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ABSTRACT  
With SAS® Viya™ and SAS® Cloud Analytic Services (CAS), SAS is moving into a new territory where 
SAS® Analytics is accessible to popular scripting languages using open APIs. Python is one of those 
client languages. We demonstrate how to connect to CAS, run CAS actions, explore data, build analytical 
models, and then manipulate and visualize the results using standard Python packages such as Pandas 
and Matplotlib. We cover a wide variety of topics to give you a bird's eye view of what is possible when 
you combine the best of SAS with the best of open source. 

INTRODUCTION 
This paper is a gentle introduction to using Python to access analytics from CAS. We begin with 
information on how to obtain the Python client and install it. We then show you how to connect to an 
existing CAS server and run actions. With those basics out of the way, we move on to more interesting 
subjects like loading data, performing simple analytics, and basic visualizations. We also demonstrate 
how to operate on tables in CAS using the popular Pandas DataFrame API. Finally, we cover some basic 
analytical modeling. 

This might seem like a lot of territory to cover, but after working through it you’ll have a broad 
understanding of how to interact with CAS and we hope you will be inspired to start using it in your own 
processes. 

DOWNLOADING AND INSTALLING THE PYTHON CAS CLIENT 
The Python client to CAS treads on new ground for SAS. It is actually maintained in an open-source 
project in GitHub. This means that you can browse the source, submit issues, and contribute code just as 
with any other open-source project. The code submissions are vetted and verified by SAS before being 
accepted just as if it were written in-house. Releases of the software are available from GitHub as well as 
the SAS support website. However, in order to install it we first need to have a running Python installation. 

The easiest way to get Python and all of the dependencies installed is to use the Anaconda distribution 
from Continuum Analytics. This is a Python distribution intended for data science use. It includes dozens 
of packages that you likely will want to use at some point anyway all packaged together in a single 
installer. The Anaconda releases are available at the following address: 

https://www.continuum.io/downloads 

You simply download and install the appropriate package for your platform. Note that you should be using 
the 64-bit version of Python. In addition, Python is delivered in two major versions:  2.7 and 3.x. There are 
many people that still use the 2.7 release, but it is in maintenance mode. All current development of 
Python is done in the 3.x track. If you are new to Python, you should probably start with version 3.x. If you 
are already familiar with Python, you can use whichever version you are currently using. 

Once you have Python installed, you can move on to installing the Python CAS client. Since the source 
code and API documentation are available from GitHub, we’ll use that as the source for the download. 
The URL for the Python client, known as the SAS Scripting Wrapper for Analytics Transfer (SWAT), 
follows: 

https://github.com/sassoftware/python-swat 
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On this page, you can see the README information about the SAS SWAT package that outlines the 
requirements, the procedure for installing it, and a very short code example. The API documentation is 
available at this address: 

 
https://sassoftware.github.io/python-swat/ 
 

This page has much more complete information about the installation and usage of the SAS SWAT 
package. It includes API documentation for all of the objects in the SAS SWAT package as well. You 
definitely want to add this URL to your bookmarks. 

Because we want to install the SAS SWAT package, we need to go to the page of releases at the 
following URL: 

 
https://github.com/sassoftware/python-swat/releases 
 

This page contains the latest releases of the software. In most instances, you will want the latest 
production release of the package. There are possibly two options for installation packages depending on 
the platform that you are running Python on. Some platforms support binary and REST interfaces to CAS; 
others support only REST. If there is a platform-specific installer listed in the release files (for v1.0.0, only 
Linux 64 had a specific installer), you should use that. It enables you to connect to CAS using either the 
binary interface or REST interface. If you don’t see a platform-specific file, you should just use the Source 
Code distribution. The Source Code distribution is pure Python and works on any platform that Python 
runs on, but it can connect only to the REST interface of CAS. The downside is that the REST interface 
has more overhead when talking to the server, so it will be slower than the binary interface. 

In either case, you can simply right-click the link to the installation file and copy the link. You then can 
paste the link as an argument to the pip install command that came with your Python distribution. The 
command below shows an example. The version number here has been removed. You should use 
whatever the most recent release is. Note that the same package works with both the 2.7 and 3.x 
versions of Python. The URL below is broken across the line for readability. 

 
pip install https://github.com/sassoftware/python-swat   
 /releases/download/vX.X.X/python-swat-X.X.X-linux64.tar.gz  
 

After you have that installed, you should be able to import the package from Python. We use the ipython 
interpreter in our examples. It’s a nice wrapper for the standard Python interpreter that makes interactive 
use more user-friendly. On UNIX-based platforms, you simply execute the ipython command in the 
terminal. On Windows, you should have an IPython choice in the Anaconda menu. 

With Python up and running, you can now load the SWAT package as follows: 
 
In [1]: import swat 
 

Now that we have Python and SWAT installed, we can connect to CAS. 

CONNECTING TO CAS 
We assume that you already have a running CAS server you can connect to. Describing the installation 
and startup of CAS is beyond the scope of this paper. There are four pieces of information that you need 
to connect to CAS from SWAT: 1) host name, 2) port number, 3) user name, and 4) password. The host 
name is the name of the server that CAS is running on. This can also be an IP address. The port number 
is the port that SWAT connects to. As mentioned in the previous section, you might be able to connect to 
only the REST port of CAS if a platform-specific SWAT installer was not available for your platform. 
Finally, a user name and password are required to authenticate to the server. 
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The easiest way to create a connection to CAS is to specify all of these explicitly to the CAS class 
constructor in the SWAT package: 

 
In [2]: conn = swat.CAS('cas.mycompany.com', 5570, 'username', 'password') 
 

After you have a connection to CAS, you can try running a simple action like serverstatus to verify that 
the connection is working: 

 
In [3]: conn.serverstatus() 
Out[3]: 
[About] 
 
 {'CAS': 'Cloud Analytic Services', 
  'Copyright': 'Copyright © 2014-2016 SAS Institute Inc. All Rights  
                Reserved.', 
  'System': {'Hostname': 'cas.mycompany.com', 
   'Model Number': 'x86_64', 
   'OS Family': 'LIN X64', 
   'OS Name': 'Linux', 
   'OS Release': '2.6.32-504.12.2.el6.x86_64', 
   'OS Version': '#1 SMP Sun Feb 1 12:14:02 EST 2015'}, 
  'Version': '3.02', 
  'VersionLong': 'V.03.02M0D12082016', 
  'license': {'expires': '02Feb2017:00:00:00', 
   'gracePeriod': 62, 
   'site': 'SAS Institute Inc.', 
   'siteNum': 1, 
   'warningPeriod': 31}} 
 
[server] 
 
 Server Status 
 
    nodes  actions 
 0      1       10 
 
[nodestatus] 
 
 Node Status 
 
                 name        role   uptime  running  stalled 
 0  cas.mycompany.com  controller  387.823        0        0 
 
+ Elapsed: 0.000662s, mem: 0.0934mb 
 

If you feel uneasy about putting your user name and password in your program, SWAT supports Authinfo 
files for storing that information so it can be looked up in a more secure manner. We won’t go into the 
details of that here. The documentation in the GitHub project outlines the details of setting that up. 

Now that we have a connection to a CAS server, let’s try working with some CAS actions. 

WORKING WITH CAS ACTIONS 
We have seen the output of the serverstatus action, but you might be wondering what other actions are 
available. There are a few ways of displaying them. The first is using the tab completion feature of 
IPython: 
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In [4]: conn.<tab> 
Display all 374 possibilities? (y or n) 
conn.about                               conn.listnodes 
conn.accesscontrol.addacaction           conn.listresults 
conn.accesscontrol.addacactionset        conn.listsasopts 
conn.accesscontrol.addaccaslib           conn.listservopts 
conn.accesscontrol.addaccolumn           conn.listsessions 
conn.accesscontrol.addactable            conn.listsessopts 
conn.accesscontrol.assumerole            conn.loadactionset 
conn.accesscontrol.checkinallobjects     conn.loaddatasource 
conn.accesscontrol.checkoutobject        conn.loadindex 
conn.accesscontrol.commitactrans         conn.loadlibrefs 
conn.accesscontrol.completebackup        conn.loadsasstate 
conn.accesscontrol.createbackup          conn.loadtable 
conn.accesscontrol.deletebwlist          conn.log 
 
... truncated ... 
 

This displays all CAS action sets, actions, and other attributes on the connection, but it does give you a 
general idea of what’s available. You can also ask CAS directly what actions are available by using the 
help action. 

 
In [5]: conn.help() 
NOTE: Available Action Sets and Actions: 
... 
NOTE:    builtins 
NOTE:       addNode - Adds a machine to the server 
NOTE:       removeNode - Remove one or more machines from the server 
NOTE:       help - Shows the parameters for an action or lists all   
                   available actions 
NOTE:       listNodes - Shows the host names used by the server 
NOTE:       loadActionSet - Loads an action set for use in this session 
NOTE:       installActionSet - Loads an action set in new sessions  
                               automatically 
NOTE:       log - Shows and modifies logging levels 
NOTE:       queryActionSet - Shows whether an action set is loaded 
NOTE:       queryName - Checks whether a name is an action or action set 
name 
NOTE:       reflect - Shows detailed parameter information for an action or  
                      all actions in an action set 
NOTE:       serverStatus - Shows the status of the server 
NOTE:       about - Shows the status of the server 
NOTE:       shutdown - Shuts down the server 
NOTE:       userInfo - Shows the user information for your connection 
NOTE:       actionSetInfo - Shows the build information from loaded action 
sets 
NOTE:       history - Shows the actions that were run in this session 
NOTE:       casCommon - Provides parameters that are common to many actions 
NOTE:       ping - Sends a single request to the server to confirm that the  
                   connection is working 
NOTE:       echo - Prints the supplied parameters to the client log 
NOTE:       modifyQueue - Modifies the action response queue settings 
NOTE:       getLicenseInfo - Shows the license information for a SAS  
                             product 
NOTE:       refreshLicense - Refresh SAS license information from a file 
NOTE:       httpAddress - Shows the HTTP address for the server monitor 
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... truncated ... 
 

The help action prints a lot of information like tab-completion, but in this case you also get a short 
description of each action. To get help for a particular action, the easiest way is to use IPython’s ? 
operator. This displays the Python docstring on the object. 

 
In [6]: conn.addnode? 
Type:           builtins.Addnode 
String form:    ?.builtins.Addnode() 
File:           actions.py 
Signature:      conn.addnode(role=None, node=None, **kwargs) 
Docstring: 
Adds a machine to the server 
 
Parameters 
---------- 
role : string, optional 
    specifies the role for the machine. Controllers are added as backup 
    controllers. Only two controllers are supported. 
    Default: captain 
    Values: captain, controller, general, worker 
 
node : list, optional 
    specifies the host names of the machines to add to the server. 
    Default: [] 
    Note: Value range is 1 <= n < inf 
 
Returns 
------- 
Addnode object 
 
... truncated ... 
 

All of this information is downloaded from the CAS server and formatted when the actions are loaded on 
the server. This gives the benefit that the documentation displayed on the client can never be out of date 
with the actions on the server. 

The keyword arguments to a Python method (such as addnode, serverstatus, or help) are used as the 
parameters to the corresponding CAS action. Let’s try a new action called getsessopt. This action 
retrieves the value of a session option. It takes a single argument called name. We can get the value of 
the locale option as follows: 

 
In [7]: conn.getsessopt(name='locale') 
Out[7]: 
[locale] 
 
 'en_US' 
 
+ Elapsed: 0.000253s, mem: 0.0634mb 

  
Parameters can be in the form of many data types such as strings, integers, floating point numbers, lists, 
and dictionaries. The documentation for each action specifies which data type is required for each 
parameter. We will get into more advanced parameters in later sections, but first let’s look at the return 
values of CAS actions. 
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HANDLING CAS ACTION RESULTS 
So far we have simply allowed IPython to display the output of our actions. The result of a CAS action call 
is always a CASResults object. The CASResults object is a subclass of Python’s 
collections.OrderedDict (which is a dictionary with keys that stay in the order in which they were 
inserted). Let’s look at the output of the serverstatus action again. However, this time we will capture the 
output into a variable first. 

 
In [8]: status = conn.serverstatus() 
 
In [9]: status 
Out[9]: 
[About] 
 
 {'CAS': 'Cloud Analytic Services', 
  'Copyright': 'Copyright © 2014-2016 SAS Institute Inc. All Rights  
                Reserved.', 
  'System': {'Hostname': 'cas.mycompany.com', 
   'Model Number': 'x86_64', 
   'OS Family': 'LIN X64', 
   'OS Name': 'Linux', 
   'OS Release': '2.6.32-504.12.2.el6.x86_64', 
   'OS Version': '#1 SMP Sun Feb 1 12:14:02 EST 2015'}, 
  'Version': '3.02', 
  'VersionLong': 'V.03.02M0D12082016', 
  'license': {'expires': '02Feb2017:00:00:00', 
   'gracePeriod': 62, 
   'site': 'SAS Institute Inc.', 
   'siteNum': 1, 
   'warningPeriod': 31}} 
 
[server] 
 
 Server Status 
 
    nodes  actions 
 0      1       10 
 
[nodestatus] 
 
 Node Status 
 
                 name        role   uptime  running  stalled 
 0  cas.mycompany.com  controller  387.823        0        0 
 
+ Elapsed: 0.000662s, mem: 0.0934mb 
  

In the output above, the keys of the result are displayed in brackets. The values of the result are 
displayed after the key name that they belong to. We can look at the keys programmatically using the 
keys method of the CASResults object1: 

 
In [10]: list(status.keys()) 

                                                             
1 We use the list function around the call to the keys method to cover rendering differences between 
Python 2 and Python 3. 
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Out[10]: ['About', 'server', 'nodestatus'] 
 

We can access keys individually using Python’s dictionary syntax as well. 
 
In [11]: status['server'] 
Out[11]: 
[server] 
 
 Server Status 
 
    nodes  actions 
 0      1       10 

 
The values of the CASResults object vary from action to action. They can be a scalar-valued items such 
as a string or floating point value, or they can be more complex objects such as dictionaries or Pandas 
DataFrames. We can print the types of the values of the results above using Python’s type function. 

 
In [12]: for key, value in status.items(): 
    ...:    print(key, type(value)) 
Out[12]: 
About <class 'dict'> 
server <class 'swat.dataframe.SASDataFrame'> 
nodestatus <class 'swat.dataframe.SASDataFrame'> 
 

In this case, the ‘About’ key contains a dictionary, and the ‘server’ and ‘nodestatus’ keys contain 
DataFrames. A SASDataFrame is equivalent to a Pandas DataFrame. It simply contains extra metadata 
about the table and columns such as labels, formats, and so on. 

Since the value in ‘nodestatus’ is a DataFrame, we can perform typical DataFrame operations on it just 
as we would with any other DataFrame. In the code below, we show the results of the columns attribute 
and the info method. 

 
In [13]: status['nodestatus'].columns 
Out[13]: Index(['name', 'role', 'uptime', 'running', 'stalled'],  
               dtype='object') 
 
In [14]: status['nodestatus'].info() 
Out[14]:  
<class 'swat.dataframe.SASDataFrame'> 
RangeIndex: 1 entries, 0 to 0 
Data columns (total 5 columns): 
name       1 non-null object 
role       1 non-null object 
uptime     1 non-null float64 
running    1 non-null int32 
stalled    1 non-null int32 
dtypes: float64(1), int32(2), object(2) 
memory usage: 112.0+ bytes 
 

In additon to the actual values returned, CAS also returns metrics about the action execution. Let’s look at 
those next. 

CAS ACTION METRICS 
At the end of each CAS action execution, you might have noticed a line at the end that looks like the 
following: 
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+ Elapsed: 0.0196s, user: 0.019s, sys: 0.001s, mem: 0.315mb 
 

This gives you a brief summary of various timings and memory consumption statistics. There are several 
other pieces of information available about performance and the disposition of the result as well. The 
most commonly accessed attributes on the CASResults object are severity, status, and messages. 
The severity attribute contains a return code that is either 0 (for no reported problems), 1 (warnings were 
produced), or 2 (errors were produced). The status attribute contains a human-readable message 
summarizing the reason for any errors; if no errors were produced, the string is empty. The messages 
attribute contains any messages that were generated by the action. These are typically printed to the 
terminal as well, but it is sometimes handy to have them in a variable that you can use in post-processing. 

In addition to basic information about the result of the action, there is also a performance attribute on the 
CASResults object. It contains various pieces of information about timings, memory usage, and grid 
usage. 

 
In [15]: status.performance 
Out[15]: CASPerformance(cpu_system_time=0.001, cpu_user_time=0.018997, 
data_movement_bytes=0, data_movement_time=0.0, elapsed_time=0.019644, 
memory=330688, memory_os=8441856, memory_quota=12111872, system_cores=32, 
system_nodes=1, system_total_memory=202931654656) 
 

Each of the parameters shown in Out[15], is available as an attribute on the performance object. 
 
In [16]: status.performance.cpu_system_time 
Out[16]: 0.001 
 

These attributes should give you enough diagnostic information to handle errors, or simply report relevant 
performance information about your analyses. With all of this information under our belts, we can move 
on to loading some data and doing some real work. 

LOADING DATA 
Before we can do any sort of statistical analyses, we need to get some data loaded into CAS first. There 
are many ways to load data, so we’ll just cover the simplest methods here. For larger data sets, you will 
likely want to have the data located on the same machine that CAS is running on so that you don’t have 
to transfer the data each time it is loaded into a CAS table. For smaller data sets, it might not matter as 
much. We will start with smaller data sets located on the client side first. 

LOADING DATA SETS FROM THE CLIENT SIDE 
Loading data from the client side into CAS is fairly easy if it’s in a common format such as CSV. You can 
use the read_csv method on your CAS connection object to read a CSV file (or URL) and load it into a 
CAS table. 

 
In [17]: tbl = conn.read_csv('https://raw.githubusercontent.com/' 
   ....:                     'sassoftware/sas-viya-programming/' 
   ....:                     'master/data/cars.csv') 
 
In [18]: tbl 
Out[18]: CASTable('_T_5FEPFN5Y_DPXS4G22_6PPE7JDUCF',  
                  caslib='CASUSER(kesmit)') 
 

Loading a table in this manner creates a table on the server with a generated table name in the active 
caslib. We won’t go into detail about caslibs in this paper. They are essentially resources in the server 
that configure data sources, authentication, and authorization settings for the data source and loaded 
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tables. They also act as namespaces for in-memory tables, which is what we are using them for here. We 
use the default caslib for all of our examples in this paper. 

It is possible to set a specific name for the output table using the casout= parameter so that you don’t 
have to look at obscure generated table names. 

 
In [19]: tbl = conn.read_csv('https://raw.githubusercontent.com/' 
   ....:                     'sassoftware/sas-viya-programming/' 
   ....:                     'master/data/cars.csv', casout='cars') 
 
In [20]: tbl 
Out[20]: CASTable('cars', caslib='CASUSER(kesmit)') 
 

The result of the read_csv method is a CASTable object. The CASTable object is a very rich interface to 
tables in the CAS server. CAS actions can be executed through the CASTable object, and it supports 
much of the Pandas DataFrame API so that it looks and feels like a DataFrame, but the processing is 
done within CAS. 

Now that we have a CASTable object that references a table in our CAS server, let’s get some 
information about it. The tableinfo and columninfo actions give you information about the table as a 
whole and the columns in the table, respectively. 

 
In [21]: tbl.tableinfo() 
Out[21]: 
[TableInfo] 
 
    Name  Rows  Columns Encoding CreateTimeFormatted  \ 
 0  CARS   428       15    utf-8  16Dec2016:15:43:47 
 
      ModTimeFormatted JavaCharSet    CreateTime       ModTime  \ 
 0  16Dec2016:15:43:47        UTF8  1.797522e+09  1.797522e+09 
 
    Global  Repeated  View SourceName SourceCaslib  Compressed  \ 
 0       0         0     0                                   0 
 
   Creator Modifier 
 0  kesmit 
 
+ Elapsed: 0.000625s, mem: 0.1mb 
 
In [22]: tbl.columninfo() 
Out[22]: 
[ColumnInfo] 
 
          Column  ID     Type  RawLength  FormattedLength  NFL  NFD 
 0          Make   1  varchar         13               13    0    0 
 1         Model   2  varchar         39               39    0    0 
 2          Type   3  varchar          6                6    0    0 
 3        Origin   4  varchar          6                6    0    0 
 4    DriveTrain   5  varchar          5                5    0    0 
 5          MSRP   6   double          8               12    0    0 
 6       Invoice   7   double          8               12    0    0 
 7    EngineSize   8   double          8               12    0    0 
 8     Cylinders   9   double          8               12    0    0 
 9    Horsepower  10   double          8               12    0    0 
 10     MPG_City  11   double          8               12    0    0 
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 11  MPG_Highway  12   double          8               12    0    0 
 12       Weight  13   double          8               12    0    0 
 13    Wheelbase  14   double          8               12    0    0 
 14       Length  15   double          8               12    0    0 
 
+ Elapsed: 0.000753s, user: 0.001s, mem: 0.172mb 
  

We can fetch a sample of the data using the fetch action. 
 
In [23]: tbl.fetch(to=3) 
Out[23]: 
[Fetch] 
 
 Selected Rows from Table CARS 
 
     Make           Model   Type Origin DriveTrain     MSRP  Invoice  \ 
 0  Acura             MDX    SUV   Asia        All  36945.0  33337.0 
 1  Acura  RSX Type S 2dr  Sedan   Asia      Front  23820.0  21761.0 
 2  Acura         TSX 4dr  Sedan   Asia      Front  26990.0  24647.0 
 
    EngineSize  Cylinders  Horsepower  MPG_City  MPG_Highway  Weight  \ 
 0         3.5        6.0       265.0      17.0         23.0  4451.0 
 1         2.0        4.0       200.0      24.0         31.0  2778.0 
 2         2.4        4.0       200.0      22.0         29.0  3230.0 
 
    Wheelbase  Length 
 0      106.0   189.0 
 1      101.0   172.0 
 2      105.0   183.0 
 
+ Elapsed: 0.00403s, user: 0.001s, sys: 0.002s, mem: 1.7mb 
 

Now that we have verified that the table exists in the server and contains the expected data, let’s look at 
the next method of loading data. 

LOADING DATA SETS FROM THE SERVER SIDE 
As we mentioned in the previous section, if you have large data sets, you probably want to load the data 
files on to the CAS server and load them from there so that you don’t have to transfer the data from the 
client each time it is loaded. To load data from a file, the file must be in a location that is accessible from a 
caslib. To keep things simple, we are going to assume that you have the data file in your home directory 
which is accessible through the Casuser caslib. 

To load data files from the server side, you use the loadtable action. 
 
In [24]: out = conn.loadtable(path='cars.csv', casout='cars2') 
 
In [25]: out 
Out[25]:  
[caslib] 
 
 'CASUSER(kesmit)' 
 
[tableName] 
 
 'CARS2' 
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[casTable] 
 
 CASTable('CARS2', caslib='CASUSER(kesmit)') 
 
+ Elapsed: 0.11s, user: 0.056s, sys: 0.043s, mem: 64.8mb 
 

In this case, we are calling a CAS action rather than a method on the connection object so the result is a 
CASResults object. However, we can get the CASTable object from the casTable key in the result. 

 
In [26]: tbl2 = out['casTable'] 
 
In [27]: tbl2 
Out[27]: CASTable('CARS2', caslib='CASUSER(kesmit)') 
 

Loading tables from the server and getting the CASTable from the result is such a common thing to do 
that a small wrapper method was added to the connection object in order to simplify the process. The 
method is called load_path. It takes the same parameters as the loadtable action, but just returns the 
CASTable object. 

 
In [28]: tbl3 = conn.load_path(path='cars.csv', casout='cars3') 
 
In [29]: tbl3 
Out[29]: CASTable('CARS3', caslib='CASUSER(kesmit)') 
 

Of course, once the table is loaded, it works just like the CASTable that was loaded from the client side. 
 
In [30]: tbl3.tableinfo() 
Out[30]: 
[TableInfo] 
 
     Name  Rows  Columns Encoding CreateTimeFormatted  \ 
 0  CARS3   428       15    utf-8  16Dec2016:16:06:30 
 
      ModTimeFormatted JavaCharSet    CreateTime       ModTime  \ 
 0  16Dec2016:16:06:30        UTF8  1.797524e+09  1.797524e+09 
 
    Global  Repeated  View     SourceName     SourceCaslib  \ 
 0       0         0     0  data/cars.csv  CASUSER(kesmit) 
 
    Compressed Creator Modifier 
 0           0  kesmit 
 
+ Elapsed: 0.00084s, user: 0.001s, mem: 0.102mb 
 
In [31]: tbl3.columninfo() 
Out[31]: 
[ColumnInfo] 
 
          Column  ID     Type  RawLength  FormattedLength  NFL  NFD 
 0          Make   1  varchar         13               13    0    0 
 1         Model   2  varchar         39               39    0    0 
 2          Type   3  varchar          6                6    0    0 
 3        Origin   4  varchar          6                6    0    0 
 4    DriveTrain   5  varchar          5                5    0    0 
 5          MSRP   6   double          8               12    0    0 
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 6       Invoice   7   double          8               12    0    0 
 7    EngineSize   8   double          8               12    0    0 
 8     Cylinders   9   double          8               12    0    0 
 9    Horsepower  10   double          8               12    0    0 
 10     MPG_City  11   double          8               12    0    0 
 11  MPG_Highway  12   double          8               12    0    0 
 12       Weight  13   double          8               12    0    0 
 13    Wheelbase  14   double          8               12    0    0 
 14       Length  15   double          8               12    0    0 
 
+ Elapsed: 0.000759s, mem: 0.17mb 
 

The examples of loading data in this section and the previous section demonstrate only the simplest 
methods of loading data. There are various data file formats that can be read, many options to modify the 
data types and column metadata, as well as ways of loading data from non-file-based sources such as 
databases. These topics are much too large to go into in this paper, so we’ll refer you to the SAS 
documentation for more information. 

Now that we have some data to work with, we can move on to some more interesting work of performing 
analytics on it. 

COMPUTING SIMPLE STATISTICS 
Before getting into more advanced modeling, we can obtain quite a bit of information about our data using 
CAS actions for simple statistics. These actions are in an action set called simple. The simple action set 
should already be loaded. You can verify this by running the actionsetinfo action (in addition to running 
the action, we are also accessing the ‘actionset’ column of the DataFrame in the ‘setinfo’ key of the result 
in the code below). 

 
In [32]: conn.actionsetinfo().setinfo.actionset 
Out[32]:  
0      accessControl 
1      accessControl 
2           builtins 
3      configuration 
4     dataPreprocess 
5           dataStep 
6         percentile 
7             search 
8            session 
9        sessionProp 
10            simple 
11             table 
Name: actionset, dtype: object 
 

As you can see, the simple action set is already loaded on our system. If you don’t see simple in your list 
of action sets, you can load it using the loadactionset action. 

 
In [33]: conn.loadactionset('simple') 
NOTE: Added action set 'simple'. 
Out[33]: 
[actionset] 
 
 'simple' 
 
+ Elapsed: 0.0192s, user: 0.018s, sys: 0.001s, mem: 0.282mb 
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Using IPython’s ? operator for displaying help, we can display the following on the simple attribute of the 
connection object. 

 
In[34]: conn.simple? 
... 
 
Analytics 
 
Actions 
------- 
simple.correlation : Generates a matrix of Pearson product-moment 
                     correlation coefficients 
simple.crosstab    : Performs one-way or two-way tabulations 
simple.distinct    : Computes the distinct number of values of the 
                     variables in the variable list 
simple.freq        : Generates a frequency distribution for one or 
                     more variables 
simple.groupby     : Builds BY groups in terms of the variable value 
                     combinations given the variables in the variable 
                     list 
simple.mdsummary   : Calculates multidimensional summaries of numeric 
                     variables 
simple.numrows     : Shows the number of rows in a Cloud Analytic 
                     Services table 
simple.paracoord   : Generates a parallel coordinates plot of the 
                     variables in the variable list 
simple.regression  : Performs a linear regression up to 3rd-order 
                     polynomials 
simple.summary     : Generates descriptive statistics of numeric 
                     variables such as the sample mean, sample 
                     variance, sample size, sum of squares, and so on 
simple.topk        : Returns the top-K and bottom-K distinct values of 
                     each variable included in the variable list based 
                     on a user-specified ranking order  
 

Now that we have this action set loaded, let’s try the summary action on our previously loaded table. We 
display only a few rows of the result below to save space. 

 
In [35]: tbl.summary()  
Out[35]: 
[Summary] 
 
 Descriptive Statistics for CARS 
 
        Column      Min       Max      N  NMiss          Mean  \ 
 0        MSRP  10280.0  192465.0  428.0    0.0  32774.855140 
 1     Invoice   9875.0  173560.0  428.0    0.0  30014.700935 
 ..       ...     ...      ...   ...   ...          ... 
 8   Wheelbase     89.0     144.0  428.0    0.0    108.154206 
 9      Length    143.0     238.0  428.0    0.0    186.362150 
 
            Sum           Std      StdErr           Var  \ 
 0   14027638.0  19431.716674  939.267478  3.775916e+08 
 1   12846292.0  17642.117750  852.763949  3.112443e+08 
 ..        ...          ...        ...          ... 
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 8      46290.0      8.311813    0.401767  6.908624e+01 
 9      79763.0     14.357991    0.694020  2.061519e+02 
 
              USS           CSS         CV      TValue          ProbT 
 0   6.209854e+11  1.612316e+11  59.288490   34.894059  4.160412e-127 
 1   5.184789e+11  1.329013e+11  58.778256   35.196963  2.684398e-128 
 ..          ...          ...       ...        ...           ... 
 8   5.035958e+06  2.949982e+04   7.685150  269.196577   0.000000e+00 
 9   1.495283e+07  8.802687e+04   7.704349  268.525733   0.000000e+00 
 
 [10 rows x 15 columns] 
 
+ Elapsed: 0.00617s, user: 0.006s, sys: 0.002s, mem: 1.75mb 
 

You can see that we get statistics such as the minimum value, the maximum value, the number of 
observations, the number of missing values, and so on. It is also possible to retrieve only the statistics 
you want by using the subset= option. 

 
In [36]: tbl.summary(subset=['Sum', 'Std', 'StdErr']) 
Out[36]: 
[Summary] 
 
 Descriptive Statistics for CARS 
 
        Column         Sum           Std      StdErr 
 0        MSRP  14027638.0  19431.716674  939.267478 
 1     Invoice  12846292.0  17642.117750  852.763949 
 ..       ...        ...          ...        ... 
 8   Wheelbase     46290.0      8.311813    0.401767 
 9      Length     79763.0     14.357991    0.694020 
 
 [10 rows x 4 columns] 
 
+ Elapsed: 0.00618s, user: 0.003s, sys: 0.005s, mem: 1.74mb 
 

Grouping results by data values can also be done. In the example below, we use the groupby method on 
the CASTable object. This works very much like the groupby method on Pandas DataFrames. In its 
simplest form, it takes a string or list of strings as the variable values to group by. 

 
In [37]: tbl.groupby('Origin').summary(subset=['Sum', 'Std', 'StdErr']) 
Out[37]: 
[ByGroupInfo] 
 
 ByGroupInfo 
 
    Origin Origin_f   _key_ 
 0    Asia     Asia    Asia 
 1  Europe   Europe  Europe 
 2     USA      USA     USA 
 
[ByGroup1.Summary] 
 
 Descriptive Statistics for CARS 
 
            Column        Sum           Std      StdErr 
 Origin 
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 Asia         MSRP  3909129.0  11321.069675  900.655944 
 Asia      Invoice  3571144.0   9842.984880  783.065832 
 ...          ...       ...          ...        ... 
 Asia    Wheelbase    16730.0      7.735249    0.615383 
 Asia       Length    28885.0     12.564148    0.999550 
 
 [10 rows x 4 columns] 
 
... 
 
[ByGroup3.Summary] 
 
 Descriptive Statistics for CARS 
 
            Column        Sum           Std      StdErr 
 Origin 
 USA          MSRP  4171484.0  11711.982506  965.988036 
 USA       Invoice  3814553.0  10518.722194  867.569584 
 ...          ...       ...          ...        ... 
 USA     Wheelbase    16467.0      8.788590    0.724871 
 USA        Length    28511.0     15.305265    1.262357 
 
 [10 rows x 4 columns] 
 
+ Elapsed: 0.0106s, user: 0.008s, sys: 0.005s, mem: 1.74mb 
 

From the output above, you can see that we get multiple tables back when using BY groups. The first 
table is a summary of all of the BY groups contained in the output. This can be useful if the number of BY 
groups is very large and you want to know at the beginning what to expect in the rest of the output. The 
remaining tables contain the summary statistics for each BY group. The keys of the CASResults object 
are the output table name (in this case, “Summary”) prefixed by “ByGroup#” where # is the index of the 
BY group. If you prefer to have all of the BY groups in one table, you can concatenate them using the 
concat_bygroups method of the CASResults object. 

 
In [38]: out = tbl.groupby('Origin').summary(subset=['Sum', 'Std',  
                                                     'StdErr']) 
 
In [39]: out.concat_bygroups() 
Out[39]: 
[Summary] 
 
 Descriptive Statistics for CARS 
 
              Column        Sum           Std      StdErr 
 Origin 
 Asia           MSRP  3909129.0  11321.069675  900.655944 
 Asia        Invoice  3571144.0   9842.984880  783.065832 
 Asia     EngineSize      438.3      0.902310    0.071784 
 Asia      Cylinders      809.0      1.269008    0.101602 
 Asia     Horsepower    30131.0     59.392627    4.725024 
 ...            ...       ...          ...        ... 
 USA        MPG_City     2804.0      3.982992    0.328512 
 USA     MPG_Highway     3824.0      5.396582    0.445103 
 USA          Weight   554183.0    855.305524   70.544411 
 USA       Wheelbase    16467.0      8.788590    0.724871 
 USA          Length    28511.0     15.305265    1.262357 
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 [30 rows x 4 columns] 
 

Let’s look at another action in the simple action set: correlation. It works in the same way as the 
summary action, it is called like a method on the CASTable object. By default, the correlation action will 
also return some of the summary statistics in a separate table, since we have already looked at the 
summary action, we will disable those by setting the simple= parameter to False. 

 
In [40]: tbl.correlation(simple=False) 
Out[40]: 
[Correlation] 
 
 Pearson Correlation Coefficients for CARS 
 
       Variable      MSRP   Invoice  EngineSize  Cylinders  \ 
 0         MSRP  1.000000  0.999132    0.571753   0.649742 
 1      Invoice  0.999132  1.000000    0.564498   0.645226 
 2   EngineSize  0.571753  0.564498    1.000000   0.908002 
 3    Cylinders  0.649742  0.645226    0.908002   1.000000 
 4   Horsepower  0.826945  0.823746    0.787435   0.810341 
 5     MPG_City -0.475020 -0.470442   -0.709471  -0.684402 
 6  MPG_Highway -0.439622 -0.434585   -0.717302  -0.676100 
 7       Weight  0.448426  0.442332    0.807867   0.742209 
 8    Wheelbase  0.152000  0.148328    0.636517   0.546730 
 9       Length  0.172037  0.166586    0.637448   0.547783 
 
    Horsepower  MPG_City  MPG_Highway    Weight  Wheelbase    Length 
 0    0.826945 -0.475020    -0.439622  0.448426   0.152000  0.172037 
 1    0.823746 -0.470442    -0.434585  0.442332   0.148328  0.166586 
 2    0.787435 -0.709471    -0.717302  0.807867   0.636517  0.637448 
 3    0.810341 -0.684402    -0.676100  0.742209   0.546730  0.547783 
 4    1.000000 -0.676699    -0.647195  0.630796   0.387398  0.381554 
 5   -0.676699  1.000000     0.941021 -0.737966  -0.507284 -0.501526 
 6   -0.647195  0.941021     1.000000 -0.790989  -0.524661 -0.466092 
 7    0.630796 -0.737966    -0.790989  1.000000   0.760703  0.690021 
 8    0.387398 -0.507284    -0.524661  0.760703   1.000000  0.889195 
 9    0.381554 -0.501526    -0.466092  0.690021   0.889195  1.000000 
 
+ Elapsed: 0.00583s, user: 0.005s, sys: 0.003s, mem: 1.74mb 
 

Correlation matrices are usually easier to interpret using heatmaps, so let’s plot the above data using a 
Python package called Seaborn. We first want to convert the output above to a lower-triangular matrix, 
then we’ll create the plot. Unfortunately, we don’t have the space in this paper to explain in detail 
everything we are doing in this example, so further study will have to be an exercise for the reader. 

 
# Import require packages 
In [41]: import numpy as np 
 
In [42]: import seaborn as sns 
 
In [43]: from matplotlib.pyplot import show  
 
# Run the correlation action 
In [44]: corr = tbl.correlation(simple=False).Correlation 
 
# Set the Variable column as the row labels 
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In [45]: corr = corr.set_index('Variable') 
 
# Create a lower-triangular matrix 
In [46]: corrl = corr.where(np.tril(np.ones(corr.shape),  
                           -1).astype(np.bool)) 
 
# Create the heatmap 
In [47]: with sns.axes_style('white'): 
   ....:     hm = sns.heatmap(corrl) 
   ....:     hm.set_yticklabels(corrl.index.str.replace('_', ' '),  
   ....:                        rotation=0) 
   ....:     hm.set_xticklabels(corrl.index.str.replace('_', ' '), 
   ....:                        rotation=-30) 
   ....:     show() 
 

The resulting graph from the example code above is shown here. 

 
Figure 1. Heatmap displaying the result of the correlation action 
With the basics of running CAS actions under our belt, we can move on to some modeling examples. 

BUILDING MODELS 
CAS also provides a variety of statistical and machine learning models for you to model structured and 
unstructured data. These models are grouped into action sets based on functionality. For instance, the 
regression action set contains three different regression models: linear regressions, logistic regressions, 
and generalized linear models. 

 
In [48]: conn.loadactionset('regression') 
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In [49]: conn.regression? 
 
Actions 
------- 
regression.genmod   : Fits generalized linear regression models 
regression.glm      : Fits linear regression models using the method of    
                      least squares 
regression.logistic : Fits logistic regression models 

 

Let’s continue to work on the cars data set you have loaded to the CAS server and build a simple linear 
regression model to predict the MSRP value of cars. 

 
In [50]: tbl.glm(target='MSRP', inputs=['MPG_City']) 
Out[50]:  
 
[ModelInfo] 
 
 Model Information 
  
          RowId        Description Value 
 0         DATA        Data Source  CARS 
 1  RESPONSEVAR  Response Variable  MSRP 
 
[NObs] 
 
 Number of Observations 
  
    RowId                  Description  Value 
 0  NREAD  Number of Observations Read  428.0 
 1  NUSED  Number of Observations Used  428.0 
 
[Dimensions] 
 
 Dimensions 
  
       RowId           Description  Value 
 0  NEFFECTS     Number of Effects      2 
 1    NPARMS  Number of Parameters      2 
 
[ANOVA] 
 
 Analysis of Variance 
  
    RowId           Source     DF            SS            MS  \ 
 0  MODEL            Model    1.0  3.638090e+10  3.638090e+10    
 1  ERROR            Error  426.0  1.248507e+11  2.930768e+08    
 2  TOTAL  Corrected Total  427.0  1.612316e+11           NaN    
  
       FValue         ProbF   
 0  124.13436  1.783404e-25   
 1        NaN           NaN   
 2        NaN           NaN   
 
[FitStatistics] 
 
 Fit Statistics 
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        RowId Description         Value 
 0       RMSE    Root MSE  1.711949e+04 
 1    RSQUARE    R-Square  2.256437e-01 
 2     ADJRSQ    Adj R-Sq  2.238260e-01 
 3        AIC         AIC  8.776260e+03 
 4       AICC        AICC  8.776316e+03 
 5        SBC         SBC  8.354378e+03 
 6  TRAIN_ASE         ASE  2.917073e+08 
 
[ParameterEstimates] 
 
 Parameter Estimates 
  
       Effect  Parameter  DF      Estimate       StdErr     tValue  \ 
 0  Intercept  Intercept   1  68124.606698  3278.919093  20.776544    
 1   MPG_City   MPG_City   1  -1762.135298   158.158758 -11.141560    
  
           Probt   
 0  1.006169e-66   
 1  1.783404e-25   
 
[Timing] 
 
 Task Timing 
  
             RowId                  Task      Time   RelTime 
 0           SETUP     Setup and Parsing  0.391366  0.283194 
 1    LEVELIZATION          Levelization  0.315693  0.228437 
 2  INITIALIZATION  Model Initialization  0.000099  0.000072 
 3            SSCP      SSCP Computation  0.512247  0.370665 
 4         FITTING         Model Fitting  0.000415  0.000300 
 5         CLEANUP               Cleanup  0.002838  0.002054 
 6           TOTAL                 Total  1.381969  1.000000 
 
+ Elapsed: 1.81s, user: 0.032s, sys: 0.066s, mem: 37.9mb 
 

Compared to the actions in the simple action set, the glm action might requires a more complex and 
deeper parameter structure. In this case, it might be more convenient to define a new GLM model first 
and then specify the model parameters, step-by-step. In other words, the linear regression above can be 
rewritten as: 

 
linear1 = tbl.Glm() 
linear1.target = 'MSRP' 
linear1.inputs = ['MPG_City'] 
linear1() 
 

This approach enables you to reuse the code when you need to change only a few parameters of the 
model. For example, let us add a categorical predictor and display only the parameter estimation table: 

 
In[51]: linear1.inputs = ['MPG_City','Origin'] 
   ...: linear1.nominals = ['Origin'] 
   ...: linear1.display.names = ['ParameterEstimates'] 
   ...: linear1() 
Out[51]:  
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[ParameterEstimates] 
 
 Parameter Estimates 
  
       Effect  Origin      Parameter  DF      Estimate       StdErr  \ 
 0  Intercept              Intercept   1  57217.013184  2997.826305    
 1   MPG_City               MPG_City   1  -1511.917596   143.404229    
 2     Origin    Asia    Origin Asia   1    805.634901  1755.483912    
 3     Origin  Europe  Origin Europe   1  19453.581452  1817.953561    
 4     Origin     USA     Origin USA   0      0.000000          NaN    
  
       tValue         Probt   
 0  19.086167  4.565959e-59   
 1 -10.543047  3.084694e-23   
 2   0.458925  6.465234e-01   
 3  10.700813  8.117258e-24   
 4        NaN           NaN   
 
+ Elapsed: 2.04s, user: 0.036s, sys: 0.095s, mem: 39.4mb 
 

The decisiontree action set is another popular analytic action set. It provides three distinct tree-based 
models: decision tree, random forests, and gradient boosting. Unlike the regression action set, the 
decisiontree action set splits a model into different actions, each represents a typical step of a machine 
learning process such as training, scoring and score code generation (as SAS DATA step score code). 

 
In [52]: conn.loadactionset('decisiontree') 
 
In [52]: conn.decisiontree? 
 
Actions 
------- 
decisiontree.dtreecode   : Generate DATA step scoring code from a 
                           decision tree model 
decisiontree.dtreemerge  : Merge decision tree nodes 
decisiontree.dtreeprune  : Prune a decision tree 
decisiontree.dtreescore  : Score a table using a decision tree model 
decisiontree.dtreesplit  : Split decision tree nodes 
decisiontree.dtreetrain  : Train a decision tree 
decisiontree.forestcode  : Generate DATA step scoring code from a 
                           forest model 
decisiontree.forestscore : Score a table using a forest model 
decisiontree.foresttrain : Train a forest 
decisiontree.gbtreecode  : Generate DATA step scoring code from a 
                           gradient boosting tree model 
decisiontree.gbtreescore : Score a table using a gradient boosting 
                           tree model 
decisiontree.gbtreetrain : Train a gradient boosting tree 

	
The models in the decisiontree action set support either continuous, binary or multilevel response 
variable. Let us fit a random forest model to predict whether a vehicle is from Asia, Europe, or United 
States. 

 
In [53]: forest1 = tbl.Foresttrain() 
    ...: forest1.target = 'Origin' 

...: forest1.inputs = ['MPG_City','MPG_Highway','Type', 
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                       'Weight','Length','Cylinders'] 
    ...: forest1.nominals = ['Type','Cylinders'] 
    ...: forest1.casout = conn.CASTable('forestModel1', replace=True) 
    ...: forest1() 
Out[53]: 
 
[ModelInfo] 
 
 Forest for CARS 
  
                                Descr       Value 
 0                    Number of Trees   50.000000 
 1   Number of Selected Variables (M)    3.000000 
 2                 Random Number Seed    0.000000 
 3           Bootstrap Percentage (%)   63.212056 
 4                     Number of Bins   20.000000 
 5                Number of Variables    6.000000 
 6       Confidence Level for Pruning    0.250000 
 7           Max Number of Tree Nodes   29.000000 
 8           Min Number of Tree Nodes   11.000000 
 9             Max Number of Branches    2.000000 
 10            Min Number of Branches    2.000000 
 11              Max Number of Levels    6.000000 
 12              Min Number of Levels    6.000000 
 13              Max Number of Leaves   15.000000 
 14              Min Number of Leaves    6.000000 
 15            Maximum Size of Leaves  229.000000 
 16            Minimum Size of Leaves    5.000000 
 17                Out-of-Bag MCR (%)         NaN 
 
[OutputCasTables] 
 
                 casLib          Name  Rows  Columns  \ 
 0  CASUSERHDFS(ximeng)  forestModel1   804       38    
  
                                   casTable   
 0  CASTable('forestModel1', caslib='CAS...  
 
+ Elapsed: 3.8s, user: 0.114s, sys: 0.802s, mem: 25.7mb 

 

The foresttrain action outputs two result tables: ModelInfo and OutputCasTables. The first table contains 
parameters that define the forest, parameters that define each individual tree, and tree statistics such as 
the minimum and maximum number of branches and levels. The second table provides information of the 
CAS table that stores the actual forest model. 

Random forest models are also commonly used in variable selection, which is usually determined by the 
variable importance of the predictors in training the forest model. In the foresttrain action, this 
importance measure is defined as the total Gini reduction from all of the splits that use this predictor. You 
can request variable important using the varimp option and generate the variable importance using the 
Matplotlib package. 

 
In [54]: forest1.varimp = True 
    ...: result = forest1() 
    ...: dfVarImp = result['DTreeVarImpInfo'] 
    ...:  
    ...: import matplotlib.pyplot as plt 
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    ...: import numpy as np 
    ...:  
    ...: y_pos = np.arange(len(dfVarImp['Importance'])) 
    ...: plt.barh(y_pos, dfVarImp['Importance'], align='center') 
    ...: plt.yticks(y_pos, dfVarImp['Variable']) 
    ...: plt.xlabel('Variable Importance') 

...: plt.show() 
 

  

Figure 2. Variable Importance plot from the random forest model 
To score the training data or the holdout data using the forest model, you can use the forestscore action. 

 
In [55]: scored_data = conn.CASTable('scored_output', replace=True) 
In [56]: tbl.forestscore(modeltable=conn.CASTable('forestModel1'),  
                         casout=scored_data) 
In [57]: scored_data.head() 
Out[57]:  
Selected Rows from Table SCORED_OUTPUT 
 
  _RF_PredName_  _RF_PredP_  _RF_PredLevel_  _MissIt_  _Vote_ 
0          Asia        0.66             0.0       0.0    33.0 
1          Asia        0.70             0.0       0.0    35.0 
2          Asia        0.66             0.0       0.0    33.0 
3          Asia        0.66             0.0       0.0    33.0 
4          Asia        0.50             0.0       0.0    25.0 

CLOSING THE CONNECTION 
When you are finished with a CAS connection, it’s always a good idea to close it explicitly. 
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In [58]: conn.close() 

CONCLUSION 
In this paper, we have covered everything from installing the Python client to SAS Viya, loading data into 
CAS, running CAS actions, to basic analytical modeling. In addition, we demonstrated the integration of 
CAS results with other Python packages such as the Matplotlib and Seaborn graphics packages. Having 
access to a third-party language interface to a SAS analytics engine is new territory for SAS, but we hope 
that we have shown that the integration between the two is quite natural and seamless. 
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