions are in an action set called simple. The simple action set
should already be loaded. You can verify this by running the actionsetinfo action (in addition to running
the action, we are also accessing the ‘actionset’ column of the DataFrame in the ‘setinfo’ key of the result
in the code below).

In [32]: conn.actionsetinfo().setinfo.actionset
Out[32]:
0 accessControl
1 accessControl
2 builtins
3 configuration
4 dataPreprocess
5 dataStep
6 percentile
7 search
8 session
9 sessionProp
10 simple
11 table
Name: actionset, dtype: object

As you can see, the simple action set is already loaded on our system. If you don’t see simple in your list
of action sets, you can load it using the loadactionset action.

In [33]: conn.loadactionset('simple')
NOTE: Added action set 'simple'.
Out[33]:
[actionset]

 'simple'

+ Elapsed: 0.0192s, user: 0.018s, sys: 0.001s, mem: 0.282mb

13

Using IPython’s ? operator for displaying help, we can display the following on the simple attribute of the
connection object.

In[34]: conn.simple?
...

Analytics

Actions

simple.correlation : Generates a matrix of Pearson product-moment
 correlation coefficients
simple.crosstab : Performs one-way or two-way tabulations
simple.distinct : Computes the distinct number of values of the
 variables in the variable list
simple.freq : Generates a frequency distribution for one or
 more variables
simple.groupby : Builds BY groups in terms of the variable value
 combinations given the variables in the variable
 list
simple.mdsummary : Calculates multidimensional summaries of numeric
 variables
simple.numrows : Shows the number of rows in a Cloud Analytic
 Services table
simple.paracoord : Generates a parallel coordinates plot of the
 variables in the variable list
simple.regression : Performs a linear regression up to 3rd-order
 polynomials
simple.summary : Generates descriptive statistics of numeric
 variables such as the sample mean, sample
 variance, sample size, sum of squares, and so on
simple.topk : Returns the top-K and bottom-K distinct values of
 each variable included in the variable list based
 on a user-specified ranking order

Now that we have this action set loaded, let’s try the summary action on our previously loaded table. We
display only a few rows of the result below to save space.

In [35]: tbl.summary()
Out[35]:
[Summary]

 Descriptive Statistics for CARS

 Column Min Max N NMiss Mean \
 0 MSRP 10280.0 192465.0 428.0 0.0 32774.855140
 1 Invoice 9875.0 173560.0 428.0 0.0 30014.700935

 8 Wheelbase 89.0 144.0 428.0 0.0 108.154206
 9 Length 143.0 238.0 428.0 0.0 186.362150

 Sum Std StdErr Var \
 0 14027638.0 19431.716674 939.267478 3.775916e+08
 1 12846292.0 17642.117750 852.763949 3.112443e+08

14

 8 46290.0 8.311813 0.401767 6.908624e+01
 9 79763.0 14.357991 0.694020 2.061519e+02

 USS CSS CV TValue ProbT
 0 6.209854e+11 1.612316e+11 59.288490 34.894059 4.160412e-127
 1 5.184789e+11 1.329013e+11 58.778256 35.196963 2.684398e-128

 8 5.035958e+06 2.949982e+04 7.685150 269.196577 0.000000e+00
 9 1.495283e+07 8.802687e+04 7.704349 268.525733 0.000000e+00

 [10 rows x 15 columns]

+ Elapsed: 0.00617s, user: 0.006s, sys: 0.002s, mem: 1.75mb

You can see that we get statistics such as the minimum value, the maximum value, the number of
observations, the number of missing values, and so on. It is also possible to retrieve only the statistics
you want by using the subset= option.

In [36]: tbl.summary(subset=['Sum', 'Std', 'StdErr'])
Out[36]:
[Summary]

 Descriptive Statistics for CARS

 Column Sum Std StdErr
 0 MSRP 14027638.0 19431.716674 939.267478
 1 Invoice 12846292.0 17642.117750 852.763949

 8 Wheelbase 46290.0 8.311813 0.401767
 9 Length 79763.0 14.357991 0.694020

 [10 rows x 4 columns]

+ Elapsed: 0.00618s, user: 0.003s, sys: 0.005s, mem: 1.74mb

Grouping results by data values can also be done. In the example below, we use the groupby method on
the CASTable object. This works very much like the groupby method on Pandas DataFrames. In its
simplest form, it takes a string or list of strings as the variable values to group by.

In [37]: tbl.groupby('Origin').summary(subset=['Sum', 'Std', 'StdErr'])
Out[37]:
[ByGroupInfo]

 ByGroupInfo

 Origin Origin_f _key_
 0 Asia Asia Asia
 1 Europe Europe Europe
 2 USA USA USA

[ByGroup1.Summary]

 Descriptive Statistics for CARS

 Column Sum Std StdErr
 Origin

15

 Asia MSRP 3909129.0 11321.069675 900.655944
 Asia Invoice 3571144.0 9842.984880 783.065832

 Asia Wheelbase 16730.0 7.735249 0.615383
 Asia Length 28885.0 12.564148 0.999550

 [10 rows x 4 columns]

...

[ByGroup3.Summary]

 Descriptive Statistics for CARS

 Column Sum Std StdErr
 Origin
 USA MSRP 4171484.0 11711.982506 965.988036
 USA Invoice 3814553.0 10518.722194 867.569584

 USA Wheelbase 16467.0 8.788590 0.724871
 USA Length 28511.0 15.305265 1.262357

 [10 rows x 4 columns]

+ Elapsed: 0.0106s, user: 0.008s, sys: 0.005s, mem: 1.74mb

From the output above, you can see that we get multiple tables back when using BY groups. The first
table is a summary of all of the BY groups contained in the output. This can be useful if the number of BY
groups is very large and you want to know at the beginning what to expect in the rest of the output. The
remaining tables contain the summary statistics for each BY group. The keys of the CASResults object
are the output table name (in this case, “Summary”) prefixed by “ByGroup#” where # is the index of the
BY group. If you prefer to have all of the BY groups in one table, you can concatenate them using the
concat_bygroups method of the CASResults object.

In [38]: out = tbl.groupby('Origin').summary(subset=['Sum', 'Std',
 'StdErr'])

In [39]: out.concat_bygroups()
Out[39]:
[Summary]

 Descriptive Statistics for CARS

 Column Sum Std StdErr
 Origin
 Asia MSRP 3909129.0 11321.069675 900.655944
 Asia Invoice 3571144.0 9842.984880 783.065832
 Asia EngineSize 438.3 0.902310 0.071784
 Asia Cylinders 809.0 1.269008 0.101602
 Asia Horsepower 30131.0 59.392627 4.725024

 USA MPG_City 2804.0 3.982992 0.328512
 USA MPG_Highway 3824.0 5.396582 0.445103
 USA Weight 554183.0 855.305524 70.544411
 USA Wheelbase 16467.0 8.788590 0.724871
 USA Length 28511.0 15.305265 1.262357

16

 [30 rows x 4 columns]

Let’s look at another action in the simple action set: correlation. It works in the same way as the
summary action, it is called like a method on the CASTable object. By default, the correlation action will
also return some of the summary statistics in a separate table, since we have already looked at the
summary action, we will disable those by setting the simple= parameter to False.

In [40]: tbl.correlation(simple=False)
Out[40]:
[Correlation]

 Pearson Correlation Coefficients for CARS

 Variable MSRP Invoice EngineSize Cylinders \
 0 MSRP 1.000000 0.999132 0.571753 0.649742
 1 Invoice 0.999132 1.000000 0.564498 0.645226
 2 EngineSize 0.571753 0.564498 1.000000 0.908002
 3 Cylinders 0.649742 0.645226 0.908002 1.000000
 4 Horsepower 0.826945 0.823746 0.787435 0.810341
 5 MPG_City -0.475020 -0.470442 -0.709471 -0.684402
 6 MPG_Highway -0.439622 -0.434585 -0.717302 -0.676100
 7 Weight 0.448426 0.442332 0.807867 0.742209
 8 Wheelbase 0.152000 0.148328 0.636517 0.546730
 9 Length 0.172037 0.166586 0.637448 0.547783

 Horsepower MPG_City MPG_Highway Weight Wheelbase Length
 0 0.826945 -0.475020 -0.439622 0.448426 0.152000 0.172037
 1 0.823746 -0.470442 -0.434585 0.442332 0.148328 0.166586
 2 0.787435 -0.709471 -0.717302 0.807867 0.636517 0.637448
 3 0.810341 -0.684402 -0.676100 0.742209 0.546730 0.547783
 4 1.000000 -0.676699 -0.647195 0.630796 0.387398 0.381554
 5 -0.676699 1.000000 0.941021 -0.737966 -0.507284 -0.501526
 6 -0.647195 0.941021 1.000000 -0.790989 -0.524661 -0.466092
 7 0.630796 -0.737966 -0.790989 1.000000 0.760703 0.690021
 8 0.387398 -0.507284 -0.524661 0.760703 1.000000 0.889195
 9 0.381554 -0.501526 -0.466092 0.690021 0.889195 1.000000

+ Elapsed: 0.00583s, user: 0.005s, sys: 0.003s, mem: 1.74mb

Correlation matrices are usually easier to interpret using heatmaps, so let’s plot the above data using a
Python package called Seaborn. We first want to convert the output above to a lower-triangular matrix,
then we’ll create the plot. Unfortunately, we don’t have the space in this paper to explain in detail
everything we are doing in this example, so further study will have to be an exercise for the reader.

Import require packages
In [41]: import numpy as np

In [42]: import seaborn as sns

In [43]: from matplotlib.pyplot import show

Run the correlation action
In [44]: corr = tbl.correlation(simple=False).Correlation

Set the Variable column as the row labels

17

In [45]: corr = corr.set_index('Variable')

Create a lower-triangular matrix
In [46]: corrl = corr.where(np.tril(np.ones(corr.shape),
 -1).astype(np.bool))

Create the heatmap
In [47]: with sns.axes_style('white'):
 : hm = sns.heatmap(corrl)
 : hm.set_yticklabels(corrl.index.str.replace('_', ' '),
 : rotation=0)
 : hm.set_xticklabels(corrl.index.str.replace('_', ' '),
 : rotation=-30)
 : show()

The resulting graph from the example code above is shown here.

Figure 1. Heatmap displaying the result of the correlation action
With the basics of running CAS actions under our belt, we can move on to some modeling examples.

BUILDING MODELS
CAS also provides a variety of statistical and machine learning models for you to model structured and
unstructured data. These models are grouped into action sets based on functionality. For instance, the
regression action set contains three different regression models: linear regressions, logistic regressions,
and generalized linear models.

In [48]: conn.loadactionset('regression')

18

In [49]: conn.regression?

Actions

regression.genmod : Fits generalized linear regression models
regression.glm : Fits linear regression models using the method of
 least squares
regression.logistic : Fits logistic regression models

Let’s continue to work on the cars data set you have loaded to the CAS server and build a simple linear
regression model to predict the MSRP value of cars.

In [50]: tbl.glm(target='MSRP', inputs=['MPG_City'])
Out[50]:

[ModelInfo]

 Model Information

 RowId Description Value
 0 DATA Data Source CARS
 1 RESPONSEVAR Response Variable MSRP

[NObs]

 Number of Observations

 RowId Description Value
 0 NREAD Number of Observations Read 428.0
 1 NUSED Number of Observations Used 428.0

[Dimensions]

 Dimensions

 RowId Description Value
 0 NEFFECTS Number of Effects 2
 1 NPARMS Number of Parameters 2

[ANOVA]

 Analysis of Variance

 RowId Source DF SS MS \
 0 MODEL Model 1.0 3.638090e+10 3.638090e+10
 1 ERROR Error 426.0 1.248507e+11 2.930768e+08
 2 TOTAL Corrected Total 427.0 1.612316e+11 NaN

 FValue ProbF
 0 124.13436 1.783404e-25
 1 NaN NaN
 2 NaN NaN

[FitStatistics]

 Fit Statistics

19

 RowId Description Value
 0 RMSE Root MSE 1.711949e+04
 1 RSQUARE R-Square 2.256437e-01
 2 ADJRSQ Adj R-Sq 2.238260e-01
 3 AIC AIC 8.776260e+03
 4 AICC AICC 8.776316e+03
 5 SBC SBC 8.354378e+03
 6 TRAIN_ASE ASE 2.917073e+08

[ParameterEstimates]

 Parameter Estimates

 Effect Parameter DF Estimate StdErr tValue \
 0 Intercept Intercept 1 68124.606698 3278.919093 20.776544
 1 MPG_City MPG_City 1 -1762.135298 158.158758 -11.141560

 Probt
 0 1.006169e-66
 1 1.783404e-25

[Timing]

 Task Timing

 RowId Task Time RelTime
 0 SETUP Setup and Parsing 0.391366 0.283194
 1 LEVELIZATION Levelization 0.315693 0.228437
 2 INITIALIZATION Model Initialization 0.000099 0.000072
 3 SSCP SSCP Computation 0.512247 0.370665
 4 FITTING Model Fitting 0.000415 0.000300
 5 CLEANUP Cleanup 0.002838 0.002054
 6 TOTAL Total 1.381969 1.000000

+ Elapsed: 1.81s, user: 0.032s, sys: 0.066s, mem: 37.9mb

Compared to the actions in the simple action set, the glm action might requires a more complex and
deeper parameter structure. In this case, it might be more convenient to define a new GLM model first
and then specify the model parameters, step-by-step. In other words, the linear regression above can be
rewritten as:

linear1 = tbl.Glm()
linear1.target = 'MSRP'
linear1.inputs = ['MPG_City']
linear1()

This approach enables you to reuse the code when you need to change only a few parameters of the
model. For example, let us add a categorical predictor and display only the parameter estimation table:

In[51]: linear1.inputs = ['MPG_City','Origin']
 ...: linear1.nominals = ['Origin']
 ...: linear1.display.names = ['ParameterEstimates']
 ...: linear1()
Out[51]:

20

[ParameterEstimates]

 Parameter Estimates

 Effect Origin Parameter DF Estimate StdErr \
 0 Intercept Intercept 1 57217.013184 2997.826305
 1 MPG_City MPG_City 1 -1511.917596 143.404229
 2 Origin Asia Origin Asia 1 805.634901 1755.483912
 3 Origin Europe Origin Europe 1 19453.581452 1817.953561
 4 Origin USA Origin USA 0 0.000000 NaN

 tValue Probt
 0 19.086167 4.565959e-59
 1 -10.543047 3.084694e-23
 2 0.458925 6.465234e-01
 3 10.700813 8.117258e-24
 4 NaN NaN

+ Elapsed: 2.04s, user: 0.036s, sys: 0.095s, mem: 39.4mb

The decisiontree action set is another popular analytic action set. It provides three distinct tree-based
models: decision tree, random forests, and gradient boosting. Unlike the regression action set, the
decisiontree action set splits a model into different actions, each represents a typical step of a machine
learning process such as training, scoring and score code generation (as SAS DATA step score code).

In [52]: conn.loadactionset('decisiontree')

In [52]: conn.decisiontree?

Actions

decisiontree.dtreecode : Generate DATA step scoring code from a
 decision tree model
decisiontree.dtreemerge : Merge decision tree nodes
decisiontree.dtreeprune : Prune a decision tree
decisiontree.dtreescore : Score a table using a decision tree model
decisiontree.dtreesplit : Split decision tree nodes
decisiontree.dtreetrain : Train a decision tree
decisiontree.forestcode : Generate DATA step scoring code from a
 forest model
decisiontree.forestscore : Score a table using a forest model
decisiontree.foresttrain : Train a forest
decisiontree.gbtreecode : Generate DATA step scoring code from a
 gradient boosting tree model
decisiontree.gbtreescore : Score a table using a gradient boosting
 tree model
decisiontree.gbtreetrain : Train a gradient boosting tree

	
The models in the decisiontree action set support either continuous, binary or multilevel response
variable. Let us fit a random forest model to predict whether a vehicle is from Asia, Europe, or United
States.

In [53]: forest1 = tbl.Foresttrain()
 ...: forest1.target = 'Origin'

...: forest1.inputs = ['MPG_City','MPG_Highway','Type',

21

 'Weight','Length','Cylinders']
 ...: forest1.nominals = ['Type','Cylinders']
 ...: forest1.casout = conn.CASTable('forestModel1', replace=True)
 ...: forest1()
Out[53]:

[ModelInfo]

 Forest for CARS

 Descr Value
 0 Number of Trees 50.000000
 1 Number of Selected Variables (M) 3.000000
 2 Random Number Seed 0.000000
 3 Bootstrap Percentage (%) 63.212056
 4 Number of Bins 20.000000
 5 Number of Variables 6.000000
 6 Confidence Level for Pruning 0.250000
 7 Max Number of Tree Nodes 29.000000
 8 Min Number of Tree Nodes 11.000000
 9 Max Number of Branches 2.000000
 10 Min Number of Branches 2.000000
 11 Max Number of Levels 6.000000
 12 Min Number of Levels 6.000000
 13 Max Number of Leaves 15.000000
 14 Min Number of Leaves 6.000000
 15 Maximum Size of Leaves 229.000000
 16 Minimum Size of Leaves 5.000000
 17 Out-of-Bag MCR (%) NaN

[OutputCasTables]

 casLib Name Rows Columns \
 0 CASUSERHDFS(ximeng) forestModel1 804 38

 casTable
 0 CASTable('forestModel1', caslib='CAS...

+ Elapsed: 3.8s, user: 0.114s, sys: 0.802s, mem: 25.7mb

The foresttrain action outputs two result tables: ModelInfo and OutputCasTables. The first table contains
parameters that define the forest, parameters that define each individual tree, and tree statistics such as
the minimum and maximum number of branches and levels. The second table provides information of the
CAS table that stores the actual forest model.

Random forest models are also commonly used in variable selection, which is usually determined by the
variable importance of the predictors in training the forest model. In the foresttrain action, this
importance measure is defined as the total Gini reduction from all of the splits that use this predictor. You
can request variable important using the varimp option and generate the variable importance using the
Matplotlib package.

In [54]: forest1.varimp = True
 ...: result = forest1()
 ...: dfVarImp = result['DTreeVarImpInfo']
 ...:
 ...: import matplotlib.pyplot as plt

22

 ...: import numpy as np
 ...:
 ...: y_pos = np.arange(len(dfVarImp['Importance']))
 ...: plt.barh(y_pos, dfVarImp['Importance'], align='center')
 ...: plt.yticks(y_pos, dfVarImp['Variable'])
 ...: plt.xlabel('Variable Importance')

...: plt.show()

Figure 2. Variable Importance plot from the random forest model
To score the training data or the holdout data using the forest model, you can use the forestscore action.

In [55]: scored_data = conn.CASTable('scored_output', replace=True)
In [56]: tbl.forestscore(modeltable=conn.CASTable('forestModel1'),
 casout=scored_data)
In [57]: scored_data.head()
Out[57]:
Selected Rows from Table SCORED_OUTPUT

 _RF_PredName_ _RF_PredP_ _RF_PredLevel_ _MissIt_ _Vote_
0 Asia 0.66 0.0 0.0 33.0
1 Asia 0.70 0.0 0.0 35.0
2 Asia 0.66 0.0 0.0 33.0
3 Asia 0.66 0.0 0.0 33.0
4 Asia 0.50 0.0 0.0 25.0

CLOSING THE CONNECTION
When you are finished with a CAS connection, it’s always a good idea to close it explicitly.

23

In [58]: conn.close()

CONCLUSION
In this paper, we have covered everything from installing the Python client to SAS Viya, loading data into
CAS, running CAS actions, to basic analytical modeling. In addition, we demonstrated the integration of
CAS results with other Python packages such as the Matplotlib and Seaborn graphics packages. Having
access to a third-party language interface to a SAS analytics engine is new territory for SAS, but we hope
that we have shown that the integration between the two is quite natural and seamless.

RECOMMENDED READING
• SAS® Viya: The Python Perspective

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Kevin D Smith
SAS Institute, Inc.
Kevin.Smith@sas.com

Xiangxiang Meng, PhD
SAS Institute, Inc.
Xiangxiang.Meng@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

