
M A N N I N G

Henrik Brink
Joseph W. Richards

Mark Fetherolf
FOREWORD BY Beau Cronin

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xviii
about the authors xxi

..........1

ch 11
6

t 17
vii

about the cover illustration xxii

PART 1 THE MACHINE-LEARNING WORKFLOW

1 What is machine learning? 3
1.1 Understanding how machines learn 4
1.2 Using data to make decisions 7

 Traditional approaches 8 ■ The machine-learning approa
 Five advantages to machine learning 16 ■ Challenges 1

1.3 Following the ML workflow: from data to deploymen
 Data collection and preparation 18 ■ Learning a model
 from data 19 ■ Evaluating model performance 20
Optimizing model performance 21

CONTENTSviii

1.4 Boosting model performance with advanced
techniques 22
Data preprocessing and feature engineering 22 ■ Improving
models continually with online methods 24 ■ Scaling models with
data volume and velocity 25

1.5 Summary 25
1.6 Terms from this chapter 25

in
ing

g
8

2 Real-world data 27
2.1 Getting started: data collection 28

Which features should be included? 30 ■ How can we obta
ground truth for the target variable? 32 ■ How much train
data is required? 33 ■ Is the training set representative
enough? 35

2.2 Preprocessing the data for modeling 36
Categorical features 36 ■ Dealing with missing data 38
Simple feature engineering 40 ■ Data normalization 42

2.3 Using data visualization 43
Mosaic plots 44 ■ Box plots 46 ■ Density plots 48
Scatter plots 50

2.4 Summary 50
2.5 Terms from this chapter 51

3 Modeling and prediction 52
3.1 Basic machine-learning modeling 53

Finding the relationship between input and target 53
The purpose of finding a good model 55 ■ Types of modelin
methods 56 ■ Supervised versus unsupervised learning 5

3.2 Classification: predicting into buckets 59
Building a classifier and making predictions 61
Classifying complex, nonlinear data 64
Classifying with multiple classes 66

3.3 Regression: predicting numerical values 68
Building a regressor and making predictions 69
Performing regression on complex, nonlinear data 73

3.4 Summary 74
3.5 Terms from this chapter 75

CONTENTS ix

4 Model evaluation and optimization 77
4.1 Model generalization: assessing predictive accuracy for

new data 78
The problem: overfitting and model optimism 79 ■ The solution:
cross-validation 82 ■ Some things to look out for when using
cross-validation 86

4.2 Evaluation of classification models 87
Class-wise accuracy and the confusion matrix 89

0

d
4

e
Accuracy trade-offs and ROC curves 90 ■ Multiclass
classification 93

4.3 Evaluation of regression models 96
Using simple regression performance metrics 97
Examining residuals 99

4.4 Model optimization through parameter tuning 10
ML algorithms and their tuning parameters 100
Grid search 101

4.5 Summary 104
4.6 Terms from this chapter 105

5 Basic feature engineering 106
5.1 Motivation: why is feature engineering useful? 107

What is feature engineering? 107 ■ Five reasons to use
feature engineering 107 ■ Feature engineering and
domain expertise 109

5.2 Basic feature-engineering processes 110
Example: event recommendation 110 ■ Handling date an
time features 112 ■ Working with simple text features 11

5.3 Feature selection 116
Forward selection and backward elimination 119 ■ Featur
selection for data exploration 121 ■ Real-world feature
selection example 123

5.4 Summary 125
5.5 Terms from this chapter 126

CONTENTSx

PART 2 PRACTICAL APPLICATION127

6 Example: NYC taxi data 129
6.1 Data: NYC taxi trip and fare information 130

Visualizing the data 130 ■ Defining the problem and
preparing the data 134

6.2 Modeling 137
■

156

174

aïve
with
185
Basic linear model 137 Nonlinear classifier 138
Including categorical features 140 ■ Including date-time
features 142 ■ Model insights 143

6.3 Summary 144
6.4 Terms from this chapter 145

7 Advanced feature engineering 146
7.1 Advanced text features 146

Bag-of-words model 147 ■ Topic modeling 149
Content expansion 152

7.2 Image features 154
Simple image features 154 ■ Extracting objects and shapes

7.3 Time-series features 160
Types of time-series data 160 ■ Prediction on time-series
data 163 ■ Classical time-series features 163
Feature engineering for event streams 168

7.4 Summary 168
7.5 Terms from this chapter 170

8 Advanced NLP example: movie review sentiment 172
8.1 Exploring the data and use case 173

A first glance at the dataset 173 ■ Inspecting the dataset
So what’s the use case? 175

8.2 Extracting basic NLP features and building
the initial model 178
Bag-of-words features 178 ■ Building the model with the n
Bayes algorithm 180 ■ Normalizing bag-of-words features
the tf-idf algorithm 184 ■ Optimizing model parameters

CONTENTS xi

8.3 Advanced algorithms and model deployment
considerations 190
Word2vec features 190 ■ Random forest model 192

8.4 Summary 195
8.5 Terms from this chapter 195

9 Scaling machine-learning workflows 196
9.1 Before scaling up 197

ning

y 209
Identifying important dimensions 197 ■ Subsampling trai
data in lieu of scaling? 199 ■ Scalable data management
systems 201

9.2 Scaling ML modeling pipelines 203
Scaling learning algorithms 204

9.3 Scaling predictions 207
Scaling prediction volume 208 ■ Scaling prediction velocit

9.4 Summary 211
9.5 Terms from this chapter 212

10 Example: digital display advertising 214
10.1 Display advertising 215
10.2 Digital advertising data 216
10.3 Feature engineering and modeling strategy 216
10.4 Size and shape of the data 218
10.5 Singular value decomposition 220
10.6 Resource estimation and optimization 222
10.7 Modeling 224
10.8 K-nearest neighbors 224
10.9 Random forests 226

10.10 Other real-world considerations 227
10.11 Summary 228
10.12 Terms from this chapter 229
10.13 Recap and conclusion 229

appendix Popular machine-learning algorithms 232

index 236

about the cover illustration
The figure on the cover of Real-World Machine Learning is captioned “Chinois Combat-
tant” or “Chinese fighter.” The illustration is taken from a nineteenth-century edition
of Sylvain Maréchal’s four-volume compendium of regional dress customs published
in France. Each illustration is finely drawn and colored by hand. The rich variety of

’s towns and
ifferent dia-
untryside, it
e was just by

lass, so rich
ifferent con-
ral diversity
 technolog-

anning cele-
book covers
ck to life by
xxii

Maréchal’s collection reminds us vividly of how culturally apart the world
regions were just 200 years ago. Isolated from each other, people spoke d
lects and languages. Whether on city streets, in small towns, or in the co
was easy to identify where they lived and what their trade or station in lif
their dress.

 Dress codes have changed since then and the diversity by region and c
at the time, has faded away. It is now hard to tell apart the inhabitants of d
tinents, let alone different towns or regions. Perhaps we have traded cultu
for a more varied personal life—certainly for a more varied and fast-paced
ical life.

 At a time when it is hard to tell one computer book from another, M
brates the inventiveness and initiative of the computer business with
based on the rich diversity of regional life of two centuries ago, brought ba
Maréchal’s pictures.

Part 1

The machine-learning
workflow

rning work-

nd why you

ic ML work-
 real-world

 about a few
tions.
ate and opti-

atures from
 the perfor-
In this first part of the book, we introduce the basic machine-lea
flow. Each chapter covers one step of the workflow.

 Chapter 1 introduces machine learning, what it’s useful for, a
should be reading this book.

 In chapter 2, you’ll dive into the data-processing step of the bas
flow. You’ll look at common ways to clean up and extract value from
and messy data.

 In chapter 3, you’ll start building simple ML models as you learn
modeling algorithms and how they’re used in common implementa

 In chapter 4, you’ll take a deeper look at our ML models to evalu
mize their performance.

 Chapter 5 is dedicated to basic feature engineering. Extracting fe
data can be an extremely important part of building and optimizing
mance of an ML system.

What is machine learning?
This chapter covers
■ Machine-learning basics
■ Advantages of machine learning over traditional

approaches
■ Overview of the basic machine-learning
mputer pro-
 on its likeli-
 factors such
ed, but Sam-
rogram play
sitional scor-
 respectable

09).
3

In 1959, an IBM computer scientist named Arthur Samuel wrote a co
gram to play checkers. Each board position was assigned a score based
hood of leading to a win. At first, scores were based on a formula using
as the number of pieces on each side and the number of kings. It work
uel had an idea about how to improve its performance. He had the p
thousands of games against itself and used the results to refine the po
ing. By the mid-1970s, the program had achieved the proficiency of a
amateur player.1

workflow
■ Overview of advanced methods for improving

model performance

1 Jonathan Schaeffer, One Jump Ahead: Computer Perfection at Checkers (New York: Springer, 20

4 CHAPTER 1 What is machine learning?

 Samuel had written a computer program that was able to improve its own perfor-
mance through experience. It learned—and machine learning (ML) was born.

 The aim of this book isn’t to describe the gory mathematical details of machine-
learning algorithms (although we’ll peel back a few layers of the onion to provide
insight into the inner workings of the most common ones). Rather, the book’s pri-
mary purpose is to instruct non-experts on important aspects and common challenges
when integrating machine learning into real-world applications and data pipelines. In
this first chapter, we present a real business problem—reviewing loan applications—to
demonstrate the advantages of using machine learning over some of the most com-

, or memori-
structions is

hing more.
eir actions.
on’t rewind
tions—play-
en, indoors,
atures it has
 knowledge.

using flash-
d in one of
, his perfor-
 techniques
ion mecha-
 flashcards,
ost any cat

pply knowl-
acteristic of

st advanced
r capacity to
of historical
 create and
, at least the

nd the term
 between AI
ost (not all)
compassing
mon alternatives.

1.1 Understanding how machines learn
When we talk about human learning, we distinguish between rote learning
zation, and true intelligence. Memorizing a telephone number or a set of in
undoubtedly learning. But when we say learning, we frequently mean somet

 When children play in groups, they observe how others respond to th
Their future social behaviors are informed by this experience. But they d
and replay their past. Rather, certain recognizable features of their interac
ground, classroom, Mom, Dad, siblings, friends, strangers, adults, childr
outdoors—provide clues. They assess each new situation based on the fe
in common with past situations. Their learning is more than gathering
They’re building what might be called insight.

 Imagine teaching a child the difference between dogs and cats by
cards. You show a card, the child makes a choice, and you place the car
two piles for right and wrong choices, respectively. As the child practices
mance improves. Interestingly, it isn’t necessary to first teach the child
for cat and dog recognition. Human cognition has built-in classificat
nisms. All that’s needed are examples. After the child is proficient with the
he’ll be able to classify not only the images on the flashcards, but also m
or dog image, not to mention the real thing. This ability to generalize, to a
edge gained through training to new unseen examples, is a key char
both human and machine learning.

 Of course, human learning is far more sophisticated than even the mo
machine-learning algorithms, but computers have the advantage of greate
memorize, recall, and process data. Their experience comes in the form
data that’s processed—using the techniques described in this book—to
optimize, through experience, algorithms that embody, if not true insight
ability to generalize.

 Analogies between human and machine learning naturally bring to mi
artificial intelligence (AI) and the obvious question, “What’s the difference
and machine learning?” There’s no clear consensus on this matter, but m
agree that ML is one form of AI, and that AI is a far broader subject en

5Understanding how machines learn

such areas as robotics, language processing, and computer vision systems. To increase
the ambiguity even further, machine learning is being applied in many of these adja-
cent AI fields with increasing frequency. We can say that the discipline of machine
learning refers to a specific body of knowledge and an associated set of techniques. It’s fairly
clear what is, and what isn’t, machine learning, whereas the same can’t always be said
for artificial intelligence. Paraphrasing Tom Mitchell’s often-cited definition, a com-
puter program is said to learn if its performance of a certain task, as measured by a
computable score, improves with experience.2

 Kaggle, a machine-learning consultancy, ran a competition for the most accurate
rs were pro-
 the species
re tested on

d by reflect-
nition. Cats’
y to imagine
w to tell the

roportions,
ne learning
n the prob-

ed over the
anging from
line search,
diverse and

ers predict a
parable enti-
rithms have
 apply what

etitors’ pro-
 algorithms.
ograms per-
process ever
 98.914% of

an error rate

n from experi-
t tasks in T, as
program for classifying whether images depicted a dog or cat.3 Competito
vided 25,000 example images for training. Each was labeled to indicate
depicted. After all the competitors had trained their algorithms, they we
their ability to classify 12,500 unlabeled test images.

 When we explain the Kaggle competition to people, they often respon
ing on the sorts of rules one might apply to accomplish dog and cat recog
ears are triangular and stand up; dogs’ ears are floppy—but not always. Tr
how you might explain to a person who had never seen a dog or a cat ho
difference, without showing any examples.

 People use a variety of methods involving shapes, colors, textures, p
and other features to learn, and to generalize, from examples. Machi
also employs a variety of strategies, in various combinations, depending o
lem at hand.

 These strategies are embodied in collections of algorithms develop
course of recent decades by academics and practitioners in disciplines r
statistics, computer science, robotics, and applied mathematics, to on
entertainment, digital advertising, and language translation. They are
have various strengths and weaknesses. Some of them are classifiers. Oth
numeric measurement. Some measure the similarity or difference of com
ties (for example, people, machines, processes, cats, dogs). What the algo
in common is learning from examples (experience) and the capacity to
they’ve learned to new, unseen cases—the ability to generalize.

 In the cats and dogs competition, during the learning phase, comp
grams tried over and over to perform correct classifications using many
In each of the millions of iterations of the learning process, the pr
formed the classification, measured their results, and then adjusted the
so slightly, searching for incremental improvements. The winner classified
the unseen test images correctly. That’s pretty good, considering the hum

2 Tom Mitchell, Machine Learning (McGraw Hill, 1997), 2. “A computer program is said to lear
ence E with respect to some class of tasks T and performance measure P, if its performance a
measured by P, improves with experience E.”

3 See “Dogs vs. Cats” at www.kaggle.com/c/dogs-vs-cats.

6 CHAPTER 1 What is machine learning?

is around 7%. Figure 1.1 illustrates the process. The machine-learning process ana-
lyzes labeled images and builds a model that is, in turn, used by the recall (prediction)
process to classify unlabeled images. There’s one mislabeled cat in the example.

 and it’s not

, from fraud
e industrial

oblems that
ust be pro-

ips so subtle
 many such

Labeled
training data

Cat

g

ed
Please note that what we’ve described here is supervised machine learning,
the only type of ML. We discuss other types later.

 Machine learning can be applied to a wide range of business problems
detection, to customer targeting and product recommendation, to real-tim
monitoring, sentiment analysis, and medical diagnosis. It can take on pr
can’t be managed manually because of the huge amount of data that m
cessed. When applied to large datasets, ML can sometimes find relationsh
that no amount of manual scrutiny would ever discover them. And when
“weak” relationships are combined, they become strong predictors.

Cat Dog

Cat Dog

Machine-learning
process

Model Recall process

Dog

Cat

Dog Do

Dog

Test data label
by ML recall

Unlabeled
test data

Figure 1.1 Machine-learning process for the cats and dogs competition

7Using data to make decisions

 The process of learning from data, and subsequently using the acquired knowl-
edge to inform future decisions, is extremely powerful. Indeed, machine learning is
rapidly becoming the engine that powers the modern data-driven economy.

 Table 1.1 describes widely used supervised machine-learning techniques and some
of their practical applications. This isn’t an exhaustive list, as the potential use cases
could stretch across several pages.

 can benefit
tives that are

des loans to
arly on, the
ays’ time to

cks on each
 of this pro-
 short turn-
.
cants begins
u try to stay

e backlog of
waiting and

cessing each
, isn’t worth

Table 1.1 Use cases for supervised machine learning, organized by the type of problem

Problem Description Example use cases

, fraud detec-
 prediction,
rsonalization,
s, customer
nomics,

forecasting,
on, risk man-
ther forecast-

uiting, Netflix
mendation

s, missing
1.2 Using data to make decisions
In the following example, we describe a real-world business problem that
from a machine-learning approach. We’ll run through the various alterna
commonly used and demonstrate the advantages of the ML approach.

 Imagine that you’re in charge of a microlending company that provi
individuals who want to start small businesses in troubled communities. E
company receives a few applications per week, and you’re able in a few d
manually read each application and do the necessary background che
applicant to decide whether to approve each loan request. The schematic
cess is shown in figure 1.2. Your early borrowers are pleased with your
around time and personal service. Word of your company starts to spread

 As your company continues to gain popularity, the number of appli
to increase. Soon you’re receiving hundreds of applications per week. Yo
up with the increased rate of applications by working extra hours, but th
applications continues to grow. Some of your applicants grow weary of
seek loans from your competitors. It’s obvious to you that manually pro
application by yourself isn’t a sustainable business process and, frankly
the stress.

Classification Determine the discrete class
to which each individual
belongs, based on input data

Spam filtering, sentiment analysis
tion, customer ad targeting, churn
support case flagging, content pe
detection of manufacturing defect
segmentation, event discovery, ge
drug efficacy

Regression Predict the real-valued output
for each individual, based on
input data

Stock-market prediction, demand
price estimation, ad bid optimizati
agement, asset management, wea
ing, sports prediction

Recommendation Predict which alternatives a
user would prefer

Product recommendation, job recr
Prize, online dating, content recom

Imputation Infer the values of missing
input data

Incomplete patient medical record
customer data, census data

8 CHAPTER 1 What is machine learning?

So what should you do? In this section, you’ll
explore several ways to scale up your application-
vetting process to meet your increasing business
needs.

1.2.1 Traditional approaches

Let’s explore two traditional data analysis
approaches as applied to the application-vetting
process: manual analysis and business rules. For

 of to more-
and increases
ss is lengthy
 new hire is
 the added

 all sorts of
sure consis-
 implement
st and prob-

No

Rejected
loans

Input data

Application
Application
metadata

• Age
• Gender
• Marital

status
• Occupation

d

roval process
ple
each approach, we’ll walk through the process of
implementing the technique and highlight the
ways in which it falls short of enabling you to build
a scalable business.

HIRE MORE ANALYSTS

You decide to hire another analyst to help you out.
You aren’t thrilled with the idea of spending some
of your profit on a new hire, but with a second per-
son vetting applications, you can process roughly
twice as many applications in the same amount of
time. This new analyst allows you to flush out the
application backlog within a week.

 For the first couple of weeks, the two of you
stay up with demand. Yet the number of applica-
tions continues to grow, doubling within a month
to 1,000 per week. To keep up with this increased
demand, you now must hire two more analysts.
Projecting forward, you determine that this pattern
of hiring isn’t sustainable: all of your increased rev-
enue from new loan applicants is going directly to your new hires instead
critical areas such as your microlending fund. Hiring more analysts as dem
hinders the growth of your business. Further, you find that the hiring proce
and expensive, sapping your business of more of its revenue. Finally, each
less experienced and slower at processing applications than the last, and
stress of managing a team of individuals is wearing on you.

 Aside from the obvious disadvantage of increased cost, people bring
conscious and unconscious biases to the decision-making process. To en
tency, you might develop detailed guidelines for the approval process and
an extensive training program for new analysts, but this adds still more co
ably doesn’t eliminate the bias.

Yes

Approved
loans

Credit history

• Credit score
• Account
balance

• Age of
account

• Amount of
 savings

Loan approve
by analyst?

Figure 1.2 The loan-app
for the microlending exam

9Using data to make decisions

EMPLOY BUSINESS RULES

Imagine that of the 1,000 loans whose repayment date has passed, 70% were repaid on
time. This is shown in figure 1.3.

nt data and
 for a set of
aid on time.
u’ve gained

Input data

Application
Application
metadata

• Age
• Gender

usiness and
e approved,
loan on time
itial set of
tart building
process.
You’re now in a position to begin looking for trends between the applica
incidence of loan repayment. In particular, you perform a manual search
filtering rules that produces a subset of “good” loans that were primarily p
Through the process of manually analyzing hundreds of applications, yo

• Marital
status

• Occupation

Credit history

• Credit score
• Account
balance

• Age of
account

• Amount of
savings

Yes No

Approved
loans: 1,000

Loan
approved?

Rejected
loans: 1,500

Loan
repaid?

Yes No

Repaid
loans: 700

 Defaulted
loans: 300

Figure 1.3 After a few months of b
2,500 loan applications, 1,000 wer
of which 700 applicants repaid the
and the other 300 defaulted. This in
observed information is critical to s
automation into your loan-approval

10 CHAPTER 1 What is machine learning?

extensive experience about what makes each application good or bad.4 Through some
introspection and back-testing of loan repayment status, you’ve noticed a few trends
in the credit background checks data:5

■ Most borrowers with a credit line of more than $7,500 defaulted on their loan.
■ Most borrowers who had no checking account repaid their loan on time.

Now you can design a filtering mechanism to pare down the number of applications
that you need to process manually through those two rules.

 Your first filter is to automatically reject any applicant with a credit line of more
he 86 appli-
ghly 51% of
t. This filter
t only 8.6%
high, mean-
s. You need

able.
sn’t have a
88%) appli-
is second fil-
 or rejected
w incoming

utes are most

mng.bz/95r4.

ations
les you to
2% of the
than $7,500. Looking through your historical data, you find that 44 of t
cants with a credit line of more than $7,500 defaulted on their loan. Rou
these high-credit-line applicants defaulted, compared to 28% of the res
seems like a good way to exclude high-risk applicants, but you realize tha
(86 out of 1,000) of your accepted applicants had a credit line that was so
ing that you’ll still need to manually process more than 90% of application
to do more filtering to get that number down to something more manage

 Your second filter is to automatically accept any applicant who doe
checking account. This seems to be an excellent filter, as 348 of the 394 (
cants without a checking account repaid their loans on time. Including th
ter brings the percentage of applications that are automatically accepted
up to 45%. Thus, you need to manually analyze only roughly half of the ne
applications. Figure 1.4 demonstrates these filtering rules.

4 You could also use statistical correlation techniques to determine which input data attrib
strongly associated with the outcome event of loan repayment.

5 In this example, we use the German Credit Data dataset. You can download this data from http://

New applications

Filter 1

Filter 2

Yes

Yes

No

No

Applicant has
checking account?

Accept:
348 of 394

(88%) paid on time

Manually analyze:
520 of

1,000 (52%)

Applicant’s existing
credit line is

>$7500?

Reject: 44 of 86
(51%) defaulted

Figure 1.4 Filtering new applic
through two business rules enab
reduce manual analysis to only 5
incoming applications.

11Using data to make decisions

With these two business rules, you can scale your business up to twice the amount of
volume without having to hire a second analyst, because you now need to manually
accept or reject only 52% of new applications. Additionally, based on the 1,000 appli-
cations with known outcome, you expect your filtering mechanism to erroneously
reject 42 out of every 1,000 applications (4.2%) and to erroneously accept 46 of every
1,000 applications (4.6%).

 As business grows, you’d like your system to automatically accept or reject a larger
and larger percentage of applications without increasing losses from defaults. To do
this, you again need to add more business rules. You soon encounter several problems:

not impossi-

gging them

tty sure that
t can’t know

 to changes
 changes. To

usiness rules

ed machine-

ach to your
ctive option
operation to
siness rules,
itrarily hard-
sion making
ime as more
ed decisions

sights about
lication, ML
new applica-
the training
nsists of the
hether each
—numerical
■ Manually finding effective filters becomes harder and harder—if
ble—as the filtering system grows in complexity.

■ The business rules become so complicated and opaque that debu
and ripping out old, irrelevant rules becomes virtually impossible.

■ The construction of your rules has no statistical rigor. You’re pre
better “rules” can be found by better exploration of the data, bu
for sure.

■ As the patterns of loan repayment change over time—perhaps due
in the population of applicants—the system doesn’t adapt to those
stay up to date, the system needs to be constantly adjusted.

All these drawbacks can be traced to a single debilitating weakness in a b
approach: the system doesn’t automatically learn from data.

 Data-driven systems, from simple statistical models to more-sophisticat
learning workflows, can overcome these problems.

1.2.2 The machine-learning approach

Finally, you decide to look into an entirely automated, data-driven appro
microlending application-vetting process. Machine learning is an attra
because the completely automated nature of the process will allow your
keep pace with the increasing inflow of applications. Further, unlike bu
ML learns the optimal decisions directly from the data without having to arb
code decision rules. This graduation from rules-based to ML-based deci
means that your decisions will be more accurate and will improve over t
loans are made. You can be sure that your ML system produces optimiz
with minimal handholding.

 In machine learning, the data provides the foundation for deriving in
the problem at hand. To determine whether to accept each new loan app
uses historical training data to predict the best course of action for each
tion. To get started with ML for loan approval, you begin by assembling
data for the 1,000 loans that have been granted. This training data co
input data for each loan application, along with the known outcome of w
loan was repaid on time. The input data, in turn, consists of a set of features

12 CHAPTER 1 What is machine learning?

or categorical metrics that capture the relevant aspects of each application—such as
the applicant’s credit score, gender, and occupation.

 In figure 1.5 historical data trains the machine-learning model. Then, as new loan
applications come in, predictions of the probability of future repayment are gener-
ated instantaneously from the application data.

n be used to
set, ML pro-
es a predic-
.

mes in many
aches. Here,
he second a
y scare you.
ize them, as

These para-
etween the
e unknown

ression, and

Labeled training data:
historical applications

ayment
ML modeling, then, determines how the input data for each applicant ca
best predict the loan outcome. By finding and using patterns in the training
duces a model (you can think of this as a black box, for now) that produc
tion of the outcome for each new applicant, based on that applicant’s data

 The next step is to select an ML algorithm to use. Machine learning co
flavors, ranging from simple statistical models to more-sophisticated appro
we compare two examples: the first is a simple parametric model, and t
nonparametric ensemble of classification trees. Don’t let the terminolog
Machine learning employs a lot of algorithms and lots of ways to categor
you’ll soon see.

 Most traditional statistical business models fall into the first category.
metric models use simple, fixed equations to express the relationship b
outcome and the inputs. Data is then used to learn the best values of th
terms in the equation. Approaches such as linear regression, logistic reg

Machine-learning
process

Model Recall (prediction)

Unlabeled data:
new applications

Predicted rep

Actual loan
repayment
(labels)

Figure 1.5 Basic ML workflow, as applied to the microloan example

13Using data to make decisions

autoregressive models all fit under this category. Regression models are covered in
more detail in chapter 3.

 In this example, you could use logistic regression to model the loan-approval pro-
cess. In logistic regression, the logarithm of the odds (the log odds) that each loan is
repaid is modeled as a linear function of the input features. For example, if each new
application contains three relevant features—the applicant’s credit line, education
level, and age—then logistic regression attempts to predict the log odds that the appli-
cant will default on the loan (we’ll call this y) via this equation:

, 2, and 3)

in a formula
cation level,
 3 yield the

ard some-
probability
ng). Math-

ot A

(1) = 0. It
dds value
ainty, and
ular prob-
, because
The optimal values of each coefficient of the equation (in this case, 0, 1

are learned from the 1,000 training data examples.
 When you can express the relationship between inputs and outputs

like this one, predicting the output (y) from the inputs (credit line, edu
and age) is easy. All you have to do is figure out which values of 1, 2, and
best result when using your historical data.

Log odds
The odds ratio is one way of expressing probability. You’ve undoubtedly he
one say that a (favorite) team’s chance of winning is 3 to 1. Odds are the
of success (for example, winning) divided by the probability of failure (losi
ematically, this can be expressed as follows:

Odds(A) = P(A) / P(~A) = The probability of A divided by the probability of n

So 3-to-1 odds is equivalent to 0.75 / 0.25 = 3 and log(3) = 0.47712…

If A were a fair coin toss, the odds of heads would be 0.5 / 0.5 = 1. Log
turns out that the log(Odds) can take on any real-valued number. A log o
near – denotes a highly unlikely event. A value near  indicates near cert
log(1) = 0 indicates an even random change. Using log-odds instead of reg
abilities is a mathematical trick that makes certain computations easier
unlike probabilities, they’re not limited to values between 0 and 1.

Coefficients

Constant
Log odds that applicant

will repay loan

y = β0 + β1* Credit_Line + β2* Education_Level + β3* Age

14 CHAPTER 1 What is machine learning?

 But when the relationship between the inputs and the response are complicated,
models such as logistic regression can be limited. Take the dataset in the left panel of
figure 1.6, for example. Here, you have two input features, and the task is to classify
each data point into one of two classes. The two classes are separated in the two-
dimensional feature space by a nonlinear curve, the decision boundary (depicted by the
curve in the figure). In the center panel, you see the result of fitting a logistic regres-
sion model on this dataset. The logistic regression model comes up with a straight line
that separates the two regions, resulting in many classification errors (points in the
wrong region).

tempting to
model. The
lex and too
ll when you

he response
onship, you
etric model

ved within a
ip between

 age. But in
sformations

ure

odel

0 1 2

ass or the
n boundary
orly at
dary with
The problem here is that the model depicted in the center panel is at
explain a complicated, nonlinear phenomenon with a simple parametric
formal definition of parametric versus nonparametric models is comp
mathematical for this book, but the gist is that parametric models work we
have prior understanding of the relationship between your inputs and t
you’re trying to predict. If you know enough about the nonlinear relati
may be able to transform your inputs or response variables so that a param
will still work. For example, if the rate at which a certain disease is obser
population is higher for older people, you might find a linear relationsh
the probability of contracting the disease and the square of the subject’s
the real world, you’re often presented with problems for which such tran
aren’t possible to guess.

Feature
2

Feature
1

Raw data

3

–3

–3 –2 –1 0 1 2

–2

–1

0

1

2

Feature
2

Feature
1

Linear model

3

–3

–3 –2 –1 0 1 2

–2

–1

0

1

2

Feature
2

Feat
1

ML m

3

–3

–3 –2 –1

–2

–1

0

1

2

Figure 1.6 In this two-class classification, individual data points can belong to either the round cl
square class. This particular data lies in a two-dimensional feature space having a nonlinear decisio
that separates the classes, denoted by the curve. Whereas a simple statistical model does quite po
accurately classifying the data (center), an ML model (right) is able to discover the true class boun
little effort.

15Using data to make decisions

 What you need are more flexible models that can automatically discover complex
trends and structure in data without being told what the patterns look like. This is
where nonparametric machine-learning algorithms come to the rescue. In the right-
hand panel of figure 1.6, you see the result of applying a nonparametric learning
algorithm (in this case, a random forest classifier) to the problem. Clearly, the predicted
decision boundary is much closer to the true boundary, and as a result, the classifica-
tion accuracy is much higher than that of the parametric model.

 Because they attain such high levels of accuracy on complicated, high-dimensional,
real-world datasets, nonparametric ML models are the approach of choice for many

some of the
bors, kernel
ethods. We

ides an over-
perties that
 and reason

our business
ame rules as
 different in
so automati-
 desired out-

higher accu-
nparametric
ach. In this

epting fewer
 would have

s that you do
revenues for

n bring you.
l enumerate
 approach.

 (Springer,
oaches in
und in sta-
 (www-bcf
data-driven problems. Examples of nonparametric approaches include
most widely used methods in machine learning, such as k-nearest neigh
smoothing, support vector machines, decision trees, and ensemble m
describe all of these approaches later in the book, and the appendix prov
view of some important algorithms. Linear algorithms have other pro
make them attractive in some cases, though. They can be easier to explain
about, and they can be faster to compute and scale to larger datasets.

Returning to the microlending problem, the best choice for scaling up y
is to employ a nonparametric ML model. The model may find the exact s
those you initially found manually, but chances are that they’ll be slightly
order to optimize the statistical gains. Most likely, the ML model will al
cally find other and deeper relationships between input variables and the
come that you otherwise wouldn’t have thought about.

 In addition to providing an automated workflow, you may also attain
racy, which translates directly to higher business value. Imagine that a no
ML model yields 25% higher accuracy than a logistic regression appro
case, your ML model will make fewer mistakes on new applications: acc
applicants who won’t repay their loan and rejecting fewer applicants who
repaid their loan. Overall, this means a higher average return on the loan
make, enabling you to make more loans overall and to generate higher
your business.

 We hope this gives you a taste of the power that machine learning ca
Before we move on to defining our basic machine-learning workflow, we’l
a few advantages of machine learning, as well as a few challenges with this

Further reading
The textbook An Introduction to Statistical Learning by Gareth James et al.
2013) provides a detailed introduction to the most commonly used appr
machine learning, at a level that’s accessible to readers without a backgro
tistics or mathematics. A PDF version is available on the author’s website
.usc.edu/~gareth/ISL/).

16 CHAPTER 1 What is machine learning?

1.2.3 Five advantages to machine learning

To wrap up our discussion of the microlending example, we list some of the most prom-
inent advantages to using a machine-learning system, as compared to the most com-
mon alternatives of manual analysis, hardcoded business rules, and simple statistical
models. The five advantages of machine learning are as follows:

■ Accurate—ML uses data to discover the optimal decision-making engine for your
problem. As you collect more data, the accuracy can increase automatically.

■ Automated—As answers are validated or discarded, the ML model can learn new
patterns automatically. This allows users to embed ML directly into an automated

ata streams

chine learn-
nfigured to

reased data
ata on many

 on the size
anges from

ed that data
tedly heard
nd they do.
rocesses. In

put needs of
 messy work.
ning can be
r example,
sification is
 real-world

 prospective
ur product.

 media mix
ew product

uring brand

gust 17, 2014,
workflow.
■ Fast—ML can generate answers in a matter of milliseconds as new d

in, allowing systems to react in real time.
■ Customizable—Many data-driven problems can be addressed with ma

ing. ML models are custom built from your own data, and can be co
optimize whatever metric drives your business.

■ Scalable—As your business grows, ML easily scales to handle inc
rates. Some ML algorithms can scale to handle large amounts of d
machines in the cloud.

1.2.4 Challenges

Naturally, achieving these benefits involves a few challenges. Depending
and shape of the business problem, the degree of attendant difficulty r
child’s-play trivial to Hannibal-crossing-the-Alps colossal.

 Most prominent is acquiring data in a usable form. It has been estimat
scientists spend 80% of their time on data preparation.6 You’ve undoub
that businesses capture vastly greater quantities of data than ever before, a
You also may have heard this data referred to as the “exhaust” of business p
other words, our new treasure trove of data wasn’t designed to meet the in
our ML systems. Extracting useful data from the residue can be tedious and

 A related challenge is formulating the problem so that machine lear
applied, and will yield a result that’s actionable and measurable. In ou
the goal is clear: predict who will repay and who will default. The clas
easy to apply, and the outcome is easily measured. Fortunately, some
problems are this simple; for example, given everything we know about
customers (and we have a lot of data), predict whether they’ll purchase o
This is low-hanging fruit.

 A more difficult example might be along these lines: find the optimum
and combination of advertising units to increase brand awareness for a n
line. Simply formulating the problem requires constructing a way of meas

6 Steve Lohr, “For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights,” New York Times, Au
http://mng.bz/7W8n.

17Following the ML workflow: from data to deployment

awareness, an understanding of the alternative media options under consideration, and
data that reflects pertinent experience with the alternatives and associated outcomes.

 When the outcome you’re trying to predict is complicated, choosing the algorithm
and how to apply it may be an enormous effort in itself. Cardiology researchers work-
ing to predict the likelihood of postoperative complications have a mind-boggling set
of data for each patient, but ML algorithms don’t naturally slurp up electrocardiogra-
phy (EKG) data and DNA sequences. Feature engineering is the process of transforming
inputs such as these into predictive features.

 We’d be remiss if we didn’t mention the bane of the predictive modeler’s existence: a
ed to do real
overfitting.
 some much
 isn’t always

or any prob-
ce for many

ine-learning
e main com-
 predictions
st real-world
s in an itera-
, but we out-
. Figure 1.7

al-world
m historical
el using an
o evaluate
and optimize
your
odel, you
data.
model that fits the training data perfectly, but falls flat on its face when it’s us
predictions on data that isn’t in the training set. The problem is most often

 You’ll see that machine learning can solve a great variety of problems,
more easily than others. You may also notice that the value of the solution
proportional to the effort required. And indeed, ML isn’t a silver bullet f
lem. But as you’ll see in this book, machine learning is the perfect choi
real-world, data-driven problems.

1.3 Following the ML workflow: from data to deployment
In this section, we introduce the main workflow for integrating mach
models into your applications or data pipelines. The ML workflow has fiv
ponents: data preparation, model building, evaluation, optimization, and
on new data. The application of these steps has an inherent order, but mo
machine-learning applications require revisiting each step multiple time
tive process. These five components are detailed in chapters 2 through 4
line them in this introduction to whet your appetite for getting started

Answers
Chapters 3, 6

New data

Prediction

Modeling

Model optimization
Chapters 4, 5, 7, 8

Model building
Chapters 3, 7, 8

Historical data
Chapter 2

Model evaluation
Chapter 4

Figure 1.7 The workflow of re
machine-learning systems. Fro
input data you can build a mod
ML algorithm. You then need t
the performance of the model,
accuracy and scalability to fit
requirements. With the final m
can make predictions on new

18 CHAPTER 1 What is machine learning?

outlines this workflow, and the following sections introduce these concepts from top
to bottom. You’ll see this figure a lot throughout the book as we introduce the various
components of the ML workflow.

1.3.1 Data collection and preparation

Collecting and preparing data for machine-learning systems usually entails getting
the data into a tabular format, if it’s not already. Think of the tabular format as a
spreadsheet in which data is distributed in rows and columns, with each row corre-
sponding to an instance or example of interest, and each column representing a mea-

’s fair to say
worry; you’ll
le dataset in

ally include
 figure 1.8,

s an integer
ical variable
rogeneous (in
we’ll coerce
ar machine-

 a particular
 and there’s
se, the table
both model
 in the data-
etitive tasks

 wrong, and
 a particular
 at methods

xamples
 rows

es.
surement on this instance. A few exceptions and variations exist, but it
that most machine-learning algorithms require data in this format. Don’t
deal with the exceptions as you encounter them. Figure 1.8 shows a simp
this format.

The first thing to notice about tabular data is that individual columns usu
the same type of data, and rows typically include data of various types. In
you can already identify four types of data: Name is a string variable, Age i
variable, Income is a floating-point variable, and Marital status is a categor
(taking on a discrete number of categories). Such a dataset is called hete
contrast to homogeneous), and in chapter 2 we explain how and why
some of these types of data into other types, depending on the particul
learning algorithm at hand.

 Real-world data can be “messy” in a variety of other ways. Suppose that
measurement is unavailable for an instance in the data-gathering phase,
no way of going back to find the missing piece of information. In this ca
will contain a missing value in one or more cells, and this can complicate
building and subsequent predictions. In some cases, humans are involved
gathering phase, and we all know how easy it is to make mistakes in rep
such as data recording. This can lead to some of the data being flat-out
you’ll have to be able to handle such scenarios, or at least know how well
algorithm behaves in the presence of misleading data. You’ll look closer
for dealing with missing and misleading data in chapter 2.

Person

1

2

Name

Jane Doe

John Smith

Age

24

41

Income

81,200

121,000

Marital status

Single

Married

E
in

Features in columns

Figure 1.8 In a tabular dataset, rows are called instances and columns represent featur

19Following the ML workflow: from data to deployment

1.3.2 Learning a model from data

The first part of building a successful machine-learning system is to ask a question that
can be answered by the data. With this simple Person table, you could build an ML
model that could predict whether a person is married or single. This information
would be useful for showing relevant ads, for example.

 In this case, you’d use the Marital status variable as the target, or label, and the remain-
ing variables as features. The job of the ML algorithm will then be to find how the set of
input features can successfully predict the target. Then, for people whose marital status
is unknown, you can use the model to predict marital status based on the input variables

he mapping
 more than
pared with

re 1.9 shows
l in predict-
ive features,
t. Chapter 3
arious kinds

be extracted
formative in
tion density.
al-world ML

ta—data for
g the magic-
for each individual. Figure 1.9 shows this process on our toy dataset.

At this point, think of the ML algorithm as a magical box that performs t
from input features to output data. To build a useful model, you’d need
two rows. One of the advantages of machine-learning algorithms, com
other widely used methods, is the ability to handle many features. Figu
only four features, of which the Person ID and Name probably aren’t usefu
ing marital status. Some algorithms are relatively immune to uninformat
whereas others may yield higher accuracy if you leave those features ou
presents a closer look at types of algorithms and their performance on v
of problems and datasets.

 It’s worth noting, however, that valuable information can sometimes
from seemingly uninformative features. A location feature may not be in
itself, for example, but can lead to informative features such as popula
This type of data enhancement, called feature extraction, is important in re
projects and is the topic of chapters 5 and 7.

 With our ML model in hand, you can now make predictions on new da
which the target variable is unknown. Figure 1.10 shows this process, usin
box model built in figure 1.9.

Person

1

2

Name

Jane Doe

John Smith

Age

24

41

Income

81,200

121,000

Marital status

Single

Married

Features Target

ML algorithm:
learns mapping from

features to target

Figure 1.9 The machine-learning modeling process

20 CHAPTER 1 What is machine learning?

 the original
 seen as fill-
 also output
le, a probabi-
bility of this

 architected
models and
ine-learning

ructure is in
(chapters 4
he problem

erformance
et’s pretend
pply a clever
it to predict

Marital status

Single

Person

1

2

Name

Trent Mosley

Lilly Peters

Age

26

52

Income

67,500

140,000

Marital status

New data with no target

ML model:
predicts the target
The target predictions are returned in the same form as they appeared in
data used to learn the model. Using the model to make predictions can be
ing out the blank target column of the new data. Some ML algorithms can
the probabilities associated with each class. In our married/single examp
listic ML model would output two values for each new person: the proba
person being married and the probability of the person being single.

 We left out a few details on the way here, but in principle you’ve just
your first ML system. Every machine-learning system is about building
using those models to make predictions. Let’s look at the basic mach
workflow in pseudocode to get another view of how simple it is.

data = load_data("data/people.csv")
model = build_model(data, target="Marital status")
new_data = load_data("data/new_people.csv")
predictions = model.predict(new_data)

Although we haven’t programmed any of these functions yet, the basic st
place. By chapter 3, you’ll understand these steps; the rest of the book
through 10) is about making sure you’re building the best model for t
at hand.

1.3.3 Evaluating model performance

Rarely is an ML system put to use without some kind of validation of the p
of the model. Even though we’ve skipped a lot of details in this chapter, l
that you know how to build a model and make predictions. You can now a
trick to get some sense of how well your model is working before you use
on new data.

Listing 1.1 Initial structure of an ML workflow program

Marriedvariable on new data

Figure 1.10 Using the model for prediction on new data

21Following the ML workflow: from data to deployment

 You take out some of the data and pretend that you don’t know the target variable.
You then build a model on the remaining data and use the held-out data (testing
data) to make predictions. Figure 1.11 illustrates this model-testing process.

 get a feeling
den behind

 understand-
.

n chapter 4:
odel better.

ameters spe-
 parameters
ach parame-
ance of the
eter values,

Single

Married

Person

1

2

Name

Trent Mosley

Lilly Peters

Age

26

52

Income

67,500

140,000

Marital status

Testing data with target

Predictions
mpared to
ue values

 the target
Let’s also look at the pseudocode for this workflow.

data = load_data(...)
training_data, testing_data = split_data(data)
model = build_model(training_data, target="Marital status")
true_values = testing_data.extract_column("Marital status")
predictions = model.predict(testing_data)
accuracy = compare_predictions(predictions, true_values)

You can now compare the predicted results with the known “true” values to
for the accuracy of the model. In the pseudocode, this functionality is hid
the compare_predictions function, and most of chapter 4 is dedicated to
ing how this function looks for various types of machine-learning problems

1.3.4 Optimizing model performance

The last piece of the essential machine-learning puzzle is also covered i
how to use the results of your model evaluation to go back and make the m
You can achieve better model accuracy in three ways:

■ Tuning the model parameters—ML algorithms are configured with par
cific to the underlying algorithm, and the optimal value of these
often depends on the type and structure of the data. The value of e
ter, or any of them combined, can have an impact on the perform
model. We introduce various ways to find and select the best param

Listing 1.2 Our ML workflow program with model evaluation

Marital status

Single

Married

co
tr

ML model:
predicts the target

variable on new data

Figure 1.11 When using a testing set to evaluate model performance, you “pretend” that
variable is unknown and compare the predictions with the true values.

22 CHAPTER 1 What is machine learning?

and show how this can help in determining the best algorithm for the dataset
in question.

■ Selecting a subset of features—Many ML problems include a large number of fea-
tures, and the noise from those features can sometimes make it hard for the
algorithm to find the real signal in the data, even though they might still be
informative on their own. For many ML problems, having a lot of data is a good
thing; but it can sometimes be a curse. And because you don’t know before-
hand when this will affect your model performance, you have to carefully deter-
mine the features that make up the most general and accurate model.

ing datasets,
ckly applied
, and you’ll
d to as data
 spelled dif-

ncorrect val-
y sound like
 in sophisti-

re-advanced
omponents

ine-learning
rove model
d, some of

s at the cost
ed in more

messiness in
 further and
formance.
ta to collect,
om the col-
uilding. We
ssential ML
g almost all
■ Preprocessing the data—If you search the internet for machine-learn
you’ll find easy-to-use datasets that many ML algorithms can be qui
to. Most real-world datasets, however, aren’t in such a clean state
have to perform cleaning and processing, a process widely referre
munging or data wrangling. The dataset may include names that are
ferently, although they refer to the same entity, or have missing or i
ues, and these things can hurt the performance of the model. It ma
edge cases, but you’ll be surprised how often this happens even
cated, data-driven organizations.

With the machine-learning essentials in place, you’ll look briefly at mo
features in the next section before learning more details about the main c
covered in this section.

1.4 Boosting model performance with advanced techniques

The previous section introduced the essential steps in any real-world mach
project, and now you’ll look at additional techniques often used to imp
performance even further. Depending on the data and problem at han
these techniques can provide significant gains in accuracy, but sometime
of speed in both training and prediction. These techniques are explain
detail in chapters 5 through 10, but this section outlines the main ideas.

1.4.1 Data preprocessing and feature engineering

You’ll look at various kinds of data and how to deal with common types of
chapter 2. But in addition to this essential data cleaning, you can go a step
extract additional value from the data that might improve your model per

 In any problem domain, specific knowledge goes into deciding the da
and this valuable domain knowledge can also be used to extract value fr
lected data, in effect adding to the features of the model before model b
call this process feature engineering, and when the previously introduced e
workflow has become second nature to you, you can find yourself spendin

23Boosting model performance with advanced techniques

your time in this part of the optimization process. This is also the creative part of
machine learning, where you get to use your knowledge and imagination to come up
with ways to improve the model by digging into the data and extracting hidden value.
You’ll make extensive use of our statistically validated model evaluation and optimiza-
tion steps to distinguish what seemed like a good idea at the time from what is actually
useful. Here are a few important examples of feature engineering:

■ Dates and times—You’ll see a date or time variable in many datasets, but by
themselves they’re not useful for ML algorithms, which tend to require raw
numbers or categories. The information might be valuable, though. If you

ow the time
ngineering,
 made avail-

activity, such
or year, they
or example,
aking a pur-

 or location
s be used in

 useful for a
 in a county,
and poverty

eo. The fea-
 part of proj-
 spectra are
athematical

he classifica-

al-world ML
ific feature-
r ML work-

x and prone
o the larger
want to predict which ad to show, it’ll certainly be important to kn
of day, the day of the week, and the time of year. With feature e
this information can be extracted from the dates and times and
able to the model.

Also, when dates and times appear in observations of repetitive
as a user’s repeated visits to a website over the course of a month
can be used to compute interval durations that may be predictive. F
on a shopping site, users might visit more frequently just prior to m
chase to review and compare items and prices.

■ Location—Location data, such as latitude/longitude coordinates
names, is available in some datasets. This information can sometime
itself, but you may be able to extract additional information that’s
specific problem. For example, if you want to predict election results
you might want to extract the population density, mean income,
rate to use as numbers in your model.

■ Digital media—This is data such as text, documents, images, and vid
ture engineering that makes this kind of data usable is the difficult
ects like the dogs and cats competition. Edges, shapes, and color
first extracted from the images. Then these are classified using m
transformations, the output of which is a set of features usable by t
tion algorithms.

Hopefully it’s clear that feature engineering can be important for re
projects. Chapters 5 and 7 go into much more detail, introducing spec
engineering techniques; you’ll learn how these techniques feed into you
flow so your model performance improves without becoming too comple
to overfitting. Figure 1.12 illustrates feature-engineering integration int
ML workflow introduced in section 1.3.

24 CHAPTER 1 What is machine learning?

cases, you’ll
e model to

 support this
ntial pitfalls.
workflow.

New feature 2 …New feature 1

Modeling

Historical data

ng phase
kflow

f an online
 fed back to
rovements.
1.4.2 Improving models continually with online methods

Most traditional ML models are static or only rarely rebuilt. But in many
have data and predictions flowing back into the system, and you want th
improve with time and adapt to changes in the data. Several ML algorithms
type of online learning; chapter 8 introduces these algorithms and their pote
Figure 1.13 shows how continual relearning can be integrated into the ML

AnswersNew data

Prediction

Model optimization

Model building

Model evaluation

Figure 1.12 Feature-engineeri
inserted in the original ML wor

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 1.13 In this flow o
ML system, predictions are
the model for iterative imp

25Terms from this chapter

1.4.3 Scaling models with data volume and velocity

It’s well known that datasets are increasing in size and velocity more quickly than ever.
Datasets for supervised methods, in which the target answers are in the training set,
have traditionally been relatively small because humans were needed in order to
acquire the answers. Today, a lot of data (including answers) is produced directly by
sensors, machines, or computers, and we’re beginning to see requirements for scal-
able ML algorithms in order to handle these data volumes.

 Chapter 9 presents details of machine-learning methods that are capable of scaling
with growing dataset sizes; you’ll see how they compare to each other and to nonscal-

approach to
ollows:

tems in that
s generalize

izable, and

problems to
 usable, find-
erfitting.

odel build-

their predic-

the variable to

lso may be

features and

L model.
ing algorithms.

1.5 Summary
This chapter introduced machine learning as a better, more data-driven
making decisions. The main points to take away from this chapter are as f

■ Machine-learning algorithms are distinguished from rule-based sys
they create their own models based on data. Supervised ML system
by learning from the features of examples with known results.

■ Machine learning is often more accurate, automated, fast, custom
scalable than manually constructed rule-based systems.

■ Machine-learning challenges include identifying and formulating
which ML can be applied, acquiring and transforming data to make it
ing the right algorithms for the problem, feature engineering, and ov

■ The basic machine-learning workflow consists of data preparation, m
ing, model evaluation, optimization, and predictions on new data.

■ Online learning models continually relearn by using the results of
tions to update themselves.

1.6 Terms from this chapter

Word Definition

instance or example A single object, observation, transaction, or record.

target or label The numerical or categorical (label) attribute of interest. This is
be predicted for each new instance.

features The input attributes that are used to predict the target. These a
numerical or categorical.

model A mathematical object describing the relationship between the
the target.

training data The set of instances with a known target to be used to fit an M

recall Using a model to predict a target or label.

26 CHAPTER 1 What is machine learning?

aring it for
d to choose

supervised machine
learning

Machine learning in which, given examples for which the output value is
known, the training process infers a function that relates input values to
the output.

unsupervised machine
learning

Machine-learning techniques that don’t rely on labeled examples, but rather
try to find hidden structure in unlabeled data.

ML workflow The stages in the ML process: data preparation, model building, evaluation,
optimization, and prediction.

the model is

Word Definition
In chapter 2, you’ll get into the practical matters of collecting data, prep
machine learning use, and using visualizations to gain the insight neede
the best tools and methods.

online machine
learning

A form of machine learning in which predictions are made, and
updated, for each new example.

Real-world data
This chapter covers
■ Getting started with machine learning
■ Collecting training data
■ Using data-visualization techniques
■ Preparing your data for ML
tems how to
rns and asso-
e that learn-
or new data.
rning. With

aptured and
oor quality,

ing data for
give general
some of the
and visualiz-
To that end,
27

In supervised machine learning, you use data to teach automated sys
make accurate decisions. ML algorithms are designed to discover patte
ciations in historical training data; they learn from that data and encod
ing into a model to accurately predict a data attribute of importance f
Training data, therefore, is fundamental in the pursuit of machine lea
high-quality data, subtle nuances and correlations can be accurately c
high-fidelity predictive systems can be built. But if training data is of p
the efforts of even the best ML algorithms may be rendered useless.

 This chapter serves as your guide to collecting and compiling train
use in the supervised machine-learning workflow (figure 2.1). We
guidelines for preparing training data for ML modeling and warn of
common pitfalls. Much of the art of machine learning is in exploring
ing training data to assess data quality and guide the learning process.

28 CHAPTER 2 Real-world data

techniques.
ng, which is

rediction. In
ing from a

stomers are
f which cus-
y sending a
 millions of
 the cost of
urn predic-
 advance—

 in machine-
tasets.

t’s suited for
 in machine
is book, we
suited for a

Modeling

Model optimization

Model building

Historical data

Model evaluation

flow.
ata,
dicating
we provide an overview of some of the most useful data-visualization
Finally, we discuss how to prepare a training dataset for ML model buildi
the subject of chapter 3.

 This chapter uses a real-world machine-learning example: churn p
business, churn refers to the act of a customer canceling or unsubscrib
paid service. An important, high-value problem is to predict which cu
likely to churn in the near future. If a company has an accurate idea o
tomers may unsubscribe from their service, then they may intervene b
message or offering a discount. This intervention can save companies
dollars, as the typical cost of new customer acquisition largely outpaces
intervention on churners. Therefore, a machine-learning solution to ch
tion—whereby those users who are likely to churn are predicted weeks in
can be extremely valuable.

 This chapter also uses datasets that are available online and widely used
learning books and documentation: Titanic Passengers and Auto MPG da

2.1 Getting started: data collection
To get started with machine learning, the first step is to ask a question tha
an ML approach. Although ML has many flavors, most real-world problems
learning deal with predicting a target variable (or variables) of interest. In th
cover primarily these supervised ML problems. Questions that are well
supervised ML approach include the following:

■ Which of my customers will churn this month?
■ Will this user click my advertisement?
■ Is this user account fraudulent?

AnswersNew data

Prediction
Figure 2.1 The basic ML work
Because this chapter covers d
we’ve highlighted the boxes in
historical data and new data.

29Getting started: data collection

■ Is the sentiment of this tweet negative, positive, or neutral?
■ What will demand for my product be next month?

You’ll notice a few commonalities in these questions. First, they all require making
assessments on one or several instances of interest. These instances can be people
(such as in the churn question), events (such as the tweet sentiment question), or
even periods of time (such as in the product demand question).

 Second, each of these problems has a well-defined target of interest, which in some
cases is binary (churn versus not churn, fraud versus not fraud), in some cases takes
on multiple classes (negative versus positive versus neutral), or even hundreds or thou-

 on numeri-
, the target is
rms may be

 the target is
 determine

. With some
n to known

ach instance
 commonly
oduct usage
count infor-

put features,
g set.
 target were
ould bid on

our product
in to match
termine how
he result of
ces (with an
hich gener-

the end user
ons, the ML
n the input

ine that you
f my current
instance is a
hether each
onsist of any
 the month,
n plan, and
sands of classes (picking a song out of a large library) and in others takes
cal values (product demand). Note that in statistics and computer science
also commonly referred to as the response or dependent variable. These te
used interchangeably.

 Third, each of these problems can have sets of historical data in which
known. For instance, over weeks or months of data collection, you can
which of your subscribers churned and which people clicked your ads
manual effort, you can assess the sentiment of different tweets. In additio
target values, your historical data files will contain information about e
that’s knowable at the time of prediction. These are input features (also
referred to as the explanatory or independent variables). For example, the pr
history of each customer, along with the customer’s demographics and ac
mation, would be appropriate input features for churn prediction. The in
together with the known values of the target variable, compose the trainin

 Finally, each of these questions comes with an implied action if the
knowable. For example, if you knew that a user would click your ad, you w
that user and serve the user an ad. Likewise, if you knew precisely y
demand for the upcoming month, you would position your supply cha
that demand. The role of the ML algorithm is to use the training set to de
the set of input features can most accurately predict the target variable. T
this “learning” is encoded in a machine-learning model. When new instan
unknown target) are observed, their features are fed into the ML model, w
ates predictions on those instances. Ultimately, those predictions enable
to taker smarter (and faster) actions. In addition to producing predicti
model allows the user to draw inferences about the relationships betwee
features and the target variable.

 Let’s put all this in the context of the churn prediction problem. Imag
work for a telecom company and that the question of interest is, “Which o
cell-phone subscribers will unsubscribe in the next month?” Here, each
current subscriber. Likewise, the target variable is the binary outcome of w
subscriber cancelled service during that month. The input features can c
information about each customer that’s knowable at the beginning of
such as the current duration of the account, details on the subscriptio

30 CHAPTER 2 Real-world data

usage information such as total number of calls made and minutes used in the previ-
ous month. Figure 2.2 shows the first four rows of an example training set for telecom
churn prediction.

ing data for
 to industry,
aining data.
of the most

t you could
t attributes
n plan (sta-
(calling his-
ilable to use
ing may be

needed (for
mple).
 shows how

gineering).

f numerical
such as total
inutes used,

Cust. ID

502

State

FL

Acct
length

124

Area
code

561

Int’l
plan

No

Voicemail
plan

Yes

Total
messages

Total
mins.

Total
calls

104251.428

Churned?

False

Features Target
The aim of this section is to give a basic guide for properly collecting train
machine learning. Data collection can differ tremendously from industry
but several common questions and pain points arise when assembling tr
The following subsections provide a practical guide to addressing four
common data-collection questions:

■ Which input features should I include?
■ How do I obtain known values of my target variable?
■ How much training data do I need?
■ How do I know if my training data is good enough?

2.1.1 Which features should be included?

In machine-learning problems, you’ll typically have dozens of features tha
use to predict the target variable. In the telecom churn problem, inpu
about each customer’s demographics (age, gender, location), subscriptio
tus, time remaining, time since last renewal, preferred status), and usage
tory, text-messaging data and data usage, payment history) may all be ava
as input features. Only two practical restrictions exist on whether someth
used as an input feature:

■ The value of the feature must be known at the time predictions are
example, at the beginning of the month for the telecom churn exa

■ The feature must be numerical or categorical in nature (chapter 5
non-numerical data can be transformed into features via feature en

Data such as Calling History data streams can be processed into a set o
and/or categorical features by computing summary statistics on the data,
minutes used, ratio of day/night minutes used, ratio of week/weekend m
and proportion of minutes used in network.

1007 OR

WI

KY

48

63

58

No

No

No

No

Yes

No

503

608

606

92

119

116

190.4

152.2

247.2

0

34

0

False

False

True

1789

2568

Figure 2.2 Training data with four instances for the telecom churn problem

31Getting started: data collection

 Given such a broad array of possible features, which should you use? As a simple
rule of thumb, features should be included only if they’re suspected to be related to
the target variable. Insofar as the goal of supervised ML is to predict the target, fea-
tures that obviously have nothing to do with the target should be excluded. For exam-
ple, if a distinguishing identification number was available for each customer, it
shouldn’t be used as an input feature to predict whether the customer will unsub-
scribe. Such useless features make it more difficult to detect the true relationships
(signals) from the random perturbations in the data (noise). The more uninformative
features are present, the lower the signal-to-noise ratio and thus the less accurate (on

nown to be
, it’s the role
tance, that a
as excluded
ed to check
month. This
robability of
sion of that
 and there-

se ML algo-
 the known,
del.
and, throw-

e model can
erwhelming
 can’t distin-
cting a small
le can cause
e ML model
ich are pre-

get variable.

are less obvi-
cy. If perfor-

 selection algo-
ture set.

oaches seek
the signal in
average) the ML model will be.
 Likewise, excluding an input feature because it wasn’t previously k

related to the target can also hurt the accuracy of your ML model. Indeed
of ML to discover new patterns and relationships in data! Suppose, for ins
feature counting the number of current unopened voicemail messages w
from the feature set. Yet, some small subset of the population has ceas
their voicemail because they decided to change carriers in the following
signal would express itself in the data as a slightly increased conditional p
churn for customers with a large number of unopened voicemails. Exclu
input feature would deprive the ML algorithm of important information
fore would result in an ML system of lower predictive accuracy. Becau
rithms are able to discover subtle, nonlinear relationships, features beyond
first-order effects can have a substantial impact on the accuracy of the mo

 In selecting a set of input features to use, you face a trade-off. On one h
ing every possible feature that comes to mind (“the kitchen sink”) into th
drown out the handful of features that contain any signal with an ov
amount of noise. The accuracy of the ML model then suffers because it
guish true patterns from random noise. On the other extreme, hand-sele
subset of features that you already know are related to the target variab
you to omit other highly predictive features. As a result, the accuracy of th
suffers because the model doesn’t know about the neglected features, wh
dictive of the target.

 Faced with this trade-off, the most practical approach is the following:

1 Include all the features that you suspect to be predictive of the tar
Fit an ML model. If the accuracy of the model is sufficient, stop.

2 Otherwise, expand the feature set by including other features that
ously related to the target. Fit another model and assess the accura
mance is sufficient, stop.

3 Otherwise, starting from the expanded feature set, run an ML feature
rithm to choose the best, most predictive subset of your expanded fea

We further discuss feature selection algorithms in chapter 5. These appr
the most accurate model built on a subset of the feature set; they retain

32 CHAPTER 2 Real-world data

the feature set while discarding the noise. Though computationally expensive, they
can yield a tremendous boost in model performance.

 To finish this subsection, it’s important to note that in order to use an input fea-
ture, that feature doesn’t have to be present for each instance. For example, if the
ages of your customers are known for only 75% of your client base, you could still use
age as an input feature. We discuss ways to handle missing data later in the chapter.

2.1.2 How can we obtain ground truth for the target variable?

One of the most difficult hurdles in getting started with supervised machine learning
his process

 time, until
solution for
ral weeks or
ave enough
ch and start

he actual or
ample, con-

use cases:

which users

h users were

anagement

ent is con-
ts by having

ful, both in
are likely to
th values of

o determine

in estimates

h customers
nitoring the

ing process
get variables
is the aggregation of training instances with a known target variable. T
often requires running an existing, suboptimal system for a period of
enough training data is collected. For example, in building out an ML
telecom churn, you first need to sit on your hands and watch over seve
months as some customers unsubscribe and others renew. After you h
training instances to build an accurate ML model, you can flip the swit
using ML in production.

 Each use case will have a different process by which ground truth—t
observed value of the target variable—can be collected or estimated. For ex
sider the following training-data collection processes for a few selected ML

■ Ad targeting—You can run a campaign for a few days to determine
did/didn’t click your ad and which users converted.

■ Fraud detection—You can pore over your past data to figure out whic
fraudulent and which were legitimate.

■ Demand forecasting—You can go into your historical supply-chain m
data logs to determine the demand over the past months or years.

■ Twitter sentiment—Getting information on the true intended sentim
siderably harder. You can perform manual analysis on a set of twee
people read and opine on tweets (or use crowdsourcing).

Although the collection of instances of known target variables can be pain
terms of time and money, the benefits of migrating to an ML solution
more than make up for those losses. Other ways of obtaining ground-tru
the target variable include the following:

■ Dedicating analysts to manually look through past or current data t
or estimate the ground-truth values of the target

■ Using crowdsourcing to use the “wisdom of crowds” in order to atta
of the target

■ Conducting follow-up interviews or other hands-on experiments wit
■ Running controlled experiments (for example, A/B tests) and mo

responses

Each of these strategies is labor-intensive, but you can accelerate the learn
and shorten the time required to collect training data by collecting only tar

33Getting started: data collection

for the instances that have the most influence on the machine-learning model. One
example of this is a method called active learning. Given an existing (small) training set
and a (large) set of data with unknown response variable, active learning identifies the
subset of instances from the latter set whose inclusion in the training set would yield
the most accurate ML model. In this sense, active learning can accelerate the produc-
tion of an accurate ML model by focusing manual resources. For more information
on active learning and related methods, see the 2009 presentation by Dasgupta and
Langford from ICML.1

ta instances,
odel up and
ssible to give

put features
inear?
ate for your
 a 95% suc-

re available,

 models will
resentative of
he next sec-
riven nature
t is learned
l’s ability to

ate how the
sess whether
33 instances,
us renewed.
t more data.

y. For exam-
ta, your grid

eplacement)
2.1.3 How much training data is required?
Given the difficulty of observing and collecting the response variable for da
you might wonder how much training data is required to get an ML m
running. Unfortunately, this question is so problem-specific that it’s impo
a universal response or even a rule of thumb.

 These factors determine the amount of training data needed:

■ The complexity of the problem. Does the relationship between the in
and target variable follow a simple pattern, or is it complex and nonl

■ The requirements for accuracy. If you require only a 60% success r
problem, less training data is required than if you need to achieve
cess rate.

■ The dimensionality of the feature space. If only two input features a
less training data will be required than if there were 2,000 features.

One guiding principle to remember is that, as the training set grows, the
(on average) get more accurate. (This assumes that the data remains rep
the ongoing data-generating process, which you’ll learn more about in t
tion.) More training data results in higher accuracy because of the data-d
of ML models. Because the relationship between the features and targe
entirely from the training data, the more you have, the higher the mode
recognize and capture more-subtle patterns and relationships.

 Using the telecom data from earlier in the chapter, we can demonstr
ML model improves with more training data and also offer a strategy to as
more training data is required. The telecom training dataset consists of 3,3
each containing 19 features plus the binary outcome of unsubscribed vers
Using this data, it’s straightforward to assess whether you need to collec
Do the following:

1 Using the current training set, choose a grid of subsample sizes to tr
ple, with this telecom training set of 3,333 instances of training da
could be 500; 1,000; 1,500; 2,000; 2,500; 3,000.

2 For each sample size, randomly draw that many instances (without r
from the training set.

1 See http://videolectures.net/icml09_dasgupta_langford_actl/.

34 CHAPTER 2 Real-world data

3 With each subsample of training data, build an ML model and assess the accu-
racy of that model (we talk about ML evaluation metrics in chapter 4).

4 Assess how the accuracy changes as a function of sample size. If it seems to level
off at the higher sample sizes, the existing training set is probably sufficient. But
if the accuracy continues to rise for the larger samples, the inclusion of more
training instances would likely boost accuracy.

Alternatively, if you have a clear accuracy target, you can use this strategy to assess
whether that target has been fulfilled by your current ML model built on the existing
training data (in which case it isn’t necessary to amass more training data).

hanges as a
aset. In this
ng from 250
he accuracy
he accuracy

3500

●

lattens out
ent training
cient

ata to
cy over
s.
 Figure 2.3 demonstrates how the accuracy of the fitted ML model c
function of the number of training instances used with the telecom dat
case, it’s clear that the ML model improves as you add training data: movi
to 500 to 750 training examples produces significant improvements in t
level. Yet, as you increase the number of training instances beyond 2,000, t

500 1000 1500 2000 2500 3000

0.84

0.86

0.88

0.90

0.92

Number of training instances

Accuracy
(AUC)

●

●

●
●

● ● ● ●
●

● ● ●

Accuracy f
here: curr
set is suffi

Accuracy improves
here: >1000 instances
are required

Figure 2.3 Testing whether the existing sample of 3,333 training instances is enough d
build an accurate telecom churn ML model. The black line represents the average accura
10 repetitions of the assessment routine, and the shaded bands represent the error band

35Getting started: data collection

levels off. This is evidence that the ML model won’t improve substantially if you add
more training instances. (This doesn’t mean that significant improvements couldn’t
be made by using more features.)

2.1.4 Is the training set representative enough?

Besides the size of the training set, another important factor for generating accurate
predictive ML models is the representativeness of the training set. How similar are the
instances in the training set to the instances that will be collected in the future?
Because the goal of supervised machine learning is to generate accurate predictions

 the sorts of
set that con-
alled sample-

ly a certain,
ur historical
,000, then a
f fraud that

ple, if your
e fraud, but
surers must
may not be

 set of loca-
 used to col-
may require
 discard old

apolate well
 your model
f the model

g set as rep-
-data collec-

he following
ntative.

sk is to struc-
next section
models (the
on new data, it’s fundamental that the training set be representative of
instances that you ultimately want to generate predictions for. A training
sists of a nonrepresentative sample of what future data will look like is c
selection bias or covariate shift.

 A training sample could be nonrepresentative for several reasons:

■ It was possible to obtain ground truth for the target variable for on
biased subsample of data. For example, if instances of fraud in yo
data were detected only if they cost the company more than $1
model trained on that data will have difficulty identifying cases o
result in losses less than $1,000.

■ The properties of the instances have changed over time. For exam
training example consists of historical data on medical insuranc
new laws have substantially changed the ways in which medical in
conduct their business, then your predictions on the new data
appropriate.

■ The input feature set has changed over time. For example, say the
tion attributes that you collect on each customer has changed; you
lect ZIP code and state, but now collect IP address. This change
you to modify the feature set used for the model and potentially
data from the training set.

In each of these cases, an ML model fit to the training data may not extr
to new data. To borrow an adage: you wouldn’t necessarily want to use
trained on apples to try to predict on oranges! The predictive accuracy o
on oranges would likely not be good.

 To avoid these problems, it’s important to attempt to make the trainin
resentative of future data as possible. This entails structuring your training
tion process in such a way that biases are removed. As we mention in t
section, visualization can also help ensure that the training data is represe

 Now that you have an idea of how to collect training data, your next ta
ture and assemble that data to get ready for ML model building. The
shows how to preprocess your training data so you can start building
topic of chapter 3).

36 CHAPTER 2 Real-world data

2.2 Preprocessing the data for modeling
Collecting data is the first step toward preparing the data for modeling, but some-
times you must run the data through a few preprocessing steps, depending on the
composition of the dataset. Many machine-learning algorithms work only on numeri-
cal data—integers and real-valued numbers. The simplest ML datasets come in this
format, but many include other types of features, such as categorical variables, and
some have missing values. Sometimes you need to construct or compute features
through feature engineering. Some numeric features may need to be rescaled to
make them comparable or to bring them into line with a frequency distribution (for

se common

e. A feature
t important.
 it takes on
 feature is a
ther may be
 model. An

 be encoded
names Mon-
 and perfor-
dealing with
asets.

mbarked

arital
he
 (what

example, grading on the normal curve). In this section, you’ll look at the
data preprocessing steps needed for real-world machine learning.

2.2.1 Categorical features

The most common type of non-numerical feature is the categorical featur
is categorical if values can be placed in buckets and the order of values isn’
In some cases, this type of feature is easy to identify (for example, when
only a few string values, such as spam and ham). In other cases, whether a
numerical (integer) feature or categorical isn’t so obvious. Sometimes ei
a valid representation, and the choice can affect the performance of the
example is a feature representing the day of the week, which could validly
as either numerical (number of days since Sunday) or as categorical (the
day, Tuesday, and so forth). You aren’t going to look at model building
mance until chapters 3 and 4, but this section introduces a technique for
categorical features. Figure 2.4 points out categorical features in a few dat

Person

1

2

Name

Jane Doe

John Smith

Age

24

41

Income

81,200

121,000

Marital status

Single

Married

Categorical features

Passengerld

1

2

3

4

5

6

Survived

0

1

1

1

0

0

Pclass

3

1

3

1

3

3

Gender

Male

Female

Female

Female

Male

Male

Age

22

38

26

35

35

SibSp

1

1

0

1

0

0

Parch

0

0

0

0

0

0

Ticket

A/5 21171

PC 17599

STON/02. 3101282

113803

373450

330877

Fare

7.25

71.2833

7.925

53.1

8.05

8.4583

Cabin

C85

C123

E

S

C

S

S

S

Q

Figure 2.4 Identifying categorical features. At the top is the simple Person dataset, which has a M
Status categorical feature. At the bottom is a dataset with information about Titanic passengers. T
features identified as categorical here are Survived (whether the passenger survived or not), Pclass
class the passenger was traveling on), Gender (male or female), and Embarked (from which city the
passenger embarked).

37Preprocessing the data for modeling

Some machine-learning algorithms use categorical features natively, but generally
they need data in numerical form. You can encode categorical features as numbers
(one number per category), but you can’t use this encoded data as a true categorical
feature because you’ve then introduced an (arbitrary) order of categories. Recall that
one of the properties of categorical features is that they aren’t ordered. Instead, you
can convert each of the categories into a separate binary feature that has value 1 for
instances for which the category appeared, and value 0 when it didn’t. Hence, each
categorical feature is converted to a set of binary features, one per category. Features
constructed in this way are sometimes called dummy variables. Figure 2.5 illustrates this

 binary fea-
NumPy type

y have
o valid
nippet
ke the
py and
port *,

concept further.

The pseudocode for converting the categorical features in figure 2.5 to
tures looks like the following listing. Note that categories is a special
(www.numpy.org) such that (data == cat) yields a list of Boolean values.

def cat_to_num(data):
categories = unique(data)
features = []
for cat in categories:

binary = (data == cat)
features.append(binary.astype("int"))

return features

NOTE Readers familiar with the Python programming language ma
noticed that the preceding example isn’t just pseudocode, but als
Python. You’ll see this a lot throughout the book: we introduce a code s
as pseudocode, but unless otherwise noted, it’s working code. To ma
code simpler, we implicitly import a few helper libraries, such as num
scipy. Our examples will generally work if you include from numpy im

Listing 2.1 Convert categorical features to numerical binary features

Male
Female
Male
Male
Female
Male
Female
Female

Categorical feature
with two categories:
“Male” and “Female”

Categorical feature
converted to two binary
features: one per category

1
0
1
1
0
1
0
0

MaleGender

0
1
0
0
1
0
1
1

Female

Figure 2.5 Converting
categorical columns to
numerical columns

38 CHAPTER 2 Real-world data

and from scipy import *. Note that although this approach is convenient for
trying out examples interactively, you should never use it in real applications,
because the import * construct may cause name conflicts and unexpected
results. All code samples are available for inspection and direct execution in
the accompanying GitHub repository: https://github.com/brinkar/real-world-
machine-learning.

The categorical-to-numerical conversion technique works for most ML algorithms.
But a few algorithms (such as certain types of decision-tree algorithms and related
algorithms such as random forests) can use categorical features natively. This will

is further in
egorical fea-

lar datasets,
er), N/A, or
r some rea-
.7 shows an

 in different
mation that
ta is missing

s: Married

eature to

mbarked

assenger
tem from
often yield better results for highly categorical datasets, and we discuss th
the next chapter. Our simple Person dataset, after conversion of the cat
ture to binary features, is shown in figure 2.6.

2.2.2 Dealing with missing data

You’ve already seen a few examples of datasets with missing data. In tabu
missing data often appears as empty cells, or cells with NaN (Not a Numb
None. Missing data is usually an artifact of the data-collection process; fo
son, a particular value couldn’t be measured for a data instance. Figure 2
example of missing data in the Titanic Passengers dataset.

 There are two main types of missing data, which you need to handle
ways. First, for some data, the fact that it’s missing can carry meaningful infor
could be useful for the ML algorithm. The other possibility is that the da

Person

1

2

Name

Jane Doe

John Smith

Age

24

41

Income

81,200

121,000

Marital status: Single

1

0

Marital statu

0

1

Figure 2.6 The simple Person dataset after conversion of the categorical Marital Status f
binary numerical features. (The original dataset is shown in figure 2.4.)

Missing values

Passengerld

1

2

3

4

5

6

Survived

0

1

1

1

0

0

Pclass

3

1

3

1

3

3

Gender

Male

Female

Female

Female

Male

Male

Age

22

38

26

35

35

SibSp

1

1

0

1

0

0

Parch

0

0

0

0

0

0

Ticket

A/5 21171

PC 17599

STON/02. 3101282

113803

373450

330877

Fare

7.25

71.2833

7.925

53.1

8.05

8.4583

Cabin

C85

C123

E

S

C

S

S

S

Q

Figure 2.7 The Titanic Passengers dataset has missing values in the Age and Cabin columns. The p
information has been extracted from various historical sources, so in this case the missing values s
information that couldn’t be found in the sources.

39Preprocessing the data for modeling

only because its measurement was impossible, and the unavailability of the informa-
tion isn’t otherwise meaningful. In the Titanic Passengers dataset, for example, miss-
ing values in the Cabin column may indicate that those passengers were in a lower
social or economic class, whereas missing values in the Age column carry no useful
information (the age of a particular passenger at the time simply couldn’t be found).

 Let’s first consider the case of informative missing data. When you believe that
information is missing from the data, you usually want the ML algorithm to be able to
use this information to potentially improve the prediction accuracy. To achieve this,
you want to convert the missing values into the same format as the column in general.

–1 or –999,
 end of the
hat order is
iddle of the

u can create
egorical fea-
previous sec-
issing data.

elf, you pro-
 or category
you were to
ataset to –1,
o good rea-
es by ignor-

ing values or
ssing data is

ropping the
r portion of
For numerical columns, this can be done by setting missing values to
depending on typical values of non-null values. Pick a number at one
numerical spectrum that will denote missing values, and remember t
important for numerical columns. You don’t want to pick a value in the m
distribution of values.

 For a categorical column with potentially informative missing data, yo
a new category called Missing, None, or similar, and then handle the cat
ture in the usual way (for example, using the technique described in the
tion). Figure 2.8 shows a simple diagram of what to do with meaningful m

When the absence of a value for a data item has no informative value in its
ceed in a different way. In this case, you can’t introduce a special number
because you might introduce data that’s flat-out wrong. For example, if
change any missing values in the Age column of the Titanic Passengers d
you’d probably hurt the model by messing with the age distribution for n
son. Some ML algorithms will be able to deal with these truly missing valu
ing them. If not, you need to preprocess the data to either eliminate miss
replace them by guessing the true value. This concept of replacing mi
called imputation.

 If you have a large dataset and only a handful of missing values, d
observations with missing data is the easiest approach. But when a large

Yes

Categorical:
Create a new category

for missing values

Yes

Numerical:
Convert missing values
to meaningful number,
such as –1 and –999

No

Type of data

Does missing data
have meaning?

Figure 2.8 What to do with meaningful missing data

40 CHAPTER 2 Real-world data

your observations contain missing values, the loss of perfectly good data in the dropped
observations will reduce the predictive power of your model. Furthermore, if the obser-
vations with missing values aren’t randomly distributed throughout your dataset, this
approach may introduce unexpected bias.

 Another simple approach is to assume some temporal order to the data instances
and replace missing values with the column value of the preceding row. With no other
information, you’re making a guess that a measurement hasn’t changed from one
instance to the next. Needless to say, this assumption will often be wrong, but less
wrong than, for example, filling in zeros for the missing values, especially if the data is

sonable esti-
apply more-

ting data to
e mean or

 the average
 values, you
. These are
hen you set
tial correla-
m to detect

 predict the
at machine
 in order to
rithm (such
issing data.
, you’re cre-
rder to opti-

al with truly
marizes the

niques, but
 to make the

nts another
cessing, the

tiple cabins,
ause all cab-
er a certain
a series of sequential observations (yesterday’s temperature isn’t an unrea
mate of today’s). And for extremely big data, you won’t always be able to
sophisticated methods, and these simple methods can be useful.

 When possible, it’s usually better to use a larger portion of the exis
guess the missing values. You can replace missing column values by th
median value of the column. With no other information, you assume that
will be closest to the truth. Depending on the distribution of column
might want to use the median instead; the mean is sensitive to outliers
widely used in machine learning today and work well in many cases. But w
all missing values to a single new value, you diminish the visibility of poten
tion with other variables that may be important in order for the algorith
certain patterns in the data.

 What you want to do, if you can, is use all the data at your disposal to
value of the missing variable. Does this sound familiar? This is exactly wh
learning is about, so you’re basically thinking about building ML models
be able to build ML models. In practice, you’ll typically use a simple algo
as linear or logistic regression, described in chapter 3) to impute the m
This isn’t necessarily the same as the main ML algorithm used. In any case
ating a pipeline of ML algorithms that introduces more knobs to turn in o
mize the model in the end.

 Again, it’s important to realize that there’s no single best way to de
missing data. We’ve discussed a few ways in this section, and figure 2.9 sum
possibilities.

2.2.3 Simple feature engineering

Chapter 5 covers domain-specific and advanced feature-engineering tech
it’s worth mentioning the basic idea of simple data preprocessing in order
model better.

 You’ll use the Titanic example again in this section. Figure 2.10 prese
look at part of the data, and in particular the Cabin feature. Without pro
Cabin feature isn’t necessarily useful. Some values seem to include mul
and even a single cabin wouldn’t seem like a good categorical feature bec
ins would be separate “buckets.” If you want to predict, for example, wheth

41Preprocessing the data for modeling

YesYesNo

Does missing data
have meaning?

Numerical:
Convert missing values
to meaningful number,
such as –1 and –999

Categorical:
Create a new category

for missing values

Numerical:
Convert missing values
to meaningful number,
such as –1 and –999

Type of data

Embarked

S

C

S

S

S

Q

 others
Yes, with the
exception of outliersYes

Impute missing values
with the column median

Impute missing values
with the column mean

Impute with simple
ML model

No

Large dataset; little
data missing, at random

Large, temporally ordered
dataset; more data missing

Otherwise
Remove instances

with data

Does the data follow a
simple distribution?

Replace value with value
of preceding instance

Figure 2.9 Full decision diagram for handling missing values when preparing data for ML modeling

Passengerld

1

2

3

4

5

6

Survived

0

1

1

1

0

0

Pclass

3

1

3

1

3

3

Gender

Male

Female

Female

Female

Male

Male

Age

22

38

26

35

35

SibSp

1

1

0

1

0

0

Parch

0

0

0

0

0

0

Ticket

A/5 21171

PC 17599

STON/02. 3101282

113803

373450

330877

Fare

7.25

71.2833

7.925

53.1

8.05

8.4583

Cabin

C85

C123

Figure 2.10 In the Titanic Passengers dataset, some Cabin values include multiple cabins, whereas
are missing. And cabin identifiers themselves may not be good categorical features.

42 CHAPTER 2 Real-world data

passenger survived, living in a particular cabin instead of the neighboring cabin may
not have any predictive power.

 Living in a particular section of the ship, though, could be important for survival.
For single cabin IDs, you could extract the letter as a categorical feature and the num-
ber as a numerical feature, assuming they denote different parts of the ship. You could
even find a layout map of the Titanic and map each cabin to the level and side of the
ship, ocean-facing versus interior, and so forth. These approaches don’t handle multi-
ple cabin IDs, but because it looks like all multiple cabins are close to each other,
extracting only the first cabin ID should be fine. You could also include the number of

e following

 the existing
 by applying
ou’ll look at
 need to be
features for
racted from

dividual fea-
e range of a
 features. If
cabins in a new feature, which could also be relevant.
 All in all, you’ll create three new features from the Cabin feature. Th

listing shows the code for this simple extraction.

def cabin_features(data):
 features = []
 for cabin in data:

cabins = cabin.split(" ")
n_cabins = len(cabins)
First char is the cabin_char
try:

cabin_char = cabins[0][0]
except IndexError:

cabin_char = "X"
n_cabins = 0

The rest is the cabin number
try:

cabin_num = int(cabins[0][1:])
except:

cabin_num = -1
Add 3 features for each passanger
features.append([cabin_char, cabin_num, n_cabins])

 return features

By now it should be no surprise what we mean by feature engineering : using
features to create new features that increase the value of the original data
our knowledge of the data or domain in question. As mentioned earlier, y
advanced feature-engineering concepts and common types of data that
processed to be used by most algorithms. These include free-form text
things such as web pages or tweets. Other important features can be ext
images, video, and time-series data as well.

2.2.4 Data normalization

Some ML algorithms require data to be normalized, meaning that each in
ture has been manipulated to reside on the same numeric scale. The valu
feature can influence the importance of the feature compared to other

Listing 2.2 Simple feature extraction on Titanic cabins

43Using data visualization

one feature has values between 0 and 10, and another has values between 0 and 1, the
weight of the first feature is 10, compared to the second. Sometimes you’ll want to
force a particular feature weight, but typically it’s better to let the ML algorithm figure
out the relative weights of the features. To make sure all features are considered
equally, you need to normalize the data. Often data is normalized to be in the range
from 0 to 1, or from –1 to 1.

 Let’s consider how this normalization is performed. The following code listing
implements this function. For each feature, you want the data to be distributed
between a minimum value (typically –1) and a maximum value (typically +1). To

 get the data
, in the case
 the starting

the data was
n) will have
s also means
 normalized,

e normaliza-
ization.
 data, you’ll
resting, and
hard to fully
ization tools
tract hidden

e important
training fea-
earning and
ore the rela-
ill guide you
 predictions.
achieve this, you divide the data by the total range of the data in order to
into the 0–1 range. From here, you can re-extend to the required range (2
of –1 to +1) by multiplying with this transformed value. At last, you move
point from 0 to the minimum required value (for example, –1).

def normalize_feature(data, f_min=-1.0, f_max=1.0):
 d_min, d_max = min(data), max(data)
 factor = (f_max - f_min) / (d_max - d_min)
 normalized = f_min + (data - d_min)*factor
 return normalized, factor

Note that you return both the normalized data and the factor with which
normalized. You do this because any new data (for example, for predictio
to be normalized in the same way in order to yield meaningful results. Thi
that the ML modeler will have to remember how a particular feature was
and save the relevant values (factor and minimum value).

 We leave it up to you to implement a function that takes new data, th
tion factor, and the normalized minimum value and reapplies the normal

 As you expand your data-wrangling toolkit and explore a variety of
begin to see that each dataset has qualities that make it uniquely inte
often challenging. But large collections of data with many variables are
understand by looking at tabular representations. Graphical data-visual
are indispensable for understanding the data from which you hope to ex
information.

2.3 Using data visualization
Between data collection/preprocessing and ML model building lies th
step of data visualization. Data visualization serves as a sanity check of the
tures and target variable before diving into the mechanics of machine l
prediction. With simple visualization techniques, you can begin to expl
tionship between the input features and the output target variable, which w
in model building and assist in your understanding of the ML model and

Listing 2.3 Feature normalization

44 CHAPTER 2 Real-world data

aining set is

n the target
ues: mosaic
priate for a
le, as shown

 categorical
, and other

he relation-
ataset. The

uare is then

g data. If

y Edward
g data for

3) covers
 samples

ović, Dim-
 basics to

Input feature

es
po

ns
e

va
ria

bl
e

Categorical

Mosaic plots

Section 2.3.1

Numerical

er
ic

al
C

at
eg

or
ic

al Box plots

Section 2.3.2

Density plots Scatterplots
Further, visualization techniques can tell you how representative the tr
and inform you of the types of instances that may be lacking.

 This section focuses on methods for visualizing the association betwee
variable and the input features. We recommend four visualization techniq
plots, box plots, density plots, and scatter plots. Each technique is appro
different type (numeric or categorical) of input feature and target variab
in figure 2.11.

2.3.1 Mosaic plots

Mosaic plots allow you to visualize the relationship between two or more
variables. Plotting software for mosaic plots is available in R, SAS, Python
scientific or statistical programming languages.

 To demonstrate the utility of mosaic plots, you’ll use one to display t
ship between passenger gender and survival in the Titanic Passengers d
mosaic plot begins with a square whose sides each have length 1. The sq

Further reading
A plethora of books are dedicated to statistical visualization and plottin
you’d like to dive deeper into this topic, check out the following:

■ The classic textbook The Visual Display of Quantitative Information b
Tufte (Graphics Press, 2001) presents a detailed look into visualizin
analysis and presentation.

■ For R users, R Graphics Cookbook by Winston Chang (O’Reilly, 201
data visualization in R, from the basics to advanced topics, with code
to follow along.

■ For Python users, Python Data Visualization Cookbook by Igor Milovan
itry Foures, and Giuseppe Vettigli (Packt Publishing, 2015) covers the
get you up and running with Matplotlib.

R

N
um Section 2.3.3 Section 2.3.4 Figure 2.11 Four visualization techniques,

arranged by the type of input feature and
response variable to be plotted

45Using data visualization

divided, by vertical lines, into a set of rectangles whose widths correspond to the pro-
portion of the data belonging to each of the categories of the input feature. For exam-
ple, in the Titanic data, 24% of passengers were female, so you split the unit square
along the x-axis into two rectangles corresponding to a width 24% / 76% of the area.

 Next, each vertical rectangle is split by horizontal lines into subrectangles whose
relative areas are proportional to the percent of instances belonging to each category
of the response variable. For example, of Titanic passengers who were female, 74%
survived (this is the conditional probability of survival, given that the passenger was
female). Therefore, the Female rectangle is split by a horizontal line into two subrect-

repeated for

der and sur-
lar locations
far apart. To
tatistical sig-
feature and
ed”) shaded
shaded light

>4

More
nts than

xpected

 survived
”

angles that contain 74% / 26% of the area of the rectangle. The same is
the Male rectangle (for males, the breakdown is 19% / 81%).

 What results is a quick visualization of the relationship between gen
vival. If there is no relationship, the horizontal splits would occur at simi
on the y-axis. If a strong relationship exists, the horizontal splits will be
enhance the visualization, the rectangles are shade-coded to assess the s
nificance of the relationship, compared to independence of the input
response variable, with large negative residuals (“lower count than expect
dark gray, and large positive residuals (“higher count than expected”)
gray; see figure 2.12.

Female Standardized residuals:

Fewer
counts than

expected

<–4 –4:–2 –2:0 0:2 2:4

No difference
from statistical
independence

cou
e

24% female 76% male

Gender

26% of
females

died

74% of
females
survived

N
o

Y
es

Male

Mosaic plot for Titanic data: Gender vs. survival

S
ur

vi
ve

d?

Figure 2.12 Mosaic plot showing the relationship between gender and survival on the Titanic. The
visualization shows that a much higher proportion of females (and much smaller proportion of males)
than would have been expected if survival were independent of gender. “Women and children first.

46 CHAPTER 2 Real-world data

This tells you that when building a machine-learning model to predict survival on the
Titanic, gender is an important factor to include. It also allows you to perform a sanity
check on the relationship between gender and survival: indeed, it’s common knowl-
edge that a higher proportion of women survived the disaster. This gives you an extra
layer of assurance that your data is legitimate. Such data visualizations can also help
you interpret and validate your machine-learning models, after they’ve been built.

 Figure 2.13 shows another mosaic plot for survival versus passenger class (first, sec-
ond, and third). As expected, a higher proportion of first-class passengers (and a
lower proportion of third-class passengers) survived the sinking. Obviously, passenger

the relation-
 probability

tribution of
 of its distri-
imum of the

 the center,
iers.
 parallel. In
of a numeri-
se variable.

n
class is also an important factor in an ML model to predict survival, and
ship is exactly as you should expect: higher-class passengers had a higher
of survival.

2.3.2 Box plots

Box plots are a standard statistical plotting technique for visualizing the dis
a numerical variable. For a single variable, a box plot depicts the quartiles
bution: the minimum, 25th percentile, median, 75th percentile, and max
values. Box-plot visualization of a single variable is useful to get insight into
spread, and skew of its distribution of values plus the existence of any outl

 You can also use box plots to compare distributions when plotted in
particular, they can be used to visualize the difference in the distribution
cal feature as a function of the various categories of a categorical respon

1 2 Standardized residuals:

<–4 –4:–2 –2:0 0:2 2:4 >4

N
o

Y
es

3

Mosaic plot for Titanic data: Passenger class vs. survival

S
ur

vi
ve

d?

Passenger class

Figure 2.13 Mosaic plot showing the relationship between passenger class and survival o
the Titanic

47Using data visualization

Returning to the Titanic example, you can visualize the difference in ages between
survivors and fatalities by using parallel box plots, as in figure 2.14. In this case, it’s not
clear that any differences exist in the distribution of passenger ages of survivors versus
fatalities, as the two box plots look fairly similar in shape and location.

isualizations
 and exploit
le to being
tures whose
ese features
ciation with
ionship with
edictor (per-

 make their
 ML model
 alone isn’t

Outliers

80

Box plot for Titanic data: Passenger age vs. survival
It’s important to recognize the limitations of visualization techniques. V
aren’t a substitute for ML modeling! Machine-learning models can find
subtle relationships hidden deep inside the data that aren’t amenab
exposed via simple visualizations. You shouldn’t automatically exclude fea
visualizations don’t show clear associations with the target variable. Th
could still carry a strong association with the target when used in asso
other input features. For example, although age doesn’t show a clear relat
survival, it could be that for third-class passengers, age is an important pr
haps for third-class passengers, the younger and stronger passengers could
way to the deck of the ship more readily than older passengers). A good
will discover and expose such a relationship, and thus the visualization
meant to exclude age as a feature.

Minimum

Maximum

75th percentile

Median

25th percentile

Age
(years)

Survived?
No Yes

60

20

0

40

Figure 2.14 Box plot showing the relationship between passenger age and
survival on the Titanic. No noticeable differences exist between the age
distributions for survivors versus fatalities. (This alone shouldn’t be a reason to
exclude age from the ML model, as it may still be a predictive factor.)

48 CHAPTER 2 Real-world data

 Figure 2.15 displays box plots exploring the relationship between passenger fare
paid and survival outcome. In the left panel, it’s clear that the distributions of fare paid
are highly skewed (many small values and a few large outliers), making the differences
difficult to visualize. This is remedied by a simple transformation of the fare (square
root, in the right panel), making the differences easy to spot. Fare paid has an obvious
relationship with survival status: those paying higher fares were more likely to survive,
as is expected. Thus, fare amount should be included in the model, as you expect the
ML model to find and exploit this positive association.

en the input
between two
lots.

l than a box
iable is esti-
stribution is
y creating a
put feature
nse variable
re similar to

Yes

itanic. The
rage.
2.3.3 Density plots

Now, we move to numerical, instead of categorical, response variables. Wh
variable is categorical, you can use box plots to visualize the relationship
variables, just as you did in the preceding section. You can also use density p

 Density plots display the distribution of a single variable in more detai
plot. First, a smoothed estimate of the probability distribution of the var
mated (typically using a technique called kernel smoothing). Next, that di
plotted as a curve depicting the values that the variable is likely to have. B
single density plot of the response variable for each category that the in
takes, you can easily visualize any discrepancies in the values of the respo
for differences in the categorical input feature. Note that density plots a

500

No Yes

400

300
Fare

amount

200

100

0

Survived?

20

No

15

10

sqr
(fare amount)

5

0

Survived?

Box plots for Titanic data: Passenger fare versus survival

Figure 2.15 Box plots showing the relationship between passenger fare paid and survival on the T
square-root transformation makes it obvious that passengers who survived paid higher fares, on ave

49Using data visualization

ltiple distri-

contains the
obiles from

, location of
sus location
an cars tend
refore, loca-
 secondary

fferent types
tra explora-
d to use as a

 is standard in

50

0.07

0.06

0.05

Density plot for MPG data, by region

USA
Europe
Asia

PG for each
PG and that
PG.
histograms, but their smooth nature makes it much simpler to visualize mu
butions in a single figure.

 In the next example, you’ll use the Auto MPG dataset.2 This dataset
miles per gallon (MPG) attained by each of a large collection of autom
1970–82, plus attributes about each auto, including horsepower, weight
origin, and model year. Figure 2.16 presents a density plot for MPG ver
of origin (United States, Europe, or Asia). It’s clear from the plot that Asi
to have higher MPG, followed by European and then American cars. The
tion should be an important predictor in our model. Further, a few
“bumps” in the density occur for each curve, which may be related to di
of automobile (for example, truck versus sedan versus hybrid). Thus, ex
tion of these secondary bumps is warranted to understand their nature an
guide for further feature engineering.

2 The Auto MPG dataset is available at https://archive.ics.uci.edu/ml/datasets/Auto+MPG and
the R programming language, by entering data(mtcars).

10 30 4020

0.04

0.03

0.02

0.01

0.00

Density

Miles per gallon

Figure 2.16 Density plot for the Auto MPG dataset, showing the distribution of vehicle M
manufacturer region. It’s obvious from the plot that Asian cars tend to have the highest M
cars made in the United States have the lowest. Region is clearly a strong indicator of M

50 CHAPTER 2 Real-world data

2.3.4 Scatter plots

A scatter plot is a simple visualization of the relationship between two numerical vari-
ables and is one of the most popular plotting tools in existence. In a scatter plot, the
value of the feature is plotted versus the value of the response variable, with each
instance represented as a dot. Though simple, scatter plots can reveal both linear and
nonlinear relationships between the input and response variables.

 Figure 2.17 shows two scatter plots: one of car weight versus MPG, and one of car
model year versus MPG. In both cases, clear relationships exist between the input fea-
tures and the MPG of the car, and hence both should be used in modeling. In the left

 in MPG for
 linear rela-
at the input
nship.

f real-world

iable

80 82

t) and
panel is a clear banana shape in the data, showing a nonlinear decrease
increasing vehicle weight. Likewise, the right panel shows an increasing,
tionship between MPG and the model year. Both plots clearly indicate th
features are useful in predicting MPG, and both have the expected relatio

2.4 Summary
In this chapter, you’ve looked at important aspects of data in the context o
machine learning:

■ Steps in compiling your training data include the following:
– Deciding which input features to include
– Figuring out how to obtain ground-truth values for the target var

1500

40

Miles per
gallon

2500 3500 4500

30

20

10

�

�

�

�

�

�

�� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

� ���

�

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

� ��

�

� �

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�
�

�

� �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

� �

���

�

�

�

�

�

�
�

�
�

�

�

�
�

�
� �

�

�

�

�
�

�

�

�
�

�
� �

�

�

�

�

�

�
�

�

�

�
�

�

�

�

��

�
�

�

�
�

�

�

�
�

�

�

�
��

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

� �

�

�

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

70 74 787672

40

Miles per
gallon

30

20

10

Vehicle weight Model year

Scatterplots for MPG data

Figure 2.17 Scatter plots for the relationship of vehicle miles per gallon versus vehicle weight (lef
vehicle model year (right)

51Terms from this chapter

– Determining when you’ve collected enough training data
– Keeping an eye out for biased or nonrepresentative training data

■ Preprocessing steps for training data include the following:
– Recoding categorical features
– Dealing with missing data
– Feature normalization (for some ML approaches)
– Feature engineering

■ Four useful data visualizations are mosaic plots, density plots, box plots, and
scatter plots:

ng models!

r of a category

 categorical
With our data ready for modeling, let’s now start building machine-learni

2.5 Terms from this chapter

Word Definition

dummy variable A binary feature that indicates that an observation is (or isn’t) a membe

ground truth The value of a known target variable or label for a training or test set

missing data
imputation

Those features with unknown values for a subset of instances
Replacement of the unknown values of missing data with numerical or
values

Categorical Numerical

Categorical Mosaic plots Box plots

Numerical Density plots Scatter plots

Response
Variable

Input Feature

Modeling and prediction
This chapter covers
■ Discovering relationships in data through ML

modeling
■ Using models for prediction and inference
■ Building classification models
ion, prepro-
low is to use
ist between
ne by build-

 required to
trast to most
 approaches
ts. This will
uilding and
d problems.
ques, please
52

The previous chapter covered guidelines and principles of data collect
cessing, and visualization. The next step in the machine-learning workf
that data to begin exploring and uncovering the relationships that ex
the input features and the target. In machine learning, this process is do
ing statistical models based on the data. This chapter covers the basics
understand ML modeling and to start building your own models. In con
machine-learning textbooks, we spend little time discussing the various
to ML modeling, instead focusing attention on the big-picture concep
help you gain a broad understanding of machine-learning model b
quickly get up to speed on building your own models to solve real-worl
For those seeking more information about specific ML modeling techni
see the appendix.

■ Building regression models

53Basic machine-learning modeling

 We begin the chapter with a high-level overview of statistical modeling. This discus-
sion focuses on the big-picture concepts of ML modeling, such as the purpose of mod-
els, the ways in which models are used in practice, and a succinct look at types of
modeling techniques in existence and their relative strengths and weaknesses. From
there, we dive into the two most common machine-learning models: classification and
regression. In these sections, we give more details about how to build models on your
data. We also call attention to a few of the most common algorithms used in practice
in the “Algorithm highlight” boxes scattered throughout the chapter.

hips in data
through the
ars in statis-

es can range
estimate the
.
re 3.1: use of
 predictions
 later in the
the next sec-
w important

e Auto MPG
iles, such as

kflow
3.1 Basic machine-learning modeling
The objective of machine learning is to discover patterns and relations
and to put those discoveries to use. This process of discovery is achieved
use of modeling techniques that have been developed over the past 30 ye
tics, computer science, and applied mathematics. These various approach
from simple to tremendously complex, but all share a common goal: to
functional relationship between the input features and the target variable

 These approaches also share a common workflow, as illustrated in figu
historical data to build and optimize a model that is, in turn, used to make
based on new data. This section prepares you for the practical sections
chapter. You’ll look at the general goal of machine learning modeling in
tion, and move on to seeing how the end product can be used and a fe
aspects for differentiating between ML algorithms.

3.1.1 Finding the relationship between input and target

Let’s frame the discussion of ML modeling around an example. Recall th
dataset from chapter 2. The dataset contains metrics about automob

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 3.1 The basic ML wor

54 CHAPTER 3 Modeling and prediction

manufacturer region, model year, vehicle weight, horsepower, and number of cylin-
ders. The purpose of the dataset is to understand the relationship between the input
features and a vehicle’s miles per gallon (MPG) rating.

 Input features are typically referred to using the symbol X, with subscripts differen-
tiating inputs when multiple input features exist. For instance, we’ll say that X1 refers
to manufacturer region, X2 to model year, X3 to vehicle weight, and so forth. The col-
lection of all the input features is referred to as the bold X. Likewise, the target vari-
able is typically referred to as Y.

 The relationship between the inputs, X, and output, Y, can be succinctly repre-

 variables to
g data. The
ction f. The
variable  is
rmine what

 for an auto-
unction per-
 could have
llowing:

all inaccura-

leet to have
e
 horsepower
rmine MPG

proach is to
 estimate is
sented by this simple formula:

In this equation, f represents the unknown function that relates the input
the target, Y. The goal of ML modeling is to accurately estimate f by usin
symbol  represents random noise in the data that’s unrelated to the fun
function f is commonly referred to as the signal, whereas the random
called the noise. The challenge of machine learning is to use data to dete
the true signal is, while ignoring the noise.

 In the Auto MPG example, the function f describes the true MPG rating
mobile as a function of that car’s many input features. If you knew that f
fectly, you could know the MPG rating for any car, real or fictional. But you
numerous sources of noise, , including (and certainly not limited to) the fo

■ Imperfect measurement of each vehicle’s MPG rating caused by sm
cies in the measuring devices—measurement noise

■ Variations in the manufacturing process, causing each car in the f
slightly different MPG measurements—manufacturing process nois

■ Noise in the measurement of the input features, such as weight and
■ Lack of access to the broader set of features that would exactly dete

Using the noisy data that you have from hundreds of vehicles, the ML ap
use modeling techniques to find a good estimate for f. This resultant
referred to as an ML model.

Target

Model
or signal

Error
or noise

Explanatory
features X1…Xn

Y = f(X) + ε

55Basic machine-learning modeling

 In sections 3.2 and 3.3, we describe in further detail how these ML modeling tech-
niques work. Indeed, the bulk of the academic literature on machine learning deals
with how to best estimate f.

3.1.2 The purpose of finding a good model

Assuming that you have a good estimate of f, what next? Machine learning has two
main goals: prediction and inference.

PREDICTION

After you have a model, you can use that model to generate predictions of the target,
athematical

 denotes the
for new data

ta or may be

 model, fest,
 automobile.
ain automo-
e useful for
PG rating of
 meet MPG

iction is cen-

re likely to

ine-learning
rated, ML is

ning models
utput target.
Y, for new data, Xnew, by plugging those new features into the model. In m
notation, if fest denotes your machine-learning estimate of f (recall that f
true relationship between the features and the target), then predictions
can be obtained by plugging the new data into this formula:

Ypred = fest(Xnew)

These predictions can then be used to make decisions about the new da
fed into an automated workflow.

 Going back to the Auto MPG example, suppose that you have an ML
that describes the relationship between MPG and the input metrics of an
Prediction allows you to ask the question, “What would the MPG of a cert
bile with known input metrics be?” Such a predictive ability would b
designing automobiles, because it would allow engineers to assess the M
different design concepts and to ensure that the individual concepts
requirements.

 Prediction is the most common use of machine-learning systems. Pred
tral to many ML use cases, including these:

■ Deciphering handwritten digits or voice recordings
■ Predicting the stock market
■ Forecasting
■ Predicting which users are most likely to click, convert, or buy
■ Predicting which users will need product support and which a

unsubscribe
■ Determining which transactions are fraudulent
■ Making recommendations

Because of the high levels of predictive accuracy attained by mach
approaches and the rapid speed by which ML predictions can be gene
used every day by thousands of companies for predictive purposes.

INFERENCE

In addition to making predictions on new data, you can use machine-lear
to better understand the relationships between the input features and the o

56 CHAPTER 3 Modeling and prediction

A good estimate of f can enable you to answer deep questions about the associations
between the variables at hand. For example:

■ Which input features are most strongly related to the target variable?
■ Are those relationships positive or negative?
■ Is f a simple relationship, or is it a function that’s more nuanced and nonlinear?

These inferences can tell you a lot about the data-generating process and give clues to
the factors driving relationships in the data. Returning to the Auto MPG example, you
can use inference to answer questions such as these: Does manufacturer region have

G? And are
you an idea
gineer vehi-

 some of the
ussion rela-
kground!
y and model
ccurate pre-
ay produce

ric and non-
at f takes a

trict assump-
ble, but less
le but more
 parametric

near regres-
 the inputs.

as the inter-
u fit a para-
e unknown

 formula for

 regression,
ant analysis,
an effect on MPG? Which of the inputs are most strongly related to MP
they negatively or positively related? Answers to these questions can give
of the driving factors in automobile MPG and give clues about how to en
cles with higher MPG.

3.1.3 Types of modeling methods

Now the time has come to dust off your statistics knowledge and dive into
mathematical details of ML modeling. Don’t worry—we’ll keep the disc
tively broad and understandable for those without much of a statistics bac

 Statistical modeling has a general trade-off between predictive accurac
interpretability. Simple models are easy to interpret, yet won’t produce a
dictions (particularly for complicated relationships). Complex models m
accurate predictions, but may be black-box and hard to interpret.

 In addition, the machine-learning model has two main types: paramet
parametric. The essential difference is that parametric models assume th
specific functional form, whereas nonparametric models don’t make such s
tions. Therefore, parametric approaches tend to be simple and interpreta
accurate. Likewise, nonparametric approaches are usually less interpretab
accurate across a broad range of problems. Let’s take a closer look at both
and nonparametric approaches to ML modeling.

PARAMETRIC METHODS

The simplest example of a parametric approach is linear regression. In li
sion, f is assumed to be a linear combination of the numerical values of
The standard linear regression model is as follows:

f(X) = 0 + X1 × 1 + X2 × 2 + …

In this equation, the unknown parameters, 0, 1,… can be interpreted
cept and slope parameters (with respect to each of the inputs). When yo
metric model to some data, you estimate the best values of each of th
parameters. Then you can turn around and plug those estimates into the
f(X) along with new data to generate predictions.

 Other examples of commonly used parametric models include logistic
polynomial regression, linear discriminant analysis, quadratic discrimin

57Basic machine-learning modeling

(parametric) mixture models, and naïve Bayes (when parametric density estimation is
used). Approaches often used in conjunction with parametric models for model selec-
tion purposes include ridge regression, lasso, and principal components regression.
Further details about some of these methods are given later in this chapter, and a
description of each approach is given in the appendix.

 The drawback of parametric approaches is that they make strong assumptions
about the true form of the function f. In most real-world problems, f doesn’t assume
such a simple form, especially when there are many input variables (X). In these situa-
tions, parametric approaches will fit the data poorly, leading to inaccurate predictions.

nparametric

he form and
relationship
ction f that

t and output

 classification
lassification

ries of splits
lar values of

e algorithm
des contain
lit is on the

 other input
ct any good

lexity of the
relationship
s a sufficient
ed patterns.
f the Titanic
sengers: the
nel is a tree

el to grow in

de k-nearest
zed additive
r machines.
apter, and a
Therefore, most real-world approaches to machine learning depend on no
machine-learning methods.

NONPARAMETRIC METHODS

In nonparametric models, f doesn’t take a simple, fixed function. Instead, t
complexity of f adapts to the complexity of the data. For example, if the
between X and Y is wiggly, a nonparametric approach will choose a fun
matches the curvy patterns. Likewise, if the relationship between the inpu
variable is smooth, a simple function f will be chosen.

 A simple example of a nonparametric model is a classification tree. A
tree is a series of recursive binary decisions on the input features. The c
tree learning algorithm uses the target variable to learn the optimal se
such that the terminal leaf nodes of the tree contain instances with simi
the target.

 Take, for example, the Titanic Passengers dataset. The classification tre
first seeks the best input feature to split on, such that the resulting leaf no
passengers who either mostly lived or mostly died. In this case, the best sp
sex (male/female) of the passenger. The algorithm continues splitting on
features in each of the subnodes until the algorithm can no longer dete
subsequent splits.

 Classification trees are nonparametric because the depth and comp
tree isn’t fixed in advance, but rather is learned from the data. If the
between the target variable and the input features is complex and there’
amount of data, then the tree will grow deeper, uncovering more-nuanc
Figure 3.2 shows two classification trees learned from different subsets o
Passengers dataset. In the left panel is a tree learned from only 400 pas
resultant model is simple, consisting of only a single split. In the right pa
learned from 891 passengers: the larger amount of data enables the mod
complexity and find more-detailed patterns in the data.

 Other examples of nonparametric approaches to machine learning inclu
neighbors, splines, basis expansion methods, kernel smoothing, generali
models, neural nets, bagging, boosting, random forests, and support vecto
Again, more details about some of these methods are given later in this ch
description of each approach is given in the appendix.

58 CHAPTER 3 Modeling and prediction

vised. Super-
for a set of
entified tar-

se problems
e customer

f the target.
d most ML
 majority of

on’t have an
ere’s no tar-

he data and
ixture mod-

l number of
s: principal

rning.

arly, k-means
d approach

Gender = M

Died
207/40

Died

Lived
36/117

Classification tree: Small amount of data

Gender = M

Age ≥ 6.5

SibSp ≥ 2.5 Lived
9/161

Pclass ≥ 2.5

Lived
48/69

Fare ≥ 23.35

Classification tree: Large amount of data

functional
pture more-
of training
3.1.4 Supervised versus unsupervised learning

Machine-learning problems fall into two camps: supervised and unsuper
vised problems are ones in which you have access to the target variable
training data, and unsupervised problems are ones in which there’s no id
get variable.

 All the examples so far in this book fall in the supervised camp. The
each contain a target of interest (Did the Titanic passenger survive? Did th
churn? What’s the MPG?) and a set of training data with known values o
Indeed, most problems in machine learning are supervised in nature, an
techniques are designed to solve supervised problems. We spend the vast
this book describing how to solve supervised problems.

 In unsupervised learning, you have access to only input features, and d
associated target variable. So what kinds of analyses can you perform if th
get available? The unsupervised learning approach has two main classes:

■ Clustering—Use the input features to discover natural groupings in t
to divide the data into those groups. Methods: k-means, Gaussian m
els, and hierarchical clustering.

■ Dimensionality reduction—Transform the input features into a smal
coordinates that capture most of the variability of the data. Method
component analysis (PCA), multidimensional scaling, manifold lea

Both clustering and dimensionality reduction have wide popularity (particul
and PCA), yet are often abused and used inappropriately when a supervise
is warranted.

460/93

Died
8/1

Lived
0/15

Died
24/3

Figure 3.2 A decision tree is an example of a nonparametric ML algorithm, because its
form isn’t fixed. The tree model can grow in complexity with larger amounts of data to ca
complicated patterns. In each terminal node of the tree, the ratio represents the number
instances in that node that died versus lived.

59Classification: predicting into buckets

 But unsupervised problems do play a significant role in machine learning, often
in support of supervised problems, either to help compile training data for learning
or to derive new input features on which to learn. You’ll return to the topic of unsu-
pervised learning in chapter 8.

 Now, let’s transition to the more practical aspects of ML modeling. Next we
describe the steps needed to start building models on your own data and the practical
considerations of choosing which algorithm to use. We break up the rest of the chap-
ter into two sections corresponding to the two most common problems in machine
learning: classification and regression. We begin with the topic of classification.

into buckets
Spam detec-
 recognizers
 you’ll learn
 the process

gers dataset
 shows a sub-

ion process.
re divided by
 and B. This
ication with

Embarked

S

C

S

S

S

Q

3.2 Classification: predicting into buckets
In machine learning, classification describes the prediction of new data
(classes) by using a classifier built by the machine-learning algorithm.
tors put email into Spam and No Spam buckets, and handwritten digit
put images into buckets from 0 through 9, for example. In this section,
how to build classifiers based on the data at hand. Figure 3.3 illustrates
of classification.

Let’s again use an example. In chapter 2, you looked at the Titanic Passen
for predicting survival of passengers onboard the ill-fated ship. Figure 3.4
set of this data.

Data Classifier

A B

Figure 3.3 A classificat
Rectangles and circles a
a classifier into classes A
is a case of binary classif
only two classes.

Passengerld

1

2

3

4

5

6

Survived

0

1

1

1

0

0

Pclass

3

1

3

1

3

3

Gender

Male

Female

Female

Female

Male

Male

Age

22

38

26

35

35

SibSp

1

1

0

1

0

0

Parch

0

0

0

0

0

0

Ticket

A/5 21171

PC 17599

STON/02. 3101282

113803

373450

330877

Fare

7.25

71.2833

7.925

53.1

8.05

8.4583

Cabin

C85

C123

Figure 3.4 A subset of the Titanic Passengers dataset

60 CHAPTER 3 Modeling and prediction

As we’ve previously discussed, typically the best way to start an ML project is to get a
feel for the data by visualizing it. For example, it’s considered common knowledge
that more women than men survived the Titanic, and you can see that this is the case
from the mosaic plot in figure 3.5 (if you’ve forgotten about mosaic plots, look back at
section 2.3.1).

 for the per-
tant to real-
ily show the
ures. Maybe
 better than
arning algo-
ns can’t dis-

lassification
d the differ-

Female Standardized residuals:

>4

More
nts than
pected

Gender
Male

Mosaic plot for Titanic data: Gender vs. survival

rvived
By using the visualization techniques in section 2.3, you can get a feeling
formance of each feature in the Titanic Passengers dataset. But it’s impor
ize that just because a single feature looks good or bad, it doesn’t necessar
performance of the feature in combination with one or more other feat
the age together with the sex and social status divides the passengers much
any single feature. In fact, this is one of the main reasons to use machine-le
rithms in the first place: to find signals in many dimensions that huma
cover easily.

 The following subsections introduce the methodology for building c
models and making predictions. You’ll look at a few specific algorithms an
ence between linear and nonlinear algorithms.

Fewer
counts than

expected

<–4 –4:–2 –2:0 0:2 2:4

No difference
from statistical
independence

cou
ex

24% female 76% male

26% of
females

died

74% of
females
survived

N
o

Y
es

S
ur

vi
ve

d?

Figure 3.5 Mosaic plot showing overwhelming support for the idea that more women than men su
the disaster.

61Classification: predicting into buckets

3.2.1 Building a classifier and making predictions

The first order of business is to choose the classification algorithm to use for building
the classifier. Many algorithms are available, and each has pros and cons for different
data and deployment requirements. The appendix provides a table of algorithms and
a comparison of their properties. You’ll use this table throughout the book for select-
ing algorithms to try for different problems. In this section, the choice of algorithm
isn’t essential; in the next chapter, you’ll learn how to properly measure the perfor-
mance of the algorithm and choose the best for the job.

 The next step is to ready the data for modeling. After exploring some of the fea-
 categorical
eprocessing
pendix lists

ication algo-
wing:

his situation,
ake the fea-

ful impact of
ot.

 the logistic
ython pack-
isting.

ssion expands

Embarked = S

1

0

1

1

1

rical
t (see the
 which is
tures in the dataset, you may want to preprocess the data to deal with
features, missing values, and so on (as discussed in chapter 2). The pr
requirements are also dependent on the specific algorithm, and the ap
these requirements for each algorithm.

 For the Titanic survival model, you’ll start by choosing a simple classif
rithm: logistic regression.1 For logistic regression, you need to do the follo

1 Impute missing values.
2 Expand categorical features.
3 From chapter 2, you know that the Fare feature is heavily skewed. In t

it’s advantageous (for some ML models) to transform the variable to m
ture distribution more symmetric and to reduce the potentially harm
outliers. Here, you’ll choose to transform Fare by taking the square ro

The final dataset that you’ll use for modeling is shown in figure 3.6.

You can now go ahead and build the model by running the data through
regression algorithm. This algorithm is implemented in the scikit-learn P
age, and the model-building and prediction code look like the following l

1 The regression in logistic regression doesn’t mean it’s a regression algorithm. Logistic regre
linear regression with a logistic function to make it suitable for classification.

Pclass

3

Age

1

3

1

3

22

38

26

35

35

SibSp

1

1

0

1

0

Parch

0

0

0

0

0

sqrt_Fare

2.692582

8.442944

2.815138

7.286975

2.837252

Gender =
female

0

1

1

1

0

Gender =
male

1

0

0

0

1

Embarked = C

0

1

0

0

0

Embarked = Q

0

0

0

0

0

Figure 3.6 The first five rows of the Titanic Passengers dataset after processing catego
features and missing values, and transforming the Fare variable by taking the square roo
prepare_data function in the source code repository). All features are now numerical,
the preferred format for most ML algorithms.

62 CHAPTER 3 Modeling and prediction

from sklearn.linear_model import LogisticRegression as Model

def train(features, target):
 model = Model()
 model.fit(features, target)
 return model

def predict(model, new_features):
 preds = model.predict(new_features)
 return preds

 passengers
n figure 3.6,
esses as the
nger is pre-

iven two of
ving passen-
he Age and

Listing 3.1 Building a logistic regression classifier with scikit-learn

Imports
the logistic
regression
algorithm

Fits the logistic regression
algorithm using features
and target data

Makes predictions on a
new set of features
using the model

model
algorithm

R
predi

(0

fier
ts: Survived

on
ary

fier
ts: Died

 passengers
the
 overlap the
m on the full
.

Assume Titanic data is loaded into titanic_feats,
titanic_target and titanic_test
model = train(titanic_feats, titanic_target)
predictions = predict(model, titanic_test)

After building the model, you predict the survival of previously unseen
based on their features. The model expects features in the format given i
so any new passengers will have to be run through exactly the same proc
training data. The output of the predict function will be 1 if the passe
dicted to survive, and 0 otherwise.

 It’s useful to visualize the classifier by plotting the decision boundary. G
the features in the dataset, you can plot the boundary that separates survi
gers from the dead, according to the model. Figure 3.7 shows this for t
square-root Fare features.

Returns the
built by the

eturns
ctions
 or 1)

0

20

sqrt
(fare)

10 20 30 40 50 60 70

15

5

10

0

AgeSurvived (actual)
Died (actual)

Classi
predic

Decisi
bound

Classi
predic

Figure 3.7 The decision boundary for the Age and sqrt(Fare) features. The diamonds show
who survived, whereas circles denote passengers who died. The light background denotes
combinations of Age and Fare that are predicted to yield survival. Notice that a few instances
boundary. The classifier isn’t perfect, but you’re looking in only two dimensions. The algorith
dataset finds this decision boundary in 10 dimensions, but that becomes harder to visualize

63Classification: predicting into buckets

Algorithm highlight: logistic regression
In these “Algorithm highlight” boxes, you’ll take a closer look at the basic ideas
behind the algorithms used throughout the book. This allows curious readers to try
to code up, with some extra research, basic working versions of the algorithms. Even
though we focus mostly on the use of existing packages in this book, understanding
the basics of a particular algorithm can sometimes be important to fully realize the
predictive potential.

The first algorithm you’ll look at is the logistic regression algorithm, arguably the sim-
plest ML algorithm for classification tasks. It’s helpful to think about the problem as

 shows an
d. To build
the target
These two

ence plac-

ssion, you

wer.
edure that
t is a pop-

to two fea-
ge you to
nguage of
ve left out
.

plex algo-
tasets.
e classes

often need
tion 3.2.2

rld, check
having only two features and a dataset divided into two classes. Figure 3.7
example, with the features Age and sqrt(Fare); the target is Survived or Die
the classifier, you want to find the line that best splits the data into
classes. A line in two dimensions can be described by two parameters.
numbers are the parameters of the model that you need to determine.

The algorithm then consists of the following steps:

1 You can start the search by picking the parameter values at random, h
ing a random line in the two-dimensional figure.

2 Measure how well this line separates the two classes. In logistic regre
use the statistical deviance for the goodness-of-fit measurement.

3 Guess new values of the parameters and measure the separation po
4 Repeat until there are no better guesses. This is an optimization proc

can be done with a range of optimization algorithms. Gradient descen
ular choice for a simple optimization algorithm.

This approach can be extended to more dimensions, so you’re not limited
tures in this model. If you’re interested in the details, we strongly encoura
research further and try to implement this algorithm in your programming la
choice. Then look at an implementation in a widely used ML package. We’
plenty of details, but the preceding steps remain the basis of the algorithm

Some properties of logistic regression include the following:

■ The algorithm is relatively simple to understand, compared to more-com
rithms. It’s also computationally simple, making it scalable to large da

■ The performance will degrade if the decision boundary that separates th
needs to be highly nonlinear. See section 3.2.2.

■ Logistic regression algorithms can sometimes overfit the data, and you
to use a technique called regularization that limits this danger. See sec
for an example of overfitting.

Further reading
If you want to learn more about logistic regression and its use in the real wo
out Applied Logistic Regression by David Hosmer et al. (Wiley, 2013).

64 CHAPTER 3 Modeling and prediction

3.2.2 Classifying complex, nonlinear data

Looking at figure 3.7, you can understand why logistic regression is a linear algorithm:
the decision boundary is a straight line. Of course, your data might not be well sepa-
rated by a straight line, so for such datasets you should use a nonlinear algorithm. But
nonlinear algorithms are typically more demanding computationally and don’t scale
well to large datasets. You’ll look further at the scalability of various types of algo-
rithms in chapter 8.

 Looking again at the appendix, you can pick a nonlinear algorithm for modeling
the Titanic Passengers dataset. A popular method for nonlinear problems is a support

e linear by
ethod. You

nd the deci-

inear one in
 in machine
lmost at the
ons on new
he model to
vector machine with a nonlinear kernel. Support vector machines ar
nature, but by using a kernel, this model becomes a powerful nonlinear m
can change a single line of code in listing 3.1 to use this new algorithm, a
sion boundary is plotted in figure 3.8:

from sklearn.svm import SVC as Model

You can see that the decision boundary in figure 3.8 is different from the l
figure 3.7. What you see here is a good example of an important concept
learning: overfitting. The algorithm is capable of fitting well to the data, a
single-record level, and you risk losing the ability to make good predicti
data that wasn’t included in the training set; the more complex you allow t
become, the higher the risk of overfitting.

0

20

sqrt
(fare)

10 20 30 40 50 60 70

15

5

10

0

Age

Survived (actual)
Died (actual)

Figure 3.8 Nonlinear decision boundary of the Titanic survival support vector
machine classifier with a nonlinear kernel. The light background denotes the
combinations of Age and Fare that are predicted to yield survival.

65Classification: predicting into buckets

Usually, you can avoid overfitting a nonlinear model by using model parameters built
into the algorithm. By tweaking the parameters of the model, keeping the data
unchanged, you can obtain a better decision boundary. Note that you’re currently
using intuition to determine when something is overfitting; in chapter 4, you’ll learn
how to use data and statistics to quantify this intuition. For now, you’ll use our (the
authors’) experience and tweak a certain parameter called gamma. You don’t need to
know what gamma is at this point, only that it helps control the risk of overfitting. In
chapter 5, you’ll see how to optimize the model parameters without only guessing at
better values. Setting gamma = 0.1 in the SVM classifier, you obtain the much improved

linear and
erties that

previously,
sses opti-
rgest mar-
at there’s
ones that
eparation
decision boundary shown in figure 3.9.

Algorithm highlight: support vector machines
The support vector machine (SVM) algorithm is a popular choice for both
nonlinear problems. It has some interesting theoretical and practical prop
make it useful in many scenarios.

The main idea behind the algorithm is, as with logistic regression discussed
to find the line (or equivalent in higher dimensions) that separates the cla
mally. Instead of measuring the distance to all points, SVMs try to find the la
gin between only the points on either side of the decision line. The idea is th
no reason to worry about points that are well within the boundary, only
are close. In the following image, you can see that lines H1 and H2 are bad s

0

20

sqrt
(fare)

10 20 30 40 50 60 70

15

5

10

0

Age

Survived (actual)
Died (actual)

Figure 3.9 Decision boundary of nonlinear RBF-kernel SVM with gamma = 0.1

66 CHAPTER 3 Modeling and prediction

some cases,
ss classifica-
-school mail
ere to send

 dataset, the

(continued)

boundaries, because the distance to the closest point on both sides of the line isn’t
the largest it can be. H3 is the optimal line.

undary is
 this sec-
el trick. A
ata lives.
aking the

, covering
n to their
s, we rec-

diction by

er, 2007).

X2
H1 H2 H3

 often
und by
3.2.3 Classifying with multiple classes

Up to this point, you’ve looked at classification into only two classes. In
you’ll have more than two classes. A good real-world example of multicla
tion is the handwritten digit recognition problem. Whenever you send old
to your family, a robot reads the handwritten ZIP code and determines wh
the letter, and good digit recognition is essential in this process. A public

Although this algorithm is also linear in the sense that the separation bo
linear, SVMs are capable of fitting to nonlinear data, as you saw earlier in
tion. SVMs use a clever technique in order to fit to nonlinear data: the kern
kernel is a mathematical construct that can “warp” the space where the d
The algorithm can then find a linear boundary in this warped space, m
boundary nonlinear in the original space.

Further reading
Hundreds of books have been written about machine-learning algorithms
everything from their theoretical foundation and efficient implementatio
practical use. If you’re looking for a more rigorous treatment of these topic
ommend two classic texts on ML algorithms:

■ The Elements of Statistical Learning: Data Mining, Inference, and Pre
Trevor Hastie et al. (Springer, 2009).

■ Pattern Recognition and Machine Learning by Christopher Bishop (Spring

X1

An SVM decision boundary (H3) is
superior to decision boundaries fo
other ML algorithms.

67Classification: predicting into buckets

MNIST database,2 is available for research into these types of problems. This dataset
consists of 60,000 images of handwritten digits. Figure 3.10 shows a few of the hand-
written digit images.

84 features,
this is also a
is a complex
ature.
e appendix.
 problems is
lgorithm for
1 to use the
ction proba-

e four digits
 3.11.
ere’s only a

ot surprising
probabilities
certain. This
 the robot is
 old human

ist/.
The images are 28 × 28 pixels each, but we convert each image into 282 = 7
one feature for each pixel. In addition to being a multiclass problem,
high-dimensional problem. The pattern that the algorithm needs to find
combination of many of these features, and the problem is nonlinear in n

 To build the classifier, you first choose the algorithm to use from th
The first nonlinear algorithm on the list that natively supports multiclass
the k-nearest neighbors classifier, which is another simple but powerful a
nonlinear ML modeling. You need to change only one line in listing 3.
new algorithm, but you’ll also include a function for getting the full predi
bilities instead of just the final prediction:

from sklearn.neighbors import KNeighborsClassifier as Model

def predict_probabilities(model, new_features):
 preds = model.predict_proba(new_features)
 return preds

Building the k-nearest neighbors classifier and making predictions on th
shown in figure 3.10, you obtain the table of probabilities shown in figure

 You can see that the predictions for digits 1 and 3 are spot on, and th
small (10%) uncertainty for digit 4. Looking at the second digit (3), it’s n
that this is hard to classify perfectly. This is the main reason to get the full
in the first place: to be able to take action on things that aren’t perfectly
is easy to understand in the case of a post office robot routing letters; if
sufficiently uncertain about some digits, maybe we should have a good
look at it before we send it out wrong.

2 You can find the MNIST Database of Handwritten Digits at http://yann.lecun.com/exdb/mn

Figure 3.10 Four randomly chosen handwritten digits from the
MNIST database

68 CHAPTER 3 Modeling and prediction

. Sometimes
cting dollar

thod. It’s
lly slower.

 with sim-
numbers,
ula:

nd assign
 as you’re
d pick the
id ties).

s for fast
he work is

 can also

n as well.
verage or
er details

Digit 1

0

Digit 2

Digit 3

Digit 4

0

0

0

0

Actual value

7

3

9

5

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2 3

0.0

0.7

0.0

0.0

4 5

0.0

0.2

0.0

0.9

6 7

1

0

0

0

8

0

0

0

0

9

0.0

0.1

1.0

0.1

Predicted digit

Digit 2 has a probability
of 0.2 of being 5.

lied to the
3.3 Regression: predicting numerical values
Not every machine-learning problem is about putting records into classes
the target variable takes on numerical values—for example, when predi

Algorithm highlight: k-nearest neighbors
The k-nearest neighbors algorithm is a simple yet powerful nonlinear ML me
often used when model training should be quick, but predictions are typica
You’ll soon see why this is the case.

The basic idea is that you can classify a new data record by comparing it
ilar records from the training set. If a dataset record consists of a set of
ni, you can find the distance between records via the usual distance form

.

When making predictions on new records, you find the closest known record a
that class to the new record. This would be a 1-nearest neighbor classifier,
using only the closest neighbor. Usually you’d use 3, 5, or 9 neighbors an
class that’s most common among neighbors (you use odd numbers to avo

The training phase is relatively quick, because you index the known record
distance calculations to new data. The prediction phase is where most of t
done, finding the closest neighbors from the entire dataset.

The previous simple example uses the usual Euclidean distance metric. You
use more-advanced distance metrics, depending on the dataset at hand.

K-nearest neighbors is useful not only for classification, but for regressio
Instead of taking the most common class of neighbors, you take the a
median values of the target values of the neighbors. Section 3.3 furth
regression.

Figure 3.11 Table of predicted probabilities from a k-nearest neighbors classifier, as app
MNIST dataset

d n1
2 n2

2 ... nn
2+ +=

69Regression: predicting numerical values

values in a financial model. We call the act of predicting numerical values regression,
and the model itself a regressor. Figure 3.12 illustrates the concept of regression.

troduced in
er gallon of

ation of ori-

ing, the car

on model to
successfully
deling non-

to a suitable
lgorithm. As
data prepro-
issing values
ssing values,

Data Regressor

Figure 3.12 In this regression
predicting
ecord.

igin
As an example of a regression analysis, you’ll use the Auto MPG dataset in
chapter 2. The goal is to build a model that can predict the average miles p
a car, given various properties of the car such as horsepower, weight, loc
gin, and model year. Figure 3.13 shows a small subset of this data.

In chapter 2, you discovered useful relationships between the MPG rat
weight, and the model year. These relationships are shown in figure 3.14.

 In the next section, you’ll look at how to build a basic linear regressi
predict the miles per gallon values of this dataset of vehicles. After
building a basic model, you’ll look at more-advanced algorithms for mo
linear data.

3.3.1 Building a regressor and making predictions

Again, you’ll start by choosing an algorithm to use and getting the data in
format. Arguably, the linear regression algorithm is the simplest regression a
the name indicates, this is a linear algorithm, and the appendix shows the
cessing needed in order to use this algorithm. You need to (1) impute m
and (2) expand categorical features. Our Auto MPG dataset has no mi

0.5 1.0 1.5 2.0
process, the regressor is
the numerical value of a r

0

MPG Cylinders Displacement

1

2

3

4

18

15

18

16

8

8

8

8

307

350

318

304

17 8 302

Horsepower

130

165

150

150

140

Weight

3504

3693

3436

3433

3449

Acceleration

12.0

11.5

11.0

12.0

10.5

Model/year

70

70

70

70

70

Or

1

1

1

1

1

Figure 3.13 Small subset of the Auto MPG data

70 CHAPTER 3 Modeling and prediction

 column (as
 figure 3.15.
se the code

wever, you’ll
e model. In
’ll use some

40

Miles per
gallon

30

��

��

��

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

� �

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� �

�

�

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

� �

�

�

��

�

�

�

�

80 82

40

Miles per
gallon

30

Scatterplots for MPG data

dicting

igin
 2

Origin
= 3

0

0

0

0

0

but there’s one categorical column: Origin. After expanding the Origin
described in section 2.2.1 in chapter 2), you obtain the data format shown in

 You can now use the algorithm to build the model. Again, you can u
structure defined in listing 3.1 and change this line:

from sklearn.linear_model import LinearRegression as Model

With the model in hand, you can make predictions. In this example, ho
split the dataset into a training set and a testing set before building th
chapter 4, you’ll learn much more about how to evaluate models, but you

1500 2500 3500 4500

20

10

�

�

�

�

�

�

�� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

�

� ���

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

� ��

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�� �

�

�

�
�

�

� �

�

�

�

�

�
�

�

�

�

�

��

� �

���

�

�
�

�
�

�

�

�
�

�
� �

�

�

�
�

�
� �

�
�

�

�

�
�

�

�

�

��

�
�

�

�
�

�

�

�
��

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

70 74 787672

20

10

Vehicle weight Model year

Figure 3.14 Using scatter plots, you can see that Vehicle Weight and Model Year are useful for pre
MPG. See chapter 2 for more details.

387

MPG Cylinders Displacement

388

389

390

391

27

44

32

28

4

4

4

4

140

97

135

120

31 4 119

Horsepower

86

52

84

79

82

Weight

2790

2130

2295

2625

2720

Acceleration

15.6

24.6

11.6

18.6

19.4

Model/year

82

82

82

82

82

Origin
= 1

1

0

1

1

1

Or
=

0

1

0

0

0

Figure 3.15 The Auto MPG data after expanding the categorical Origin column

71Regression: predicting numerical values

simple techniques in this section. By training a model on only some of the data while
holding out a testing set, you can subsequently make predictions on the testing set and
see how close your predictions come to the actual values. If you were training on all the
data and making predictions on some of that training data, you’d be cheating, as
the model is more likely to make good predictions if it’s seen the data while training.

 Figure 3.16 shows the results of making predictions on a held-out testing set, and
how they compare to the known values. In this example, you train the model on 80%
of the data and use the remaining 20% for testing.

good friend,
t values and
r in a scatter
s follow the
. This figure

G predictions
actual values
A useful way to compare more than a few rows of predictions is to use our
the scatter plot, once again. For regression problems, both the actual targe
the predicted values are numeric. Plotting the predictions against each othe
plot, introduced in chapter 2, you can visualize how well the prediction
actual values. This is shown for the held-out Auto MPG test set in figure 3.17

Origin = 2

1

0

0

0

0

Origin = 3

0

0

0

0

0

Origin = 1

0

1

1

1

1

MPG

26.0

23.8

13.0

17.0

16.9

Predicted MPG

27.172795

24.985776

13.601050

15.181120

16.809079
Figure 3.16 Comparing MP
on a held-out testing set to

10

35

Predicted
MPG

15 20 25 30 35 40 45 50

40

30

10

15

25

20

5

MPG

Figure 3.17 A scatter plot of the actual versus predicted values on the held-out
test set. The diagonal line shows the perfect regressor. The closer all of the
predictions are to this line, the better the model.

72 CHAPTER 3 Modeling and prediction

shows great prediction performance, as the predictions all fall close to the optimal diag-
onal line. By looking at this figure, you can get a sense of how your ML model might per-
form on new data. In this case, a few of the predictions for higher MPG values seem to
be underestimated, and this may be useful information for you. For example, if you want
to get better at estimating high MPG values, you might need to find more examples of
high MPG vehicles, or you might need to obtain higher-quality data in this regime.

Algorithm highlight: linear regression
Like logistic regression for classification, linear regression is arguably the simplest

strengths

the y-axis,
se points.
the points

ions, and
th. These
scribe the

80 82

e is the
iation from
and most widely used algorithm for building regression models. The main
are linear scalability and a high level of interpretability.

This algorithm plots the dataset records as points, with the target variable on
and fits a straight line (or plane, in the case of two or more features) to the
The following figure illustrates the process of optimizing the distance from
to the straight line of the model.

A straight line can be described by two parameters for lines in two dimens
so on. You know this from the a and b in y = a × x + b from the basic ma
parameters are fitted to the data, and when optimized, they completely de
model and can be used to make predictions on new data.

1500

40

Miles per
gallon

2500 3500 4500

30

20

10

70 74 787672

40

Miles per
gallon

30

20

10

Vehicle weight Model year

Scatterplots for MPG data

Line with smallest
distance to all points.

Demonstration of how linear regression determines the best-fit line. Here, the dark lin
optimal linear regression fitted line on this dataset, yielding a smaller mean-squared dev
the data to any other possible line (such as the dashed line shown).

73Regression: predicting numerical values

3.3.2 Performing regression on complex, nonlinear data

In some datasets, the relationship between features can’t be fitted by a linear model,
and algorithms such as linear regression may not be appropriate if accurate predic-
tions are required. Other properties, such as scalability, may make lower accuracy a
necessary trade-off. Also, there’s no guarantee that a nonlinear algorithm will be more
accurate, as you risk overfitting to the data. As an example of a nonlinear regression
model, we introduce the random forest algorithm. Random forest is a popular method
for highly nonlinear problems for which accuracy is important. As evident in the
appendix, it’s also easy to use, as it requires minimal preprocessing of data. In fig-

e Auto MPG
ures 3.18 and 3.19, you can see the results of making predictions on th
test set via the random forest model.

Origin = 2

1

0

0

0

0

Origin = 3

0

0

0

0

0

Origin = 1

0

1

1

1

1

MPG

26.0

23.8

13.0

17.0

16.9

Predicted MPG

27.1684

23.4603

13.6590

16.8940

15.5060

Figure 3.18 Table of actual versus predicted MPG values
for the nonlinear random forest regression model

10

35

Predicted
MPG

15 20 25 30 35 40 45 50

40

30

10

15

25

20

5

MPG

Figure 3.19 Comparison of MPG data versus predicted values for the nonlinear
random forest regression model

74 CHAPTER 3 Modeling and prediction

This model isn’t much different from the linear algorithm, at least visually. It’s not
clear which of the algorithms performs the best in terms of accuracy. In the next chap-
ter, you’ll learn how to quantify the performance (often called the accuracy score of the
model) so you can make meaningful measurements of how good the prediction accu-
racy is.

st the main

e input fea-

ose target is
 in the data.

Algorithm highlight: random forest
For the last algorithm highlight of this chapter, we introduce the random forest (RF)

rld classi-

to make a
 can help
n others.
e answer

er is more
ng on this
t this tree

ining set,
, and then
 and say,
work less

impact on
on as the
om forest
 this risk.
ication, or
 can also
.

 immunity
islabeled
3.4 Summary
In this chapter, we introduced machine-learning modeling. Here we li
takeaways from the chapter:

■ The purpose of modeling is to describe the relationship between th
tures and the target variable.

■ You can use models either to generate predictions for new data (wh
unknown) or to infer the true associations (or lack thereof) present

algorithm. This highly accurate nonlinear algorithm is widely used in real-wo
fication and regression problems.

The basis of the RF algorithm is the decision tree. Imagine that you need
decision about something, such as what to work on next. Some variables
you decide the best course of action, and some variables weigh higher tha
In this case, you might ask first, “How much money will this make me?” If th
is less than $10, you can choose to not go ahead with the task. If the answ
than $10, you might ask the next question in the decision tree, “Will worki
make me happy?” and answer with a yes/no. You can continue to build ou
until you’ve reached a conclusion and chosen a task to work on.

The decision tree algorithm lets the computer figure out, based on the tra
which variables are the most important, and put them in the top of the tree
gradually use less-important variables. This allows it to combine variables
“If the amount is greater than $10 and makes me happy, and amount of
than 1 hour, then yes.”

A problem with decision trees is that the top levels of the tree have a huge
the answer, and if the new data doesn’t follow exactly the same distributi
training set, the ability to generalize might suffer. This is where the rand
method comes in. By building a collection of decision trees, you mitigate
When making the answer, you pick the majority vote in the case of classif
take the mean in case of regression. Because you use votes or means, you
give back full probabilities in a natural way that not many algorithms share

Random forests are also known for other kinds of advantages, such as their
to unimportant features, noisy datasets in terms of missing values, and m
records.

75Terms from this chapter

■ There are hundreds of methods for ML modeling. Some are parametric, mean-
ing that the form of the mathematical function relating the features to the target
is fixed in advance. Parametric models tend to be more highly interpretable yet
less accurate than nonparametric approaches, which are more flexible and can
adapt to the true complexity of the relationship between the features and the tar-
get. Because of their high levels of predictive accuracy and their flexibility, non-
parametric approaches are favored by most practitioners of machine learning.

■ Machine-learning methods are further broken into supervised and unsuper-
vised methods. Supervised methods require a training set with a known target,

 this book is

sification, in
s numerical.
d regression

r algorithms
s nonlinear
g nonlinear

d), you pre-
les of linear

 models.

ing predictions.

 Nonparamet-

ping between
ed to find pat-

rs.

datasets to a
mensions.
and unsupervised methods don’t require a target variable. Most of
dedicated to supervised learning.

■ The two most common problems in supervised learning are clas
which the target is categorical, and regression, in which the target i
In this chapter, you learned how to build both classification an
models and how to employ them to make predictions on new data.

■ You also dove more deeply into the problem of classification. Linea
can define linear decision boundaries between classes, wherea
methods are required if the data can’t be separated linearly. Usin
models usually has a higher computational cost.

■ In contrast to classification (in which a categorical target is predicte
dict a numerical target variable in regression models. You saw examp
and nonlinear methods and how to visualize the predictions of these

3.5 Terms from this chapter

Word Definition

model The base product from using an ML algorithm on training data.

prediction Predictions are performed by pulling new data through the model.

inference The act of gaining insight into the data by building the model and not mak

(non)parametric Parametric models make assumptions about the structure of the data.
ric models don’t.

(un)supervised Supervised models, such as classification and regression, find the map
the input features and the target variable. Unsupervised models are us
terns in the data without a specified target variable.

clustering A form of unsupervised learning that puts data into self-defined cluste

dimensionality
reduction

Another form of unsupervised learning that can map high-dimensional
lower-dimensional representation, usually for plotting in two or three di

classification A supervised learning method that predicts data into buckets.

regression The supervised method that predicts numerical target values.

76 CHAPTER 3 Modeling and prediction

In the next chapter, you’ll look at creating and testing models, the exciting part of
machine learning. You’ll see whether your choice of algorithms and features is going
to work to solve the problem at hand. You’ll also see how to rigorously validate a
model to see how good its predictions are likely to be on new data. And you’ll learn
about validation methods, metrics, and some useful visualizations for assessing your
models’ performance.

Model evaluation and
optimization
This chapter covers
■ Using cross-validation for properly evaluating

the predictive performance of models
■ Overfitting and how to avoid it
■ Standard evaluation metrics and visualizations
 accuracy of
how well it’s
erformance
oduction to
e isn’t good

y to improve
mple model
f improving
77

After you fit a machine-learning model, the next step is to assess the
that model. Before you can put a model to use, you need to know
expected to predict on new data. If you determine that the predictive p
is quite good, you can be comfortable in deploying that model in pr
analyze new data. Likewise, if you assess that the predictive performanc
enough for the task at hand, you can revisit your data and model to tr
and optimize its accuracy. (The last section of this chapter introduces si
optimization. Chapters 5, 7, and 9 cover more-sophisticated methods o
the predictive accuracy of ML models.)

for binary and multiclass classification
■ Standard evaluation metrics and visualizations

for regression models
■ Optimizing your model by selecting the optimal

parameters

78 CHAPTER 4 Model evaluation and optimization

 Properly assessing the predictive performance of an ML model is a nontrivial task.
We begin this chapter by introducing statistically rigorous techniques to evaluate the
predictive performance of ML models, demonstrating both pictorially and with pseudo-
code how to perform correct validation of a model.

 From there, we dive into assessment of ML classification models, focusing on the
typical evaluation metrics and graphical tools used by machine-learning practitioners.
Then we introduce analogous evaluation tools for regression models. Finally, we
describe a simple way to optimize the predictive performance of a model through
parameter tuning.

-how to eval-
 and to opti-
l evaluation
uilt is good

n. You want
a (for which
, which has
y, when you
s generated

o determine
rought with
d ML users.

timization
 By the end of the chapter, you’ll be equipped with the means and know
uate the predictive accuracy of the ML models that you built in chapter 3
mize those models for predictive accuracy (see figure 4.1). This mode
provides the information you need to determine whether the model you b
enough for your use case or requires further optimization.

4.1 Model generalization: assessing predictive accuracy
for new data
The primary goal of supervised machine learning is accurate predictio
your ML model to be as accurate as possible when predicting on new dat
the target variable is unknown). Said differently, you want your model
been built from training data, to generalize well to new data. That wa
deploy the model in production, you can be assured that the prediction
are of high quality.

 Therefore, when you evaluate the performance of a model, you want t
how well that model will perform on new data. This seemingly simple task is w
complications and pitfalls that can befuddle even the most experience

Answers

Prediction

Modeling

Model building

Model optimizationModel evaluation

New data

Historical data

Figure 4.1 Evaluation and op
in the ML workflow

79Model generalization: assessing predictive accuracy for new data

This section describes the difficulties that arise when evaluating ML models and pro-
poses a simple workflow to overcome those menacing issues and achieve unbiased esti-
mates of model performance.

4.1.1 The problem: overfitting and model optimism

To describe the challenges associated with estimating the predictive accuracy of a
model, it’s easiest to start with an example.

 Imagine that you want to predict the production of bushels of corn per acre on a
farm as a function of the proportion of that farm’s planting area that was treated with

problem. As
 of the farm
hat the data

deling tech-
roportion of
thing. Kernel
ue of the tar-
raining data
gle parame-

al averaging.

al: increasing,
linear trend

e: random
uations

nal and noise.
a new pesticide. You have training data for 100 farms for this regression
you plot the target (bushels of corn per acre) versus the feature (percent
treated), it’s clear that an increasing, nonlinear relationship exists, and t
also has random fluctuations (see figure 4.2).

Now, suppose you want to use a simple nonparametric ML regression mo
nique to build a predictive model for corn production as a function of p
land treated. One of the simplest ML regression models is kernel smoo
smoothing operates by taking local averages: for each new data point, the val
get variable is modeled as the average of the target variable for only the t
whose feature value is close to the feature value of the new data point. A sin
ter, called the bandwidth parameter, controls the size of the window for the loc

Sign
non

Nois
fluct

0.0

155

B
us

he
ls

 o
f c

or
n

pr
od

uc
ed

 p
er

 a
cr

e

0.2 0.4 0.6 0.8 1.0

152

153

154

150

151

149

Proportion of farmland treated

Figure 4.2 The training data for the corn production regression problem contains a clear sig

80 CHAPTER 4 Model evaluation and optimization

 Figure 4.3 demonstrates what happens for various values of the kernel-smoothing
bandwidth parameters. For large values of the bandwidth, almost all of the training
data is averaged together to predict the target, at each value of the input parameter.
This causes the model to be flat and to underfit the obvious trend in the training data.
Likewise, for small values of the bandwidth, only one or two training instances are
used to determine the model output at each feature value. Therefore, the model
effectively traces every bump and wiggle in the data. This susceptibility to model the
intrinsic noise in the data instead of the true signal is called overfitting. Where you
want to be is somewhere in the Goldilocks zone: not too underfit and not too overfit.

 model will
 first step in
your predic-
 error (MSE),
get variable
ther evalua-

error (mea-
th parame-

 model, the
the training
he training
Using these
because the

erfit

0.6 0.8 1.0
armland treated

 small values
es of the
e tuning
Now, let’s get back to the problem at hand: determining how well your ML
generalize to predict the corn output from data on different farms. The
this process is to select an evaluation metric that captures the quality of
tions. For regression, the standard metric for evaluation is mean squared
which is the average squared difference between the true value of the tar
and the model-predicted value (later in this chapter, you’ll learn about o
tion metrics for regression and classification).

 This is where things get tricky. Evaluated on the training set, the
sured by MSE) of our model predictions gets ever smaller as the bandwid
ter decreases. This is expected: the more flexibility that you allow the
better it’ll do at tracing the patterns (both the signal and the noise) in
data. But the models with smallest bandwidth are severely overfit to t
data because they trace every random fluctuation in the training set.
models to predict on new data will result in poor predictive accuracy,

Overfit Just right Und

0.0

155

B
us

he
ls

 o
f c

or
n

pr
od

uc
ed

 p
er

 a
cr

e

0.2 0.4 0.6 0.8 1.0

152

153

154

150

151

149

Proportion of farmland treated
0.0

155
B

us
he

ls
 o

f c
or

n
pr

od
uc

ed
 p

er
 a

cr
e

0.2 0.4 0.6 0.8 1.0

152

153

154

150

151

149

Proportion of farmland treated
0.0

155

B
us

he
ls

 o
f c

or
n

pr
od

uc
ed

 p
er

 a
cr

e

0.2 0.4

152

153

154

150

151

149

Proportion of f

Increasing bandwidth parameter

Figure 4.3 Three fits of a kernel-smoothing regression model to the corn production training set. For
of the bandwidth parameter, the model is overfit, resulting in an overly bumpy model. For large valu
bandwidth parameter, the model is underfit, resulting in a model that’s too flat. A good choice of th
parameter results in a fit that looks just right.

81Model generalization: assessing predictive accuracy for new data

new data will have its own unique random noise signatures that are different from
those in the training set.

 Thus, a divergence occurs between the training set error and the generalization
error of an ML model. This divergence is exemplified on the corn production data in
figure 4.4. For small values of the bandwidth parameter, the MSE evaluated on the
training set is extremely small, whereas the MSE evaluated on new data (in this case,
10,000 new instances) is much larger. Simply put, the performance of the predictions
of a model evaluated on the training set isn’t indicative of the performance of that
model on new data. Therefore, it’s dangerous to evaluate the performance of a model

g data
ly opti-
mately
w data.

llest training
 the training

ata

0.30

a
on the same data that was used to train the model.

CAUTION ABOUT DOUBLE-DIPPING THE TRAINING DATA Using the trainin
for both model fitting and evaluation purposes can lead you to be over
mistic about the performance of the model. This can cause you to ulti
choose a suboptimal model that performs poorly when predicting on ne

As you see in the corn production data, choosing the model with the sma
set MSE causes the selection of the model with the smallest bandwidth. On

Best model on training data:
MSE on training data = 0.08
MSE on new data = 0.50

Best model on new data:
MSE on training data = 0.27
MSE on new data = 0.22

0.00

0.5

Mean
squared error

Error on
new data

Error on
training d

0.05 0.10 0.15 0.20 0.25

0.3

0.4

0.1

0.2

0.0

Smoothing bandwidth

Figure 4.4 Comparison of the training set error to the error on new data for the corn
production regression problem. The training set error is an overly optimistic measure of
the performance of the model for new data, particularly for small values of the bandwidth
parameter. Using the training set error as a surrogate for the prediction error on new dat
will get you into a lot of trouble.

82 CHAPTER 4 Model evaluation and optimization

set, this model yields an MSE of 0.08. But when applied to new data, the same model
yields an MSE of 0.50, which is much worse than the optimal model (bandwidth = 0.12
and MSE = 0.27).

 You need an evaluation metric that better approximates the performance of the
model on new data. This way, you can be confident about the accuracy of your model
when deployed to make predictions on new data. This is the topic of the next subsection.

4.1.2 The solution: cross-validation

We’ve diagnosed the challenge in model evaluation: the training set error isn’t indica-
of what your
ology called
g set to eval-

out method

 model pro-
this is to use
t the model,

ubset of the
lly leave out
rithmic flow

eatures
tive of the model error when applied to new data. To get a good estimate
error rate will be for new data, you must use a more sophisticated method
cross-validation (often abbreviated CV) that rigorously employs the trainin
uate what the accuracy will be on new data.

 The two most commonly used methods for cross-validation are the hold
and k-fold cross-validation.

THE HOLDOUT METHOD

Using the same training data to both fit and evaluate the accuracy of a
duces accuracy metrics that are overly optimistic. The easiest way around
separate training and testing subsets. You use only the training subset to fi
and only the testing subset to evaluate the accuracy of the model.

 This approach is referred to as the holdout method, because a random s
training data is held out from the training process. Practitioners typica
20–40% of the data as the testing subset. Figure 4.5 depicts the basic algo
of the holdout method, and listing 4.1 provides the Python pseudocode.

assume that we begin with two inputs:
features – a matrix of input features
target – an array of target variables corresponding to those f
features = rand(100,5)
target = rand(100) > 0.5

N = features.shape[0] # The total number of instances
N_train = floor(0.7 * N) # The total number of training instances

idx = random.permutation(N)

idx_train = idx[:N_train]
idx_test = idx[N_train:]

features_train = features[idx_train,:]
target_train = target[idx_train]
features_test = features[idx_test,:]
target_test = target[idx_test]

Listing 4.1 Cross-validation with the holdout method

Randomizes index

Splits index

Breaks your data
into training and
testing subsets

83Model generalization: assessing predictive accuracy for new data

Build, predict, evaluate (to be filled out)
model = train(features_train, target_train)
preds_test = predict(model, features_test)
accuracy = evaluate_acc(preds_test, target_test)

ach value of
0 split) and
 4.6 demon-
MSE of the

the new-data
ng set error

ompared to

g splits and
 assigned to

1. Randomly split training
instances into training
and testing subsets

2. Train an ML
model on the
Now, let’s apply the holdout method to the corn production data. For e
the bandwidth parameter, you apply the holdout method (using a 70/3
compute the MSE on the predictions for the held-out 30% of data. Figure
strates how the holdout method estimates of the MSE stack up to the
model when applied to new data. Two main things stand out:

■ The error estimates computed by the holdout method are close to
error of the model. They’re certainly much closer than the traini
estimates (figure 4.4), particularly for small-bandwidth values.

■ The holdout error estimates are noisy. They bounce around wildly c
the smooth curve that represents the error on new data.

You could beat down the noise by doing repeated random training-testin
averaging the result. But over multiple iterations, each data point will be
the testing set a different number of times, which could bias the result.

 A better approach is to do k-fold cross-validation.

training subset

Features

3. Make predictions
on testing subset

4. Comparing testing
predictions to testing target
to assess accuracy

Training

Model

Testing
predictions

Ignore target
when predictingTesting

Target

Figure 4.5 Flowchart of the holdout method of cross-validation.

84 CHAPTER 4 Model evaluation and optimization

is k-fold cross-
uarantining
ifference is

, called folds
 all the data

tions for the

 aggregated
trates k-fold

a. For each
 k = 10 and
ates how the
hen applied

0.5

Mean
squared error

0.3

0.4

0.2

Error on
new data

Holdout error
on estimate
K-FOLD CROSS-VALIDATION

A better but more computationally intensive approach to cross-validation
validation. Like the holdout method, k-fold cross-validation relies on q
subsets of the training data during the learning process. The primary d
that k-fold CV begins by randomly splitting the data into k disjoint subsets
(typical choices for k are 5, 10, or 20). For each fold, a model is trained on
except the data from that fold and is subsequently used to generate predic
data from that fold.

 After all k-folds are cycled through, the predictions for each fold are
and compared to the true target variable to assess accuracy. Figure 4.7 illus
cross-validation, and listing 4.2 provides the pseudocode.

 Finally, let’s apply k-fold cross-validation to the corn production dat
value of the bandwidth parameter, you apply k-fold cross-validation with
compute the cross-validated MSE on the predictions. Figure 4.8 demonstr
k-fold cross-validation MSE estimates stack up to the MSE of the model w

0.00 0.05 0.10 0.15 0.20 0.300.25

0.1

0.0

Smoothing bandwidth

Best holdout model:
Holdout MSE = 0.14
MSE on new data = 0.27

Best model on new data:
Holdout MSE = 0.30
MSE on new data = 0.27

Figure 4.6 Comparison of the holdout error MSE to the MSE on new data,
using the corn production dataset. The holdout error is an unbiased estimate of
the error of each model on new data. But it’s a noisy estimator that fluctuates
wildly between 0.14 and 0.40 for bandwidths in the neighborhood of the
optimal model (bandwidth = 0.12).

85Model generalization: assessing predictive accuracy for new data

1. Randomly split training
instances into k equal-

 sized subsets
2. Train an ML

model on the
training subset

3. Make predictions

Training:
all folds
except i

For i in 1:k

Model

Fold 1

…

…

Ignore target

Fold 2

Fold i

sing the corn
on new data,
t model.
on fold i subset

4. Store fold i predictions in
the CV predictions array

5. Compare CV predictions to
target to assess accuracy

Fold i
predictions

CV predictions

when predicting
Fold k Fold i

Features
Target

Figure 4.7 Flowchart of k-fold cross-validation

0.00

0.5

Mean
squared error

0.05 0.10 0.15 0.20 0.300.25

0.3

0.4

0.1

0.2

0.0

Smoothing bandwidth

Best model on new data:
K-fold CV MSE = 0.27
MSE on new data = 0.27

Error on
new data

K-fold CV
error estimate

Figure 4.8 Comparison of the k-fold cross-validation error MSE to the MSE on new data, u
production dataset. The k-fold CV error is a good estimate for how the model will perform
allowing you to use it confidently to forecast the error of the model and to select the bes

86 CHAPTER 4 Model evaluation and optimization

to new data. Clearly, the k-fold cross-validation error estimate is close to the error of
the model on future data.

N = features.shape[0]
K = 10 # number of folds

preds_kfold = np.empty(N)
folds = np.random.randint(0, K, size=N)

for idx in np.arange(K):

els will pre-
ables you to

tch out for a

d methods)
the popula-
w data, that
ss-validation
e data. Solu-
dressed and

last month’s
ur data, you
r be used to
ldout set or

sting set.
e better the
n. Solution:
 and predict
a instances).

k at how to

Listing 4.2 Cross-validation with k-fold cross-validation

Loops over
the folds

 features_train = features[folds != idx,:]
 target_train = target[folds != idx]
 features_test = features[folds == idx,:]

 # Build and predict for CV fold (to be filled out)
 # model = train(features_train, target_train)
 # preds_kfold[folds == idx] = predict(model, features_test)

accuracy = evaluate_acc(preds_kfold, target)

4.1.3 Some things to look out for when using cross-validation

Cross-validation gives you a way to estimate how accurately your ML mod
dict when deployed in the wild. This is extremely powerful, because it en
select the best model for your task.

 But when you apply cross-validation to real-world data, you need to wa
few things:

■ Cross-validation methods (including both the holdout and k-fol
assume that the training data forms a representative sample from
tion of interest. If you plan to deploy the model to predict on ne
data should be well represented by the training data. If not, the cro
error estimates may be overly optimistic for the error rates on futur
tion: Ensure that any potential biases in the training data are ad
minimized.

■ Some datasets use features that are temporal—for instance, using
revenue to forecast this month’s revenue. If this is the case with yo
must ensure that features that are available in the future can neve
predict the past. Solution: You can structure your cross-validation ho
k-folds so that all the training set data is collected previous to the te

■ The larger the number of folds used in k-fold cross-validation, th
error estimates will be, but the longer your program will take to ru
Use at least 10 folds (or more) when you can. For models that train
quickly, you can use leave-one-out cross-validation (k = number of dat

Next, you’ll build off of these cross-validation tools and take a deeper loo
perform rigorous model evaluation for classification models.

Breaks your data
into training and
testing subsets

87Evaluation of classification models

4.2 Evaluation of classification models
We begin our discussion of evaluating classification models by presenting problems
with only two classes, also known as binary classification. Chapter 3 introduced binary
classification in machine learning as a powerful method for predicting a positive/neg-
ative outcome based on many factors or variables. A good example of binary classifica-
tion is the detection of diseases or survival predictions.

 Imagine that you want to predict whether a Titanic passenger would survive, based
on personal, social, and economic factors. You’d gather everything you know about
the passengers and train a classifier that could relate all this information to their sur-

 rows of the

m. Because
e algorithm
s, you might
r you’ll view
 variables to
rder to opti-

ll divide the
ss-validation.
sting set. It’s
mum model
y on unseen
ta, by defini-
g algorithm.

NaN

NaN

NaN

Cabin

C85

C123

Embarked

S

C

S

S

S

ther a
vival probability. You first saw this example in chapter 2, but the first five
Titanic Passengers dataset is shown again in figure 4.9.

To build your classifier, you feed this dataset into a classification algorith
the dataset consists of different types of data, you have to make sure th
knows how to deal with these types. As discussed in the previous chapter
need to process the data prior to training the model, but for this chapte
the classifier as a black box that has learned the mapping from the input
the target variable. The goal of this section is to evaluate the model in o
mize the prediction accuracy and compare with other models.

 With the data ready, you move to the next task: cross-validation. You’
full dataset into training and testing sets and use the holdout method of cro
The model will be built on a training set and evaluated on a held-out te
important to reiterate that your goal isn’t necessarily to obtain the maxi
accuracy on the training data, but to obtain the highest predictive accurac
data. In the model-building phase, you’re not yet in possession of this da
tion, so you pretend that some of the training data is hidden for the learnin

Passengerld

1

2

3

4

5

0

1

2

3

4

Survived

0

1

1

1

0

Pclass

3

1

3

1

3

Name

Braund, Mr. Owen Harris

Cumings, Mrs. John Bradley
(Florence Briggs Th…

Helkkinen, Miss Laina

Futrelle, Mrs. Jacques Heath
(Lily May Peel)

Allen, Mr. William Henry

Gender

Male

Female

Female

Female

Male

Age

22

38

26

35

35

SibSp

1

1

0

1

0

Parch

0

0

0

0

0

Ticket

A/5 21171

PC 17599

STON/02.
3101282

113803

373450

Fare

7.25

71.2833

7.925

53.1

8.05

Target column

Figure 4.9 The first five rows of the Titanic Passengers dataset. The target column indicates whe
passenger survived the sinking of the ship or died.

88 CHAPTER 4 Model evaluation and optimization

dictions on
st of predic-
 to step 3 of
val values to

alculate the
d, you’d say
r 75%. Fig-

ophisticated

Passengerld

1

2

3

4

5

0

1

2

3

4

Survived

0

1

1

1

0

Pclass

3

1

3

1

3

Name

Braund, Mr. Owen Harris

Cumings, Mrs. John Bradley
(Florence Briggs Th…

Helkkinen, Miss Laina

Futrelle, Mrs. Jacques Heath
(Lily May Peel)

Bannister, Mr. Victor Brian

Gender

Male

Female

Female

Female

Male

Age

22

38

26

35

31

SibSp

1

1

0

1

0

Parch

0

0

0

0

0

Ticket

A/5 21171

PC 17599

STON/02.
3101282

113803

362400

Fare

7.25 NaN

NaN

C20

71.2833

7.925

53.1

8.63

Cabin

C85

C123

Embarked

S

C

S

S

C

65 1 1 Allen, Mr. William Henry Male 35 0 0 373450 NaN8.05 S

76 0 3 Mcneeley, Mr. Mike Paul Male 43 1 0 281654 C659.25 C

87 1 1 Boden, Mrs Elaina Rose Female 55 1 0 985111 NaN10.56 S

t

171

599

/02.
82

3

0

Fare

7.25 NaN

NaN

C20

71.2833

7.925

53.1

8.63

Cabin

C85

C123

Embarked

S

C

S

S

C

Full dataset

Training set: used only
for building the model

el.
Figure 4.10 illustrates the dataset-splitting step in this particular example.
 With the training set ready, you can build the classifier and make pre

the testing set. Following the holdout method of figure 4.5, you obtain a li
tion values: 0 (died) or 1 (survived) for all rows in the test set. You then go
the evaluation workflow and compare these predictions to the actual survi
obtain a performance metric that you can optimize.

 The simplest performance measure of a classification model is to c
fraction of correct answers; if three out of four rows were correctly predicte
the accuracy of the model on this particular validation set is 3/4 = 0.75, o
ure 4.11 illustrates this result. The following sections introduce more-s
ways of performing this comparison.

Passengerld

1

2

3

4

5

0

1

2

3

4

Survived

0

1

1

1

0

Pclass

3

1

3

1

3

Name

Braund, Mr. Owen Harris

Cumings, Mrs. John Bradley
(Florence Briggs Th…

Helkkinen, Miss Laina

Futrelle, Mrs. Jacques Heath
(Lily May Peel)

Bannister, Mr. Victor Brian

Gender

Male

Female

Female

Female

Male

Age

22

38

26

35

31

SibSp

1

1

0

1

0

Parch

0

0

0

0

0

Ticke

A/5 21

PC 17

STON
31012

11380

36240

65 1 1 Allen, Mr. William Henry Male 35 0 0 373450 NaN8.05 S

76 0 3 Mcneeley, Mr. Mike Paul Male 43 1 0 281654 C659.25 C

87 1 1 Boden, Mrs Elaina Rose Female 55 1 0 985111 NaN10.56 S

Testing set: used only
for evaluating model

Figure 4.10 Splitting the full dataset into training and testing sets allows you to evaluate the mod

1
0
1
0

Predictions

1
0
1
1

Test set labels

Three out of four predictions
are correct. The accuracy of
the model on this test set
is 3/4 = 0.75, or 75%.

Figure 4.11 Comparing the testing set predictions with the actual
values gives you the accuracy of the model.

89Evaluation of classification models

4.2.1 Class-wise accuracy and the confusion matrix

The predictions provide more information than simply being correct or not. For
example, you can analyze the accuracy per class (how many were predicted to survive
but actually died or survived). For binary classification, you can be wrong in two ways:
predicting 0 when the correct value is 1, or predicting 1 when the correct value is 0. In
the same way, you can be correct in two ways. Figure 4.12 illustrates.

ing accuracy
seful to dis-

shown in fig-

between the
atrix in fig-

ROCs) that
ms can be a
eople about

1 2 of 3 are correctly classified as 1.

Predictions

1

Test set labels
In many classification problems, it’s useful to go beyond the simple count
and look at this class-wise accuracy, or class confusion. It turns out to be u
play these four numbers in a two-by-two diagram called a confusion matrix,
ure 4.13.

Each element in the matrix shows the class-wise accuracy or confusion
positive and the negative class. Figure 4.14 relates the specific confusion m
ure 4.13 to the general concept of receiver operating characteristics (
you’ll employ widely throughout the rest of this book. Although these ter
bit confusing at first, they’ll become important when talking to other p
the performance of your model.

0
1
0

0
1
1

1 of 1 are correctly classified as 0.
1 of 3 are falsely classified as 0.
0 of 1 are falsely classified as 1.

Figure 4.12 Counting the class-wise accuracy and error rate gives you more
information on the model accuracy.

2/3

0

1/3

1

2 of 3 are correctly classified as 1.
1 of 1 are correctly classified as 0.
1 of 3 are falsely classified as 0.
0 of 1 are falsely classified as 1.

Figure 4.13 Organizing the class-wise accuracy into a
confusion matrix

90 CHAPTER 4 Model evaluation and optimization

ted class; in
ictions usu-
ut not only

le, what was
bility of sur-
nfidence of
 to evaluate

 or class prob-
 0 to 1 for

edictions by
 which you

say that the
e any other

2/3

0

1/3

1
1

0

1 0

True-positive rate
(a.k.a. sensitivity)

False-negative rate
(a.k.a. miss rate)

True-negative rate

Predicted class

Tr
ue

 c
la

ss

fusion matrix
ier tested on
OC metrics
ure are
ained in the
4.2.2 Accuracy trade-offs and ROC curves

So far you’ve looked only at predictions for which the output is the predic
our Titanic example, 1 for survival and 0 otherwise. Machine-learning pred
ally hold a degree of uncertainty, and many classification algorithms outp
the zero-one predictions, but the full prediction probabilities. For examp
simply predicted as survived in our Titanic model may have had a proba
vival of 0.8, 0.99, or 0.5. It’s clear that there’s a big difference in the co
these answers, and in this section you’ll take advantage of this information
your models in more detail.

 The output of a probabilistic classifier is what we call the probability vectors
abilities. For every row in the test set, you get a real-valued number from
every class in the classifier (summing to 1). Until now, you’ve made pr
considering probabilities above 0.5 to determine the class predictions, from
calculated all the performance metrics from the previous section. We
threshold that determines the class is 0.5. It’s clear that you could choos
threshold and would get different values for all of your metrics.

True/False positive/negative rate

False-positive rate
(a.k.a. fall-out)

Whether prediction is
correct or incorrect

Out of the total
number of positive
or negative records

Whether we are predicting
the positive or negative class

(a.k.a. specificity)

Figure 4.14 The con
for your binary classif
only four rows. The R
pointed out in the fig
chopped up and expl
bottom box.

91Evaluation of classification models

 a threshold
an compare
s at this par-
, you define

lds, making
sifier perfor-
process, the

Threshold: “survived”
probabilities > 0.7

15

16

17

18

19

Survived

Output from classifier:
class probabilities

0.092

0.904

0.646

0.740

0.460

Died

0.908

0.096

0.354

0.260

0.540

308

215

217

54

169

Survived

Sorted
probabilities

0.705

0.703

0.700

0.698

0.698

Died

0.295

0.297

0.300

0.302

0.302

Figure 4.15 A subset of probabilistic predictions from the Titanic test set. After sorting the full
e this
w the

on matrix at
 thresholds

s at
-axis and
Figure 4.15 shows the process of sorting the probability vectors and setting
of 0.7. All rows above the line are now predicted to survive, and you c
these to the actual labels to get the confusion matrix and the ROC metric
ticular threshold. If you follow this process for all thresholds from 0 to 1
the ROC curve, shown in figure 4.16.

 From figure 4.16, you can read out the confusion matrix at all thresho
the ROC curve a powerful visualization tool when you’re evaluating clas
mance. Given the true and predicted labels from any cross-validation
ROC curve is calculated as shown in listing 4.3.

table by decreasing survival probability, you can set a threshold and consider all rows abov
threshold as survived. Note that the indices are maintained so you know which original ro
instance refers to.

0.0

1.0

True-positive
rate

0.2 0.4 0.6 0.8 1.0

0.6

0.8

0.2

0.4

0.0

False-positive rate

Confusi
various0.69

0.10

0.31

0.7

0.90

0.80

0.21

0.20

0.79

0.89

0.33

0.11

0.67

0.5
0.25

Figure 4.16 The ROC curve defined by calculating the confusion matrix and ROC metric
100 threshold points from 0 to 1. By convention, you plot the false-positive rate on the x
the true-positive rate on the y-axis.

92 CHAPTER 4 Model evaluation and optimization

import numpy as np

def roc_curve(true_labels, predicted_probs, n_points=100, pos_class=1):

 thr = np.linspace(0,1,n_points)
 tpr = np.zeros(n_points)
 fpr = np.zeros(n_points)

creases, the
ine learning
correctly for
hoice of the

 evaluate. If
lassify a few

 healthy. So
 and hence
 of the ROC

se between
ped in the
would you

l fraudulent

vides a view
ave no false
 top-left cor-
tion metric:
e classifica-

 comparing
 in order to

Listing 4.3 The ROC curve

Returns the false-positive and true-
positive rates at n_points thresholds

for the given true and predicted labels

Allocates the threshold
and ROC lists

d,
e of
itives
 pos = true_labels == pos_class
 neg = np.logical_not(pos)
 n_pos = np.count_nonzero(pos)
 n_neg = np.count_nonzero(neg)

 for i,t in enumerate(thr):
 tpr[i] = np.count_nonzero(np.logical_and(

predicted_probs >= t, pos)) / n_pos
 fpr[i] = np.count_nonzero(np.logical_and(

predicted_probs >= t, neg)) / n_neg
 return fpr, tpr, thr

If you follow the ROC curve, you see that when the false-positive rate in
true-positive rate decreases. This trade-off is the “no free lunch” of mach
because you’re able to sacrifice the fraction of instances that you classify
more certainty that you’re correct, and vice versa, depending on your c
probability threshold parameter.

 In real-world scenarios, this trade-off can be extremely important to
you’re classifying whether a patient has cancer or not, it’s much better to c
extra healthy patients as sick, and avoid classifying any sick patients as
you’d select the threshold that would minimize the false-negative rate,
maximize the true-positive rate and place you as far as possible in the top
plot while sacrificing the false-positive rate.

 Another good example is spam filters, where you’ll need to choo
unwanted emails being shown in your inbox or wanted emails being dum
spam folder. Or credit-card companies detecting fraudulent activities—
rather call your customers often with false alarms or risk missing potentia
transactions?

 In addition to the trade-off information, the ROC curve itself also pro
of the overall performance of the classifier. A perfect classifier would h
positives and no missed detections, so the curve would be pushed to the
ner, as illustrated in figure 4.17. This leads us naturally to another evalua
the area under the ROC curve (AUC). The larger this area, the better th
tion performance. The AUC is a widely used choice for evaluating and
models, although in most cases it’s important to inspect the full ROC curve

Precalculates values for
the positive and negative
cases, used in the loop

For each threshol
calculates the rat
true and false pos

93Evaluation of classification models

 AUC evalu-
ook.

, but luckily
n multiclass
nd physical
g algorithm

r letter. That
t such auto-

s.

1.0

True-positive
rate

0.6

0.8

0.4

Worse model

Better model

eturns the area
nder the ROC curve,
iven the true labels
nd the corresponding
bels predicted by a

lassification model
understand the performance trade-offs. You’ll use the ROC curve and the
ation metric to validate classification models throughout the rest of this b

from numpy import trapz

def auc(true_labels, predicted_labels, pos_class=1):
 fpr, tpr, thr = roc_curve(true_labels, predicted_labels,

pos_class=pos_class)
 area = -trapz(tpr, x=fpr)
 return area

4.2.3 Multiclass classification

So far you’ve looked only at binary, or two-class, classification problems
you can use many of the same tools for multiclass classifiers. A well-know
classification problem is that of handwritten digit recognition. We all se
mail from time to time, and there’s a good chance that a machine-learnin
has been used in the process of determining the endpoint address of you
sounds like a huge challenge if your handwriting is anything like ours, bu
mated systems have nevertheless been in use by postal services for decade

Listing 4.4 The area under the ROC curve

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

False-positive rate

Area under the curve (AUC)

Figure 4.17 The ROC curve illustrates the overall model performance. You
can quantify this by defining the AUC metric: the area under the ROC curve.

R
u
g
a
la
cThe false-positive

and true-positive
rate of the ROC
curve from listing 4.3

Area integral is calculated
using the trapezoidal

method available in numpy

94 CHAPTER 4 Model evaluation and optimization

 Because of the early success of machine learning on handwritten digit recogni-
tion, this example has been used throughout the ML literature as a benchmark of
multiclass classification performance. The idea is to scan the handwritten digits and
divide them into images with one letter in each. You then use image-processing algo-
rithms or build a multiclass classifier on the raw grayscale pixels that can predict the
digit. Figure 4.18 shows a few examples of the handwritten digit dataset known as
MNIST.

 a classifier
eld-out test-
 binary clas-
ment in the
ST classifier,
diagonal, as
You use the random forest algorithm (introduced in chapter 3) to build
from the training set, and you generate the confusion matrix from the h
ing set. Remember that you’ve worked with the confusion matrix for only
sification. Luckily, you can easily define it for multiple classes, as every ele
matrix is the class on the row versus the class on the column. For the MNI
you can see in figure 4.19 that most of the power is located on the matrix

Figure 4.18 Handwritten digits in the MNIST dataset. The
entire dataset consists of 80,000 such digits, each in a
28 x 28–pixel image. Without any image processing, each
row of our dataset then consists of a known label (0 to 9)
and 784 features (one for each of the 28 x 28 pixels).

Actual digit

Predicted digit

8

6

4

2

0

20 4 6 8 24

0

3

6

9

12

15

18

21

Figure 4.19 The confusion matrix for the 10-class MNIST handwritten
digit classification problem

95Evaluation of classification models

it should be, because it shows the number of instances that are correctly classified for
each digit. The largest nondiagonal items show where the classifier is most confused.
Inspecting the figure, you can see that the greatest confusion occurs between digits 4
and 9, 3 and 5, and 7 and 9, which makes sense, given what you know about the shape
of the digits.

 The reason for displaying the class-wise accuracy in the form of a matrix is to take
advantage of our excellent visual abilities to process more information. In figure 4.19,
you can clearly see how applying contrast to the confusion matrix can help take advan-
tage of this ability.

 ROC curve
e you divide
trics such as
 curve axis.

one-versus-all
, and every-
he 10 ROC

 figure 4.20.
e confusion
m the most

0.040

C 0.996
C 0.998
C 0.993
C 0.988
C 0.995
C 0.989
C 0.998
C 0.995
C 0.992
C 0.989

ne-versus-
 so good,

s in the
hows a
 So how do you generate the ROC curve for multiclass classifiers? The
is in principle applicable to only binary classification problems, becaus
the predictions into positive and negative classes in order to get ROC me
the true-positive rate and false-positive rate commonly used on the ROC
To simulate binary classification in a multiclass problem, you use the
trick. For each class, you denote the particular class as the positive class
thing else as the negative class, and you draw the ROC curve as usual. T
curves from running this process on the MNIST classifier are shown in
The most accurately classified digits are 0 and 1, consistent with th
matrix in figure 4.19. The confusion matrix, however, is generated fro

0.000

1.00

True-positive
rate

0.005 0.010 0.015 0.0250.020 0.0350.030

Digit 0, AU
Digit 1, AU
Digit 2, AU
Digit 3, AU
Digit 4, AU
Digit 5, AU
Digit 6, AU
Digit 7, AU
Digit 8, AU
Digit 9, AU

0.96

0.94

0.92

0.90

0.88

0.86

0.98

0.0

False-positive rate

Figure 4.20 The ROC curves for each class of the MNIST 10-class classifier using the o
all method for simulating a binary classification problem. Note that because the classifier is
we’ve zoomed closely into the top corner of the ROC curve in order to see any difference
model performance between the classes. The AUC is calculated for each class and also s
well-performing model overall.

96 CHAPTER 4 Model evaluation and optimization

probable class predictions, whereas the ROC curve shows the performance of the
class at all probability thresholds.

 Keep in mind, however, that the multiclass ROC curves don’t show the entire con-
fusion matrix on the curve. In principle, there’s a full 10 x 10 confusion matrix at
every point on the ROC curve, but we can’t visualize this in a sufficiently simple way.
In the multiclass case, it’s therefore important to look at both the confusion matrix
and the ROC curve.

4.3 Evaluation of regression models
, regression is

n integer or
nce metrics

the working
You run this
 more infor-
discussed in
erformance.

f this chap-
d regression
troduced in
f the regres-
edicted ver-

gin
You’ve already looked at regression models in previous chapters. Generally
the term you use for models that predict a numeric outcome, such as a
floating-point value. For regression, you use a different set of performa
that we introduce in this section.

 You’ll use the Auto MPG dataset, first introduced in chapter 2, as
example in this section. Figure 4.21 shows a small subset of this dataset.
dataset through all the necessary data transformations (see section 2.2 for
mation about data transformations) and choose an appropriate model as
chapters 2 and 3. In this case, you’re interested in measuring the model p

Using the basic model-evaluation workflow introduced at the beginning o
ter, you use the data and your choice of algorithm to build a cross-validate
model. Potential model performance metrics used in this process are in
the following sections, but figure 4.22 shows the most basic visualization o
sion performance on which those metrics are based: the scatter plot of pr
sus actual values.

Target variable

0

MPG Cylinders Displacement

1

2

3

4

18

15

18

16

8

8

8

8

307

350

318

304

17 8 302

Horsepower

130

165

150

150

140

Weight

3504

3693

3436

3433

3449

Acceleration

12.0

11.5

11.0

12.0

10.5

Model/year

70

70

70

70

70

Ori

1

1

1

1

1

Figure 4.21 A subset of the Auto MPG dataset

97Evaluation of regression models

 a correct pre-
ut it can be
re of what it
urements to
ror. This sec-
ce: the root-
.
el is the root-
h of the pre-
s immune to
l values. Fig-

ulation, the

35

Predicted
MPG

40

30

25

20
4.3.1 Using simple regression performance metrics

In contrast to classification models, regression carries no simple notion of
diction. A numeric prediction is in general unlikely to be exactly right, b
close to or far from the correct value. This is also a consequence of the natu
means to be a correct value, because we usually consider numerical meas
be drawn from a distribution with a degree of uncertainty known as the er
tion introduces two simple metrics to measure the regression performan
mean-square error (the square root of the MSE) and the R-squared value

 The simplest form of performance measurement of a regression mod
mean-square error, or RMSE. This estimator looks at the difference from eac
dicted values to the known values, and calculates the mean in a way that’
the fact that predicted values can be both higher and lower than the actua
ure 4.23 illustrates RMSE calculation.

 To encourage a better understanding of the details in the RMSE calc
following listing shows a code snippet.

def rmse(true_values, predicted_values):
 n = len(true_values)
 residuals = 0
 for i in range(n):
 residuals += (true_values[i] – predicted_values[i])**2.
 return np.sqrt(residuals/n)

Listing 4.5 The root-mean-square error

10 15 20 25 30 35 40 45 50

10

15

5

MPG

Figure 4.22 Scatter plot of the predicted MPG versus actual values from the
testing set. The diagonal line shows the optimal model.

98 CHAPTER 4 Model evaluation and optimization

 themselves,
 the scale of
redicted or
r. Although

n be a chal-
ther models

, or R2, met-
 can predict
shows more

35

Predicted
MPG

40

30

25

20

Find the distance
to the optimal
model for every
point in the
predicted vs. true
scatter plot

te the root
mean of the
d distances

1
n [yi – f (xi)]

2

 vector,
g the
The advantage of RMSE is that the result is in the same units as the values
but it’s also a disadvantage in the sense that the RMSE value depends on
the problem, and thus isn’t easily comparable across datasets. If the p
actual values are larger numbers, the RMSE will be correspondingly highe
this isn’t a problem when comparing models in the same project, it ca
lenge to understand the overall model performance and compare it to o
in general.

 To overcome this, often it’s worthwhile to also compute the R-squared
ric, whose response is relative and always in the 0–1 range. If the model
the data better, the R-squared value is closer to 1. The following listing
details of the R-squared calculation.

def r2(true_values, predicted_values):
 n = len(true_values)
 mean = np.mean(true_values)
 residuals = 0
 total = 0
 for i in range(n):
 residuals += (true_values[i] – predicted_values[i])**2.
 total += (true_values[i] – mean)**2.
 return 1.0 – residuals/total

Listing 4.6 The R-squared calculation

10 15 20 25 30 35 40 45 50

10

15

5

MPG

Calcula
of the
square

Figure 4.23 An RMSE calculation: in the equation, yi and xi are the ith target and feature
respectively, and f(x) denotes the application of the model to the feature vector, returnin
predicted target value.

99Evaluation of regression models

Whether using MSE, RMSE, or R2 as the evaluation metric, you should always keep the
following in mind:

■ Always use cross-validation to assess the model. If you don’t, the metrics will
always improve with increasing model complexity, causing overfitting.

■ Wherever possible, the evaluation metric should align with the problem at
hand. For instance, if predicting MPG from automobile features, an RMSE of
5 means that you expect the average prediction to differ from the true MPG
by 5 miles per gallon.

 have built-in
ples include
rion (BIC).
ics.

e predicted
hese residu-

presents the
 the scale of
d randomly
 35, it looks
 a slight bias
 a clear bias
In addition, regression uses lots of other evaluation metrics, many of which
penalization for overfitting (and thus don’t require cross-validation). Exam
the Akaikie information criterion (AIC) and Bayesian information crite
Most textbooks on regression analysis cover these and more advanced top

4.3.2 Examining residuals

In the previous section, you saw how the residuals, the distance between th
and actual values, were used for both of the simple metrics introduced. T
als can also be interesting to analyze visually themselves.

 Figure 4.24 shows an example residual plot for our MPG dataset. This
same information as in the scatter plot in figure 4.23, but zoomed in on
the residuals. In an ideal case, you expect the residuals to be distribute
around the 0-line. In the lower end of the figure, MPG values from 10 to
like the residuals are randomly distributed around the 0-line, maybe with
toward overestimating the values. At values 35–45, however, you can see

10

Residuals

15 20 25 30 35 40 45

12

–4

–2

0

2

4

6

8

10

MPG

Figure 4.24 The residual plot from predictions on the MPG dataset. At the
horizontal 0-line, the residual is 0.

100 CHAPTER 4 Model evaluation and optimization

toward underestimating the values, resulting in larger residual values. You can use this
information to improve the model, either by tweaking model parameters, or by pro-
cessing or amending the data. If you can acquire additional data, you could try to
obtain labels for a few more high-MPG examples. In this case, you could find a few
more high-MPG cars and add them to the dataset in order to improve the predictions
in that part of the scale.

 You’ve seen how cross-validation is used to test models and some of the perfor-
mance metrics you can use to evaluate the results. For the simplest models, this is a
matter of training, testing, and computing the appropriate performance metric(s).

e turned by
 of settings

small adjust-

rameters that
meters typi-
s and target
n the fitted

 (the band-
rent model
ameter, the
large values
nd underfit

odels with

meters that
 algorithms
e numerous
pular classi-
f increasing

ples needed
More-sophisticated algorithms have tuning parameters—knobs that can b
the user—that affect how they’re trained and applied. Each combination
yields a different mode. In the next section, you’ll see how sometimes a
ment can make a big difference in the results.

4.4 Model optimization through parameter tuning
Most machine-learning models come endowed with one or more tuning pa
control the inner workings of the learning algorithm. These tuning para
cally control the complexity of the relationship between the input feature
variable. As a result, the tuning parameters can have a strong influence o
model and its predictive accuracy on new data.

 For example, in section 4.1 you saw how a single turning parameter
width in a kernel-smoothing regression algorithm) can cause wildly diffe
fits in the corn production dataset. For small values of the bandwidth par
regression function was overly bumpy and overfit the data. Likewise, for
of the bandwidth parameter, the regression function was too smooth a
the data.

 This section introduces a rigorous methodology to optimize ML m
respect to the machine-learning algorithm tuning parameters.

4.4.1 ML algorithms and their tuning parameters

Each machine-learning algorithm contains a different set of tuning para
control how the algorithm uses training data to build a model. As the
become more sophisticated, typically the tuning parameters become mor
and esoteric. Here are the standard tuning parameters for some of the po
fication algorithms that you learned about in chapter 3, listed in order o
complexity:

■ Logistic regression—None
■ K-nearest neighbors—Number of nearest neighbors to average
■ Decision trees—Splitting criterion, max depth of tree, minimum sam

to make a split
■ Kernel SVM—Kernel type, kernel coefficient, penalty parameter

101Model optimization through parameter tuning

■ Random forest—Number of trees, number of features to split in each node, split-
ting criterion, minimum samples needed to make a split

■ Boosting—Number of trees, learning rate, max depth of tree, splitting criterion,
minimum samples needed to make a split

As an example, think back to chapter 3, where you applied a kernel SVM to the Titanic
Passengers dataset. You saw that the model fit for two choices of the kernel coefficient
parameter (called gamma) in figures 3.8 and 3.9. Note that the fits are different: setting
gamma = 0.01 produces a complex, segmented decision boundary between the two
classes, whereas setting gamma = 0.1 creates a smoother model. In this case, the fitted

g parameter
 hand. What
lem. Relying
ead to poor
al to ensure

 model is via
 algorithm,
odel evalua-

 is as follows:

ple, AUC for

 forest).
mple, num-

es to test for

each tuning
ber of trees

10), (50,15),

aining set to
ethod) and

gest value of

le combina-
, it estimates
ated predic-
ccuracy (for
model is highly sensitive to the choice of the tuning parameter gamma.
 What makes this difficult is that the appropriate choice for each tunin

for a given algorithm is entirely dependent on the problem and data at
works well for one problem isn’t necessarily appropriate for the next prob
on heuristics and rule-of-thumb default tuning parameter settings may l
predictive performance. Rigorous selection of tuning parameters is critic
that your models are as accurate as they can be with the given data.

4.4.2 Grid search

The standard way to optimize the choice of tuning parameters for an ML
a brute-force grid search. As you map out the following basic grid-search
note that this strategy ties together the material on cross-validation and m
tion from the previous sections of this chapter. The grid search algorithm

1 Choose the evaluation metric that you want to maximize (for exam
classification, R2 for regression).

2 Choose which ML algorithm you want to use (for example, random
3 Select which tuning parameters you want to optimize over (for exa

ber of trees and number of features per split) and the array of valu
each parameter.

4 Define the grid as the Cartesian product between the arrays of
parameter. For example, if the arrays are [50, 100, 1000] for num
and [10, 15] for number of features per split, then the grid is [(50,
(100,10), (100,15), (1000,10), (1000,15)].

5 For each combination of tuning parameters in the grid, use the tr
perform cross-validation (using either the hold-out or k-fold-CV m
compute the evaluation metric on the cross-validated predictions.

6 Finally, select the set of tuning parameters corresponding to the lar
the evaluation metric. This is the optimized model.

Why does this work? Grid search does an extensive search over the possib
tions of values for each of the tuning parameters. For each combination
the performance of that model on new data by comparing the cross-valid
tions to the true target variable. Then, the model with the best estimated a

102 CHAPTER 4 Model evaluation and optimization

new data) is chosen. This model has the highest likelihood of performing the best
when applied to new data.

 Let’s apply grid search to the Titanic Passengers dataset. You’ll use AUC as your
optimization metric and SVM with a radial basis function (RBF) kernel as your clas-
sification algorithm. You can, in principle, also use grid search to select the best ker-
nel. Indeed, you could use grid search to select between different algorithms!

 Next, you select which tuning parameters to optimize over. For kernel SVM with an
RBF kernel, you have two standard tuning parameters: the kernel coefficient, gamma;
and the penalty parameter, C. The following listing shows how to run a grid search

over those two parameters for this problem.

Inputs: X – features, y - target

import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.svm import SVC

grid of (gamma, C) values to try
gam_vec, cost_vec = np.meshgrid(np.linspace(0.01, 10., 11),

np.linspace(1., 10., 11))

AUC_all = []

set up cross-validation folds
N = len(y)
K = 10
folds = np.random.randint(0, K, size=N)

search over every value of the grid
for param_ind in np.arange(len(gam_vec.ravel())):

 # initialize cross-validation predictions
 y_cv_pred = np.empty(N)

 # loop through the cross-validation folds
 for ii in np.arange(K):

break your data into training and testing subsets
X_train = X.ix[folds != ii,:]
y_train = y.ix[folds != ii]
X_test = X.ix[folds == ii,:]

build a model on the training set
model = SVC(gamma=gam_vec.ravel()[param_ind],

C=cost_vec.ravel()[param_ind])
model.fit(X_train, y_train)

generate and store model predictions on the testing set
y_cv_pred[folds == ii] = model.predict(X_test)

 # evaluate the AUC of the predictions
 AUC_all.append(roc_auc_score(y, y_cv_pred))

Listing 4.7 Grid search with kernel SVM

Initializes empty array
to store AUC results

Number of cross-
validation folds

103Model optimization through parameter tuning

indmax = np.argmax(AUC_all)
print "Maximum = %.3f" % (np.max(AUC_all))
print "Tuning Parameters: (gamma = %f, C = %f)" % (gam_vec.ravel()[indmax],
cost_vec.ravel()[indmax])

You find with the Titanic dataset that the maximum cross-validated AUC is 0.670, and
it occurs at the tuning parameter vector (gamma = 0.01, C = 6). A contour plot show-
ing the AUC evaluated over the grid as in figure 4.25 can be informative. A few factors
jump out from this plot:

■ The maximum occurs at the boundary of the grid (gamma = 0.01), meaning

tions to the
 to increase

rid on a log

u can use a

um AUC is
r the tuning
meter could
that you’d want to rerun the grid search on an expanded grid.
■ A high amount of sensitivity exists in the accuracy of the predic

numerical value of the gamma parameter, meaning that you need
the granularity of sampling of that parameter.

■ The maximum value occurs near gamma = 0, so expressing the g
scale (for example, 10-4, 10-3, 10-2, 10-1) is sensible.

■ There’s not much sensitivity of the AUC as a function of C, so yo
coarse sampling of that parameter.

Rerunning the grid search on a modified grid, you find that the maxim
0.690 and it occurs at (gamma = 0.08, C = 20). The value of optimizing ove
parameters is clear: a single model with arbitrary choice of tuning para

Penalty
parameter, C

2

Kernel coefficient, gamma
2 10864

4

6

8

10

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Figure 4.25 Contour plot showing the cross-validated AUC as a function of the two
tuning parameters, gamma and C. The maximum occurs way off to the upper left,
meaning that you need to expand the search and focus on that region.

104 CHAPTER 4 Model evaluation and optimization

have attained a result as poor as AUC = 0.5 (no better than random guessing); the
grid-search optimized model boosts the accuracy up to AUC = 0.69.

 Note that grid search doesn’t absolutely ensure that you’ve chosen the best set of
tuning parameters. Because of the limitations caused by choosing a finite grid of pos-
sible values to try, the actual best value might have landed somewhere between the val-
ues of the grid. Readers who have some familiarity with optimization might be
wondering why more-sophisticated optimization routines aren’t traditionally used for
tuning-parameter selection. The short answer is that the world of derivative-free, non-
convex optimization hasn’t yet become part of the standard ML toolkit. The longer

ing to incor-

ce. Here’s a

nd use it for

testing set is
ability to be

iding more-
comes at a
 if k = num-

d determine

ut or k-fold
s available.
, depending

 is obtained.
odel perfor-

e metrics to
le counting
 ROC curve,
answer is that ML researchers on the cutting edge of the field are beginn
porate these methods into tuning-parameter optimization strategies.

4.5 Summary
In this chapter, you learned the basics of evaluating ML model performan
quick rundown of the main takeaways:

■ When you evaluate models, you can’t double-dip the training data a
evaluation as well as training.

■ Cross-validation is a more robust method of model evaluation.
■ Holdout cross-validation is the simplest form of cross-validation. A

held out for prediction, in order to better estimate the model’s cap
generalized.

■ In k-fold cross-validation, k-folds are held out one at a time, prov
confident estimates of model performance. This improvement
higher computational cost. If available, the best estimate is obtained
ber of samples, also known as leave-one-out cross-validation.

■ The basic model-evaluation workflow is as follows:

1 Acquire and preprocess the dataset for modeling (chapter 2) an
the appropriate ML method and algorithm (chapter 3).

2 Build models and make predictions by using either the holdo
cross-validation methods, depending on the computing resource

3 Evaluate the predictions with the performance metric of choice
on whether the ML method is classification or regression.

4 Tweak the data and model until the desired model performance
In chapters 5–8, you’ll see various methods for increasing the m
mance in common real-world scenarios.

■ For classification models, we introduced a few model-performanc
be used in step 3 of the workflow. These techniques include simp
accuracy, the confusion matrix, receiver-operator characteristics, the
and the area under the ROC curve.

105Terms from this chapter

■ For regression models, we introduced the root-mean-square error and R-squared
estimators. Simple visualizations, such as the prediction-versus-actual scatter plot
and the residual plot, are useful.

■ You can use a grid-search algorithm to optimize a model with respect to tuning
parameters.

4.6 Terms from this chapter

sing on their
rn advanced
 data. You’ll
e model and

Word Definition

y, for the prob-

ining/testing

out of the

 disjoint sets
ated on mod-

lues that were

egatives, or

e area under

 as the band-

uning parame-
In the next chapter, you’ll start looking at improving your models by focu
features. In addition to basic feature-engineering techniques, you’ll lea
methods for extracting information out of text, images, and time-series
also see how to select the best features to optimize the performance of th
avoid overfitting.

underfitting/overfitting Using a model that’s too simple or too complex, respectivel
lem at hand.

evaluation metric A number that characterizes the performance of the model.

mean squared error A specific evaluation metric used in regression models.

cross-validation The method of splitting the training set into two or more tra
sets in order to better assess the accuracy.

holdout method A form of cross-validation in which a single test set is held
model-fitting routine for testing purposes.

k-fold cross-validation A kind of cross-validation in which data is split into k random
(folds). The folds are held out one at a time, and cross-valid
els built on the remainder of the data.

confusion matrix A matrix showing for each class the number of predicted va
correctly classified or not.

receiver operating charac-
teristic (ROC)

A number representing true positives, false positives, true n
false negatives.

area under the ROC curve
(AUC)

An evaluation metric for classification tasks defined from th
the ROC curve of false positives versus true positives.

tuning parameter An internal parameter to a machine-learning algorithm, such
width parameter for kernel-smoothing regression.

grid search A brute-force strategy for selecting the best values for the t
ters to optimize an ML model.

Basic feature engineering
This chapter covers
■ Understanding the importance of feature

engineering for your machine-learning project
■ Using basic feature-engineering processes,

including processing dates and times and
simple texts
ize a super-
get of inter-
ut defining

re using the
106

The first four chapters have shown you how to fit, evaluate, and optim
vised machine-learning algorithm, given a set of input features and a tar
est. But where do those input features come from? How do you go abo
and calculating features? And how do practitioners know whether they’
right set of features for their problem?

■ Selecting optimal features and reducing the
statistical and computational complexity of
the model

■ Using feature engineering at model-building and
prediction time

107Motivation: why is feature engineering useful?

5.1 Motivation: why is feature engineering useful?
In this chapter, we explore how to create features from raw input data—a process
referred to as feature engineering—and walk through a few examples of simple feature-
engineering processes. This will set the groundwork for the more sophisticated
feature-engineering algorithms covered in chapter 7.

5.1.1 What is feature engineering?

Feature engineering is the practice of using mathematical transformations of raw
g are exam-

 ratio of dol-

nt
d deviation,
lth

ummarizing

 action, let’s

 a machine-
 the primary
efficiency of

nal data that
onal finance
of each cus-
will become
ture of

set, the ML
t-to-balance
as an input.
input data to create new features to be used in an ML model. The followin
ples of such transformations:

■ Dividing total dollar amount by total number of payments to get a
lars per payment

■ Counting the occurrence of a particular word across a text docume
■ Computing statistical summaries (such as mean, median, standar

and skew) of a distribution of user ping times to assess network hea
■ Joining two tables (for example, payments and support) on user ID
■ Applying sophisticated signal-processing tools to an image and s

their output (for example, histogram of gradients)

Before diving into a few examples to demonstrate feature engineering in
consider a simple question: why use feature engineering?

5.1.2 Five reasons to use feature engineering

This section describes a few ways that feature engineering provides value in
learning application. This list isn’t exhaustive, but rather introduces a few of
ways that feature engineering can boost the accuracy and computational
your ML models.

TRANSFORM ORIGINAL DATA TO RELATE TO THE TARGET

You can use feature engineering to produce transformations of your origi
are more closely related to the target variable. Take, for instance, a pers
dataset that contains the current bank account balance and credit debt
tomer. If you’re building a model to predict whether each customer
delinquent in payments three months from now, then the engineered fea

Ratio of debt-to-balance = amount of debt / amount of balance

would likely be highly predictive of the target.
 In this case, although the raw inputs are present in the original data

model will have an easier time of finding the relationship between deb
ratio and future delinquency if the engineered feature is directly used
This will result in improved accuracy of predictions.

108 CHAPTER 5 Basic feature engineering

BRING IN EXTERNAL DATA SOURCES

Feature engineering enables practitioners to bring external data sources into their
ML models. Imagine that you run an internet subscription service. The first time each
customer logs in, you want to predict the lifetime value of that customer. Among a
variety of metrics, you could capture the geographic location of each user. Although
this data could be fed in directly as a categorical feature (for example, IP address or
postal code), the model will likely have a difficult time determining the location-based
signals that matter (in this case, those might be average income of each location, or
urban versus rural).

xample, this
f each user’s
tead of rely-
 data, those

eature engi-
ess which of

ML models.
hat can be
rs. Unstruc-
ms account
enables ML
 streams.
ineering on
s of feature

 more inter-
ful for mak-

bility of the
es, it may be
ocesses that

variable.
r hardware.
sponse and
atures such

 can provide

 what sticks.
hem carries
 You can do better by bringing in third-party demographic data. For e
would allow you to compute the average income and population density o
location and to insert those factors directly into the training set. Now, ins
ing on the model to infer such subtle relationships from the raw location
predictive factors immediately become easier to deduce. Further, the f
neering of location into income and population density enables you to ass
these derivatives of location matter the most.

USE UNSTRUCTURED DATA SOURCES

Feature engineering enables you to use unstructured data sources in
Many data sources aren’t inherently structured into feature vectors t
directly inserted into the ML framework presented in the first four chapte
tured data such as text, time series, images, video, log data, and clickstrea
for the vast majority of data that’s created. Feature engineering is what
practitioners to produce ML feature vectors out of these kinds of raw data

 This chapter touches on some rather simple examples of feature eng
text data. Subsequent chapters introduce the most commonly used type
engineering for text, images, and time-series data.

CREATE FEATURES THAT ARE MORE EASILY INTERPRETED

Feature engineering empowers ML practitioners to create features that are
pretable and actionable. Often, using ML to find patterns in data can be use
ing accurate predictions, but you may face limitations in the interpreta
model and the ultimate utility of the model to drive changes. In these cas
more valuable to engineer new features that are more indicative of the pr
drive the data generation and the link between the raw data and the target

 Consider a simple example of machines that manufacture compute
You could use the raw machine data, such as measurement of signal re
other processing signals, to build ML models to predict part failure. But fe
as time since the last machine tune-up and volume of hardware produced
insight into the changeable aspects of the manufacturing process.

ENHANCE CREATIVITY BY USING LARGE SETS OF FEATURES

Feature engineering empowers you to throw in large sets of features to see
You can create as many features as you can dream up and see which of t

109Motivation: why is feature engineering useful?

predictive power when thrown in to train a model. This allows ML practitioners to
escape from a rigid mindset when creating and testing features and could result in
newly discovered trends and patterns.

 Although overfitting becomes a concern when dozens or hundreds of features are
used to train an ML model, rigorous feature-selection algorithms can be used to pare
down the set of features to something more manageable. (For example, you can auto-
matically determine that your predictions with the top 10 features are as good as or
better than your predictions with all 1,000 features.) We describe these algorithms
later this chapter, in section 5.3.

that imbues
s simple: for
y is accumu-
d enough to
he ML mod-
pertise into
pertise that

n feature “Is

re (include

the Boolean

ten (use the

eir network
f people in a

 Indeed, the
hese ad hoc
t set of engi-

reconceived
t whether a
eature in an
out that fea-
e target vari-
ck of added
5.1.3 Feature engineering and domain expertise

Another way to conceptualize feature engineering is as a mechanism
domain expertise into a machine-learning model. What we mean by this i
each problem at hand, knowledge about the data and systems under stud
lated over time. For some problems, these patterns will be straightforwar
be easily learned by an ML model. But for more-challenging problems, t
els stand to improve significantly from the codification of that domain ex
the feature set. The following are examples of statements of domain ex
could easily be coded into ML features:

■ Web conversions are always higher on Tuesday (include the Boolea
it Tuesday?”).

■ Household power consumption increases with higher temperatu
temperature as a feature).

■ Spam emails typically come from free email accounts (engineer
feature “Is from free email account?” or email domain).

■ Loan applicants with recently opened credit cards default more of
feature “Days since last credit card opened”).

■ Customers often switch their cell-phone provider after others in th
also switch providers (engineer a feature that counts the number o
subscriber’s network who recently switched).

Clearly, the list of potential domain expertise tidbits could go on and on.
standard operating procedure for many companies is to use long lists of t
rules to make decisions and predictions. These business rules are a perfec
neered features on which to start building ML models!

 Turned on its head, feature engineering can be a way to test the p
notions that are held by domain experts. If there’s any question abou
particular hypothesis holds any merit, it can be codified and used as a f
ML model. Then, the accuracy of the model can be tested with and with
ture to assess the conditional importance of the feature in predicting th
able. If the gains in accuracy are negligible, this is evidence of the la
value of that idea.

110 CHAPTER 5 Basic feature engineering

 Next, we present a few examples of simple feature engineering to show how these
processes work in practice. We describe how feature engineering fits into the overall
ML workflow and demonstrate how the predictive accuracy of ML models can be
improved by employing some relatively straightforward feature-engineering processes.

5.2 Basic feature-engineering processes
Before diving into our example, let’s revisit our basic ML workflow to show how fea-
ture engineering extends what you’ve seen so far. Figure 5.1 illustrates the workflow.

and on the
that feature
gh the same
nsures that

to the train-

n example
site Kaggle

eering fits
 extend the
re building
tions, you
 the same
ensure that
The feature-engineering extension of the workflow allows you to exp
training data to increase the accuracy of the ML algorithm. To ensure
engineering is used properly, you need to run the prediction data throu
feature-engineering pipeline that was applied to the training data. This e
predictions are generated by using exactly the same process as applied
ing data.

5.2.1 Example: event recommendation

To illustrate feature-engineering concepts, this section introduces a
from the real world: a challenge from the data science competition
(www.kaggle.com).

Modeling

Model optimization

Model building

Feature engineering

Feature engineering

Historical data

Model evaluation

New data

Answers

Prediction

Figure 5.1 How feature engin
into the basic ML workflow. You
training data with features befo
the model. When making predic
need to push new data through
feature-engineering pipeline to
the answers make sense.

111Basic feature-engineering processes

 Imagine that you’re running an event-recommendation site and want to predict
whether an event (such as a meeting, a happy hour, or a lecture) is interesting to a
particular user. You have a set of training data describing which users have shown
interest in which events in the past, and some information about the users and the
events themselves. Your goal is to build an ML model to predict whether a particular
event is interesting to a user—a binary classification model.

 The data and information about the challenge are available at www.kaggle.com/
c/event-recommendation-engine-challenge after you sign up on the Kaggle website
(if you haven’t already). The base datasets are the train.csv, events.csv, and users.csv

it the data-
tion and to

n of this ini-

to the event

es. It’s clear
hether each
’ll use a few

sing data

l

files, which can be joined together on user and event identifiers. You lim
set to the events that have an explicit interested or not-interested selec
the basic numerical and categorical features. Figure 5.2 shows a selectio
tial training dataset.

Your sample training data contains the following features:

■ invited—A Boolean indicating whether the individual was invited
■ birthyear—The year the person was born
■ gender—The gender of the person
■ timezone—The time zone of the current location of the individual
■ lat/lng—The latitude/longitude of the event

To start, you’ll build and evaluate a model based on only these six featur
that this dataset is limited in terms of the patterns that can identify w
user will be interested in the event. As you continue this section, you

Target variable Categorical variable

interested invited birthyear

1

1

1

1

0

0

0

0

1994

1976

1980

1980

1 0 1994

gender

Male

Male

Male

Male

Female

timezone

420

–240

–480

–480

420

lat

–6.357

43.655

33.888

33.846

–7.265

ing

106.362

–79.419

–118.378

–117.977

112.743

1 0 1986 Male –480 NaN NaN

1 0 1984 Male –420 33.493 –111.934

Mis

Selection data User data Event data

Figure 5.2 A sample of the datasets used for training the event-recommendations mode

112 CHAPTER 5 Basic feature engineering

straightforward feature-engineering transformations to extend the feature set and
layer on new information.

 You’ll build an initial binary classification model to predict the target variable,
interested, from the six input features. Following the ML workflow from chapters 1–4,
you do the following:

1 Perform initial data-processing exercises (convert categorical columns to numeri-
cal, impute missing values).

2 Do the model training (using the random forest algorithm).
). Figure 5.3
1.

 first model.
as an associ-
nting when
2012-10-02

_HH:MM.
3 Evaluate the model (using 10-fold cross-validation and ROC curves
shows the cross-validated ROC curve. It attains an AUC score of 0.8

5.2.2 Handling date and time features

Next, you’ll use feature engineering to try to improve the results of your
In addition to the data shown in figure 5.2, each event in the dataset h
ated start_time. This data element is an ISO-8601 UTC string represe
the event is scheduled to begin. The data field has formatting like
15:53:05.754000+00:00, representing yyyy-mm-dd hh:mm:ss.mmmmmm

0.0

1.0

Tr
ue

-p
os

iti
ve

 ra
te

0.2

0.29

0.4 0.6 0.8 1.0

0.4

0.6

0.8
0.79

0.2

0.0

False-positive rate

Area under the curve: 0.81

Threshold: 0.96

Figure 5.3 Cross-validated ROC curve and AUC metric for the simple event-
recommendation model

113Basic feature-engineering processes

 The types of ML models described in chapter 3 can support numerical or categori-
cal input features, of which a datetime string is neither. Therefore, you can’t simply
insert the column of strings directly into the model. What you can do, however, is per-
form transformations of the datetime elements into numerical features that capture
the information encoded within the datetime string. This simple yet powerful con-
cept of feature engineering can enable you to transform each datetime string into a
smattering of features, such as these:

■ Hour of the day
■ Day of the week

 your single

. Our cross-

 was hidden
odel via fea-
 events that
ore popular

_month_of_year

_week_of_year

ndation dataset
■ Month of the year
■ Minute of the hour
■ Quarter of the year

Figure 5.4 shows the first five rows of data that result from converting
start_time feature into 10 datetime features.

Next, you build a random forest model on this new, 16-feature dataset
validated ROC curve is shown in figure 5.5.

 The AUC of the model has increased from 0.81 to 0.85. Clearly, there
value in the start_time information that, when imbued into the ML m
ture engineering, helped improve the model’s accuracy. Most likely,
occur on particular days of the week and at certain times of day are m
than others.

datetime_hour_of_day datetime_day_of_week datetime_day_of_month

13

13

13

13

4

4

4

4

26

26

26

26

13 4 26

datetime_day_of_year

300

300

300

300

300

datetime

10

10

10

10

10

datetime_minute_of_hour datetime_second_of_minute datetime_year

30

30

30

30

0

0

0

0

2012

2012

2012

2012

30 0 2012

datetime_quarter_of_year

4

4

4

4

4

datetime

43

43

43

43

43

Figure 5.4 Additional date-time columns extracted from the timestamp column for the event-recomme

114 CHAPTER 5 Basic feature engineering

rom simple,
atures can’t
orical, arbi-
cessing that
eatures, you
nt the num-
lumn in the
 complicat-

eous: there
me underly-
irst instance
’t, you must
 the second
xt corpus of
st cases, you
rring words
r the rest of

1.0

po
si

tiv
e

ra
te

0.6

0.8

Threshold: 0.94
0.78
5.2.3 Working with simple text features

In addition to the time of the event, the data includes basic text features f
natural language–processing routines. In the same way that datetime fe
be used directly by the model because they’re neither numerical nor categ
trary text can’t be fed into the ML algorithm without some kind of pro
turns the data into one of the two accepted types. To turn text into ML f
employ a method called bag of words. The idea is simple in principle: cou
ber of occurrences of each word that appears in the text and insert a co
dataset with the counts for that word. As always, though, you’ll have a few
ing factors to deal with.

 The features that you feed to your ML algorithm must be homogen
must be the same number of features, and they must correspond to the sa
ing concept, for all of the instances in your dataset. For example, if the f
contains five occurrences of the word family, and the next instance doesn
choose to either include a column for Family and set the count to 0 for
instance, or leave it off both instances. Usually, you work with the entire te
the dataset to decide which words get a column and which don’t. In mo
build the bag of words for the entire dataset and include only the top-occu
to get a column in your dataset. You can then have a catchall column fo

0.0

Tr
ue

-

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

False-positive rate

Area under the curve: 0.85

0.24

Figure 5.5 Cross-validated ROC curve for model including date-time features

115Basic feature-engineering processes

the words, which in principle determines the length of the text outside the selected
top words.

 Now, let’s say you’re selecting the top 100 words to get a Counts column in your
dataset. You’ll get a bunch of columns with counts for common but not useful words,
such as is, and, and the. In the field of natural language processing, these words are
known as stop words and are usually purged from the text before performing the bag-
of-words counting.

 We introduce more-advanced text feature concepts in the next chapter, but the last
complicating factor to mention here is that the bag-of-words dataset quickly becomes

 a particular
h dictionary
tion of those
ce, in which
 shows a few
ation exam-
ayes classifi-
hereas most

sent the bag
tures in the
. Figure 5.7

 model that
icular event

0

0

0

0

0

0

0

3

0

0

0

se
ion
large and sparse. We have a lot of features mostly filled with zeros, because
word usually isn’t likely to appear in a random passage of text. The Englis
is large (with more than 200 thousand words in use), and only a small frac
words are used in most texts. Some ML problems have a much narrower spa
a class of words is more represented than in general. For example, figure 5.6
instances of the count features for the top words in our event-recommend
ple; the sparsity of the data is clear. Some ML algorithms, such as naïve B
ers, handle sparse data well (by requiring no extra memory for the 0’s), w
others don’t.

In events.csv of our event-recommendation example, 100 features repre
of words for the 100 top-occurring words. You want to use these as fea
model, because particular events might be more popular than others
shows the resulting ROC curve after adding these features to the model.

 The AUC metric in figure 5.7 doesn’t increase from your previous
included only basic and date-time features. This tells you that a part

2 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0

1 0 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

1 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 1 2 0

0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 33 0 3 1 0 0 0 1 1 1 1 0 0 0 0 0

0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.6 A slice of the bag-of-words data for the event-recommendation example. The
numbers are the counts of the top-occurring words in the event descriptions. A large fract
of the cells contain 0, so we call the dataset sparse.

116 CHAPTER 5 Basic feature engineering

e text. This
 in general.
r each class

ons between

lities, one of
dle a larger
 of features.
uracy of the
etter.
 features to
e data. This
urt the per-

le of overfit-

1.0

po
si

tiv
e

ra
te

0.6

0.8

Threshold: 0.92
0.79
description isn’t more likely to be interesting for users just because of th
model doesn’t address the interests of individual users, but the user base
In a real recommendation engine, you could build a model for each user o
of user. Other popular methods for recommendation engines use connecti
events, users, and user friends to find recommendations.

5.3 Feature selection
Compared to basic statistical methods and human pattern-recognition abi
the main advantages of machine-learning algorithms is the ability to han
number of features. Most ML algorithms can handle thousands or millions
It’s often a useful strategy to add more features in order to increase the acc
model. But in machine learning, as in many other cases, more isn’t always b

 Because more features enable the model to learn the mapping from
the target in more detail, there’s a risk that the model is overfitting th
increases the appeared accuracy of the model at training time, but might h
formance of predictions on new, unseen data. Figure 5.8 shows an examp
ting (we first discussed overfitting in chapter 3).

0.0

Tr
ue

-

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

False-positive rate

Area under the curve: 0.84

0.24

Figure 5.7 Cross-validated ROC curve for full model including date-time and
text features

117Feature selection

20

15

Survived (actual)
Died (actual)

A new data point here would be
incorrectly classified as a circle,
because the model is overfitting.

.

el
w
0

sqrt
(fare)

10 20 30 40 50 60 70

5

10

0

Age

0

20

sqrt
(fare)

10 20 30 40 50 60 70

15

5

10

0

Age

A new data point here would be
correctly classified as a diamond

Figure 5.8 The decision boundary of two models fit on the same training data. In the mod
on the top, the decision boundary is too detailed, and the classification performance on ne
data can be affected.

118 CHAPTER 5 Basic feature engineering

In this section, you’ll look at methods for selecting a subset of features in order to
avoid overfitting, and thus increase the accuracy of the model when applied to new
data. Some algorithms are more or less susceptible to overfitting, but it might be
worth the effort to perform some of these optimizations if model accuracy is of partic-
ular importance.

 Another advantage of a smaller number of features, and thus smaller models, is
that the computational cost of training and prediction is usually related to the num-
ber of features. By spending some time in the model-development phase, you can save
time when retraining or when making predictions.

an help you
el. In some

tions, but to
e about the
being corre-
ciated with

f the feature
res can also
 many real-
tain predic-

re selection
al subset of
odel for all
 the perfor-
atures, this
an approxi-
l investigate
s is forward
er heuristic

e-learning
 because

thods are
be signifi-
l to try the
e general
n time on

 features
 decision
 Finally, feature selection and the related concept of feature importance c
gain insight into the model and therefore the data used to build the mod
cases, the goal of building the model might not even be to make predic
get a view into important features of the model; you can use knowledg
most significant features to discover certain patterns such as credit status
lated with certain demographic or social factors. A cost could be asso
obtaining the data for specific features, and there’s no need to suffer loss i
is unimportant for the model at hand. The importance of particular featu
reveal valuable insights into the predictions returned by the model. In
world use cases, it’s important to understand something about why a cer
tion was made, and not just the particular answer.

 With that, you should be well motivated to look more deeply into featu
and the most common methods used. The simplest way to select the optim
features is to try all combinations of features—for example, building a m
subsets of features and using your knowledge from chapter 4 to measure
mance of the model. Unfortunately, even with a small number of fe
approach quickly becomes infeasible. You have to use techniques that c
mate the optimal subset of features. In the next few subsections, you’l
some of these methods. One of the most widely used classes of method
selection/backward elimination, covered in the next subsection. Oth
methods are covered later in the chapter.

Some algorithms have built-in feature selection
Although the methods discussed in this section are applicable to any machin
algorithm, some algorithms have advantages in the realm of feature selection
they have similar behavior built in. In all cases, however, these built-in me
unlikely to yield results comparable to the general methods, but might
cantly more efficient computationally. As a consequence, it might be usefu
built-in methods before falling back on the more computationally intens
methods, or even use the built-in methods as a seed to save computatio
the general methods.

Examples of built-in feature-selection methods are the weights assigned to
in linear and logistic regression algorithms and the feature importances in

119Feature selection

ubset of fea-
eral concept
tart from all
eatures have
 a predeter-

tion, respec-
hy we call it
t have more
n’t yet been
ine learning
d differently,
atures.
 well to find
ity than the
wever, even

be necessary
cs, which we

pending on
rithm is run
 – N + 1), or

trees and ensemble variants such as random forests, which capture (in a computa-
tionally efficient manner) the amount that predictive accuracy is expected to decrease
if a feature were replaced with random noise. We can inspect the top feature impor-
tances of the random forest event-recommendation model from the previous section.

birthyear

Feature Importance

timezone

eature
 top seven
t-

odel. By this
ear of a user
f the event
portant

er an event
 a user.
5.3.1 Forward selection and backward elimination

One of the most widely used sets of methods for approximating the best s
tures is the iterative selection methods that you’ll look into here. The gen
is to start from no features and iteratively find the best features to add, or s
features and iteratively remove the worst. The search is stopped when all f
been added or removed, when the increase in accuracy levels off, or at
mined size of the feature set.

 These methods are referred to as forward selection and backward elimina
tively. They don’t guarantee finding the best subset of features, which is w
an approximation. One of the features that was left out, or removed, migh
predictive power when paired with a particular subset of features that has
reached when the feature is removed. Remember that the power of mach
comes from the ability to find patterns by combining many features. Or sai
a weak feature may be strong in the presence of just the right set of other fe

 In practice, however, forward selection or backward elimination works
a good subset of features with a much smaller computational complex
exhaustive search. When the number of features is particularly large, ho
this approach can be computationally infeasible. In those cases, it might
to rely on built-in feature importance measures or other search heuristi
present in the next section.

 The process of forward feature selection is shown in figure 5.9. De
the number of features, many models might need to be built. If the algo
to the end, you’ll need to build N + (N – 1) + (N – 2)...(N – N + 2) + (N

datetime_week_of_year

datetime_day_of_year

lat

datetime_hour_of_day

lng

The random forest f
importances for the
features in the even
recommendation m
measure, the birth y
and the time zone o
are the two most im
indicators of wheth
will be of interest to

120 CHAPTER 5 Basic feature engineering

and 500,500
res k models
lso becomes
mber of iter-
is approach

e computa-
een forward
he choice of
ll set of fea-

Available
feature set

Select one. Add to
selected features

temporarily.

Note
cross-validation

accuracy.

Build and
cross-validate model
on selected features.

Repeat for all
available features.

Selected
feature set Figure 5.9 The process of forward

ning at the
re added
 set of
 cross-
tric–is

ss of
nation
N–1
i =0(N – i). For 20, 100, 500, or 1,000 features, this is 210; 5,050; 125,250;

model builds, respectively. In addition, each cross-validation iteration requi
to be built, so if the model build takes any significant amount of time, this a
unmanageable. For smaller sets of features, or when running a smaller nu
ations (for example, because the increase in accuracy quickly levels off), th
is effective in practice.

 Figure 5.10 shows the equivalent process of backward elimination. Th
tional requirements are the same as forward selection, so the choice betw
and backward methods is usually a question of the problem at hand and t
algorithm. Some algorithms, for example, perform worse on a very sma
tures, in which case backward elimination is the better approach.

Add feature from best model to
selected features and remove from

available features. Repeat.

feature selection. Begin
leftmost box, features a
iteratively until the best
features–in terms of the
validated evaluation me
chosen.

Model
feature set

Select one. Remove
from model features

temporarily.

Note
cross-validation

accuracy.

Build and
cross-validate

on model features.

Repeat for all
model features.

Remove feature from worst model
from model features and add to

removed features. Repeat.

Removed
feature set

Figure 5.10 The proce
backward feature elimi

121Feature selection

A useful way to visualize an iterative feature-selection procedure is by plotting a ver-
tical bar chart like the one in figure 5.11.

s for feature
re rankings,
e is used to

or backward
e when you

 the optimal

g the model
del and the
nly in order

he data that
ou know the
ting the tar-
 data, which
nt is likely to
m of cancer,
tion to find

acy, but also
se or at least
re selection

Iteration 4: Feature A added

Iteration 3: Feature B added

Iteration 2: Feature C added

Best accuracy
As we mentioned previously, some ML algorithms have built-in method
selection. Instead of making feature selection based on built-in featu
you can use a hybrid approach in which the built-in feature importanc
find the best or worst feature in each iteration of the forward selection
elimination process. This can significantly reduce the computation tim
have many features, but will likely yield less-accurate approximations of
feature subset.

5.3.2 Feature selection for data exploration

Feature selection can be used for more than avoiding overfitting or makin
leaner. A powerful use of feature selection is to gain insight into the mo
training data. In fact, in some cases, you might want to build a classifier o
to run a feature-selection algorithm, and not for making predictions.

 You can use feature selection to perform an exploratory analysis of t
was used for building the model. From the feature-selection procedure, y
most important features—the most informative set of features for predic
get variable from all of the features. This tells you something about the
can be useful by itself. Imagine that your task is to predict whether a patie
have cancer. Because you’re not certain about the cause of the specific for
you add all the features you can get your hands on and use feature selec
the top features. You’re not only gaining a better cross-validated accur
using the data to indicate which factors are most likely to cause the disea
correlate with the probability of diagnosis. The discussed methods of featu

Iteration 1: Feature D added

0 1
Accuracy

Figure 5.11 The iterative feature-selection bar chart, showing the
evolution of accuracy in a feature-selection procedure—in this case, a
forward selection algorithm. Any measure of accuracy (see chapter 4)
that makes sense for the problem should be used here.

122 CHAPTER 5 Basic feature engineering

don’t tell you whether the features are powerful in the positive or negative direction
(in the case of binary classification), but you can easily visualize the specific feature
against the target variable to understand this (for example, using the visualizations in
section 2.3).

 Another unsupervised use case for feature selection is for dimensionality reduction.
One of the great challenges when working with datasets with more than three vari-
ables is how to visualize the data. The human brain has been optimized for a three-
dimensional world, and we have a hard time grasping more than that. In real-world
data, however, having only three features is extremely unlikely, and you need to

 use feature
 classes, for

get variable.
nsions, even

be useful in
employ various techniques to visualize high-dimensional datasets. You can
selection as a way to show how the ML algorithms can divide the data into
example, by simply plotting the two or three best features against the tar
Figure 5.12 shows an example of a decision boundary shown in two dime
though many more features were used to build the model.

In the next section, you’ll see an example of how feature selection can
real-world problems.

0

20

sqrt
(fare)

10 20 30 40 50 60 70

15

5

10

0

Age

Survived (actual)
Died (actual)

Figure 5.12 This decision boundary for classifying into circles and diamonds
has only two features. The model was built on many more features, but the
sqrt(Fare) and Age features were found by the feature-selection algorithm to be
important in this particular problem (Titanic survival prediction). This plot was
first introduced in chapter 3.

123Feature selection

5.3.3 Real-world feature selection example

For a great use case of feature engineering and feature selection in the real world,
let’s look at an example from science.

 Your task is to find real supernova events from huge astronomical images among a
large number of so-called bogus events (events that look real, but aren’t). Figure 5.13
shows examples of real and bogus events.

into a set of
e featurized
orm various
he last part
termine the
 in order to
tion plot, a

ly Notices of the
.org/content/

 shown in the
ndidates from
, even for
The real/bogus classifier is built by first processing the raw image data
features, some of which are discussed in the next chapter. You then run th
data through a random forest algorithm to build the classifier, and perf
model optimizations such as the ones outlined in chapters 3 and 4. T
before putting this model into the live stream from the telescope is to de
best features, avoid overfitting, and make the model as small as possible
support the real-time requirements of the project. The feature-selec
slightly more advanced version of figure 5.11, is shown in figure 5.14.1

1 The supernova images and data graphs in this section originally appeared in the 2013 Month
Royal Astronomical Society, volume 435, issue 2, pages 1047-1060 (http://mnras.oxfordjournals
435/2/1047).

Figure 5.13 Real supernova images are shown in the panel on the left. Bogus candidate events are
panel on the right.1 The job of the classifier is to learn the difference between these two types of ca
features extracted from the images. (These are obvious examples; many others are hard to classify
trained persons.)

124 CHAPTER 5 Basic feature engineering

ou can plot
a particular
 four of the

2. Performance becomes
much worse as too many
features are removed.

ove
elected
el.

 removed
roves

r), then

e bottom
metric of
rmance
eviation
vels off
icant 5
Now, by knowing which features are most important for the model, y
these features against real and bogus events in order to visualize how
feature helps solve the problem. Figure 5.15 shows the performance of
best features.

3. All features ab
dashed line are s
for the final mod

1. As features are
performance imp
(smaller is bette
levels off.

Figure 5.14 The feature-selection plot showing a backward elimination process. Each feature from th
up was selected for removal as the algorithm progressed, and in each step the customized evaluation
missed detection rate (MDR) at 1% false-positive rate (FPR) was computed. The bars show the perfo
metric obtained at each step (smaller is better in this case) by removing the feature (with standard d
from cross-validation). After removing 23 features (out of 44), the cross-validated performance gain le
and eventually becomes much worse when too many features have been removed. In the end, a signif
percentage points were gained in model performance by removing noisy features.

125Summary

 to improve
as follows:

rmations to
sformations

ariable.

ose the best

knowledge.
:

em of event

ubset of fea-

3 6 9
gauss amp

12 –1 0 1 14 16
mag_ref

2018 0 2 64 2.5 5.0 10.07.5
flux_ratio ccid

tion algorithm
nts that take
re different in

selection
5.4 Summary
This chapter introduced feature engineering, which transforms raw data
the accuracy of ML models. The primary takeaways from this chapter are

■ Feature engineering is the process of applying mathematical transfo
raw data to create new input features for ML modeling. The tran
can range from simple to extremely complex.

■ Feature engineering is valuable for the following five reasons:
– It can create features that are more closely related to the target v
– It enables you to bring in external data sources.
– It allows you to use unstructured data.
– It can enable you to create features that are more interpretable.
– It gives you the freedom to create lots of features and then cho

subset via feature selection.
■ There’s an intricate link between feature engineering and domain
■ Feature engineering fits into the overall ML workflow in two places

– On the training dataset, prior to fitting a model
– On the prediction dataset, prior to generating predictions

■ Two types of simple feature engineering can be used on a probl
recommendation:
– Extraction of features from date-time information
– Feature engineering on natural language text

■ Feature selection is a rigorous way to select the most predictive s
tures from a dataset.

Bogus eventsReal events

Figure 5.15 Visualization of the performance of four individual features chosen by our feature-selec
to be among the best features for our model. The histograms show the number of real or bogus eve
on a particular value of the feature. You can see that the distributions of real versus bogus events a
the amp and flux_ratio features, and they’re selected as the top-performing features in our feature-
procedure.

126 CHAPTER 5 Basic feature engineering

5.5 Terms from this chapter

ted here so
 images, and
r example.

Word Definition

feature engineering Transforming input data to extract more value and improve the predictive accu-
racy of ML models

feature selection Process of choosing the most predictive subset of features out of a larger set

forward selection A version of feature selection that iteratively adds the feature that increases
the accuracy of model the most, conditional on the current active feature set

eases the
ture set

e by the ML
Chapter 7 expands on the simple feature-engineering approaches presen
you can perform more-advanced feature engineering on data such as text,
time series. In the next chapter we’ll use what we've learned in a full-chapte

backward elimination A version of feature selection that removes the feature that decr
accuracy of model the most, conditional on the current active fea

bag of words A method for turning arbitrary text into numerical features for us
algorithm

Part 2

Practical application

 extract fea-
cy of models
In addition,
ction.
 the tipping

es that allow
 series data.
ed on these

owledge in
ews.
ger volumes
y. These are

 model—on
ment clicks.
In part 2, you’ll go beyond a basic ML workflow to look at how to
tures from text, images, and time-series data to improve the accura
even further, and to scale your ML system to larger data volumes.
you’ll go through three full example chapters to see everything in a

 In chapter 6, our first full example chapter, you’ll try to predict
behavior of NYC taxis.

 In chapter 7, you’ll look at advanced feature-engineering process
you to extract value out of natural language text, images, and time
A lot of modern ML and artificial intelligence applications are bas
techniques.

 In chapter 8, you’ll use this advanced feature-engineering kn
another full example: predicting the sentiment of online movie revi

 In chapter 9, you’ll learn techniques for scaling ML systems to lar
of data, higher prediction throughput, and lower prediction latenc
all important aspects of many modern ML deployments.

 In chapter 10, you’ll walk through a full example of building a
large amounts of data—that predicts online digital display advertise

Example: NYC taxi data
This chapter covers
■ Introducing, visualizing, and preparing a real-

world dataset about NYC taxi trips
■ Building a classification model to predict

passenger tipping habits
ata to build-
neering fea-
e’ve used a
oints of the

ed and work
 (along with
129

In the previous five chapters, you learned how to go from raw, messy d
ing, validating, and optimizing models by tuning parameters and engi
tures that capture the domain knowledge of the problem. Although w
variety of minor examples throughout these chapters to illustrate the p
individual sections, it’s time for you to use the knowledge you’ve acquir
through a full, real-world example. This is the first of three chapters
chapters 8 and 10) entirely dedicated to a full, real-world example.

■ Optimizing an ML model by tuning model
parameters and engineering features

■ Building and optimizing a regression model to
predict tip amount

■ Using models to gain a deeper understanding
of data and the behavior it describes

130 CHAPTER 6 Example: NYC taxi data

 In the first section of this chapter, you’ll take a closer look at the data and various
useful visualizations that help you gain a better understanding of the possibilities of
the data. We explain how the initial data preparation is performed, so the data will be
ready for the modeling experiments in the subsequent sections. In the second section,
you’ll set up a classification problem and improve the performance of the model by
tuning model parameters and engineering new features.

6.1 Data: NYC taxi trip and fare information
With companies and organizations producing more and more data, a large set of rich

on, some of
e public dis-

made avail-
m every taxi

 individual
 of the trip,
s real-world
way that it’s
s, baked-in

of CSV data,
dle on most
 the data. In
like this and
B of data.
trips/. The

ntains about

tures; build-
In the next
thods from

rstanding of
dataset and
s into a sin-

xi/.
and interesting datasets has become available in recent years. In additi
these organizations are embracing the concept of open data, enabling th
semination and use of the data by any interested party.

 Recently, the New York State Freedom of Information Law (FOIL)
able an extremely detailed dataset of New York City taxi trip records fro
trip of 2013.1 This dataset collected various sets of information on each
taxi trips including the pickup and drop-off location, time and duration
distance travelled, and fare amount. You’ll see that this data qualifies a
data, not only because of the way it has been generated but also in the
messy: there are missing data, spurious records, unimportant column
biases, and so on.

 And speaking of data, there’s a lot of it! The full dataset is over 19 GB
making it too large for many machine-learning implementations to han
systems. For simplicity, in this chapter you’ll work with a smaller subset of
chapters 9 and 10, you’ll investigate methods that are able to scale to sizes
even larger, so by the end of the book you’ll know how to analyze all 19 G

 The data is available for download at www.andresmh.com/nyctaxi
dataset consists of 12 pairs of trip/fare compressed CSV files. Each file co
14 million records, and the trip/fare files are matched line by line.

 You’ll follow our basic ML workflow: analyzing the data; extracting fea
ing, evaluating, and optimizing models; and predicting on new data.
subsection, you’ll look at the data by using some of the visualization me
chapter 2.

6.1.1 Visualizing the data

As you get started with a new problem, the first step is to gain an unde
what the dataset contains. We recommend that you start by loading the
viewing it in tabular form. For this chapter, we’ve joined the trip/fare line
gle dataset. Figure 6.1 shows the first six rows of data.

1 Initially released in a blog post by Chris Wong: http://chriswhong.com/open-data/foil_nyc_ta

131Data: NYC taxi trip and fare information

medallion

CD847FE5884F10A28217E9FBA11B275B

20D9ECB2CA0767CF7A01564DF2844A3E

A954A71B6D44265AE756BF807E069396

F6F7D02179BE915B23EF2DB57836442D

BE386D8524FCD16B3727DCF0A32D9B25

E9FF471F36A91031FE5B6D6228674089

A5D125F5550BE7822FC6EE156E37733A

hack_license

5FEFD00D9773268B72EE4E879852F190

598CCE5B9C1918568DEE71F43CF26CD2

D5CA7D478A14BA3BBFC20153C5C88B1A

088879B44B80CC9ED43724776C539370

4EB96EC9F3A42794DEE233EC8A2616CE

72E0B04464AD6513F6A613AABB04E701

08DB3F9FCF01530D6F7E70EB88C3AE5B

vendor_id

CMT

CMT

CMT

VTS

VTS

VTS

VTS

rate_code store_and_fwd_flag

1

1

1

1

1

1

1

N

N

N

0

0

0

0

-explanatory,
pickup_longitude

-73.989296

-73.945396

-73.989090

-73.996933

-74.000313

-73.997292

-73.966843

pickup_latitude

40.756313

40.802090

40.748367

40.720055

40.730068

40.720982

40.756741

dropoff_longitude

-73.987885

-73.945412

-73.974983

-73.993546

-73.987373

-74.000443

-73.987885

dropoff_latitude payment_type

40.751122

40.802025

40.756035

40.693043

40.768406

40.732376

40.722713

DIS

NOC

DIS

CRD

CRD

CRD

CRD

fare_amount

3.50

2.50

7.00

12.00

12.00

5.50

11.00

surcharge

0.00

0.00

0.00

0.50

0.50

0.50

0.50

mta_tax

0.50

0.50

0.50

0.50

0.50

0.50

0.50

tip_amount tolls_amount

0.00

0.00

0.00

1.75

3.12

1.20

2.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

tolls_amount

4.00

3.00

7.50

14.75

16.12

7.70

14.00

tipped

0

0

0

1

1

1

1

pickup_datetime

1/8/2013 10:44

1/8/2013 7:51

1/7/2013 10:05

1/13/2013 4:36

1/13/2013 4:37

1/13/2013 4:41

1/13/2013 4:37

dropoff_datetime

1/8/2013 10:46

1/8/2013 7:51

1/7/2013 10:13

1/13/2013 4:46

1/13/2013 4:48

1/13/2013 4:45

1/13/2013 4:47

passenger_count

1

1

1

5

2

1

5

trip_time_in_secs trip_distance

123

4

446

600

660

240

600

0.30

0.00

1.10

3.12

3.39

1.16

2.91

Figure 6.1 The first six rows of the NYC taxi trip and fare record data. Most of the columns are self
but we introduce some of them in more detail in the text that follows.

132 CHAPTER 6 Example: NYC taxi data

The medallion and hack_license columns look like simple ID columns that are use-
ful for bookkeeping but less interesting from an ML perspective. From their column
names, a few of the columns look like categorical data, like vendor_id, rate_code,
store_and_fwd_flag, and payment_type. For individual categorical variables, we
recommend visualizing their distributions either in tabular form or as bar plots. Fig-
ure 6.2 uses bar plots to show the distribution of values in each of these categorical
columns.

teresting to
ip duration
scatter plots

9

rate_code

7 65

vendor_id

UNK

t

Next, let’s look at some of the numerical columns in the dataset. It’s in
validate, for example, that correlations exist between things like tr
(trip_time_in_secs), distance, and total cost of a trip. Figure 6.3 shows
of some of these factors plotted against each other.

Logarithmic axes

1 2 5 4 3 0 6 210 8 128 28CMT VTS

CRD CSH NOC DIS

payment_type

N Y

store_and_fwd_flag

Figure 6.2 The distribution of values across some of the categorical-looking columns in our datase

133Data: NYC taxi trip and fare information

e/longitude
e, with most
e other bor-

40

15

20

25

30

35

tri
p_

di
st

an
ce
Finally, in figure 6.4, you can visualize the pickup locations in the latitud
space, defining a map of NYC taxi trips. The distribution looks reasonabl
pickup locations occurring in downtown Manhattan, many occurring in th
oughs, and surprisingly a few happening in the middle of the East River!

0

5

10

0 1,000 2,000 3,000 4,000
trip_time_in_secs

5,000

300

0

50

100

150

200

250

to
ta

l_
am

ou
nt

0 2,000 4,000 6,000 8,000
trip_time_in_secs

10,000

Figure 6.3 Scatter plots of taxi trips for the time in seconds versus the trip
distance, and the time in seconds versus the trip amount (USD), respectively.
A certain amount of correlation exists, as expected, but the scatter is still
relatively high. Some less-logical clusters also appear, such as a lot of zero-time
trips, even expensive ones, which may indicate corrupted data entries.

134 CHAPTER 6 Example: NYC taxi data

d dream up
arning.

rabbed our
ount of the
erstand, in

y given NYC

information
l, you could
 this model
er the situa-
pp installed
ameters are
oost overall

nt across all

–73.90

–73.92

–73.94

–73.96

–73.98

–74.00

40.90

pi
ck

up
_l

on
gi

tu
de

mpared to
ve away
With a fresh perspective on the data you’re dealing with, let’s go ahead an
a realistic problem that you can solve with this dataset by using machine le

6.1.2 Defining the problem and preparing the data

When we first looked at this data, a particular column immediately g
attention: tip_amount. This column stores the information about the am
tip (in US dollars) given for each ride. It would be interesting to und
greater detail, what factors most influence the amount of the tip for an
taxi trip.

 To this end, you might want to build a classifier that uses all of the trip
to try to predict whether a passenger will tip a driver. With such a mode
predict tip versus no tip at the end of each trip. A taxi driver could have
installed on a mobile device and would get no-tip alerts and be able to alt
tion before it was too late. While you wait for approval for having your a
in all NYC taxis, you can use the model to give you insight into which par
most important, or predictive, of tip versus no tip in order to attempt to b
tipping on a macro level. Figure 6.5 shows a histogram of the tip amou
taxi trips.

–74.02

–74.04

40.60 40.8540.8040.7540.7040.65
pickup_latitude

Figure 6.4 The latitude/longitude of pickup locations. Note that the x-axis is flipped, co
a regular map. You can see a huge number of pickups in Manhattan, falling off as you mo
from the city center.

135Data: NYC taxi trip and fare information

d which will
’ll to be able

ions
by using the
dence of tip-

ow our first
successful—
 is extremely
ons learned

o pitfalls: too-
 the data.
 you’d have
d is creative

g initial tip/
d predictive
ormance on
arnings of a
e, the overly

res (as you’ll
ominated in

C
ou

nt

n of tip
ips yielded
n we’d
So the plan for our model is to predict which trips will result in no tip, an
result in a tip. This is a job for a binary classifier. With such a classifier, you
to do the following:

■ Assist the taxi driver by providing an alert to predicted no-tip situat
■ Gain understanding of how and why such a situation might arise

dataset to uncover the driving factors (pun intended!) behind inci
ping in NYC taxi rides

A STORY FROM THE REAL WORLD

Before you start building this model, we’ll tell you the real story of h
attempt at tackling this problem was quite unsuccessful, disguised as very
the worst kind of unsuccessful—and how we fixed it. This type of detour
common when working with real data, so it’s helpful to include the less
here. When working with machine learning, it’s critical to watch out for tw
good-to-be-true scenarios and making premature assumptions that aren’t rooted in

 As a general rule in ML, if the cross-validated accuracy is higher than
expected, chances are your model is cheating somewhere. The real worl
when trying to make your life as a data scientist difficult. When buildin
no-tip classification models, we quickly obtained a very high cross-validate
accuracy of the model. Because we were so excited about the model perf
this newly acquired dataset—we nailed it—we temporarily ignored the w
cheating model. But having been bitten by such things many times befor
optimistic results caused us to investigate further.

 One of the things we looked at was the importance of the input featu
see in more detail in later sections). In our case, a certain feature totally d
terms of feature importance in the model: payment type.

160 2 4 6 8
Tip amount (USD)

10 12 14

Figure 6.5 The distributio
amount. Around half the tr
$0 tips, which is more tha
expect intuitively.

136 CHAPTER 6 Example: NYC taxi data

 From our own taxi experience, this could make sense. People paying with credit
cards (in the pre-Square era) may have a lower probability of tipping. If you pay with
cash, you almost always round up to whatever you have the bills for. So we started seg-
menting the number of tips versus no tips for people paying with a credit card rather
than cash. Alas, it turned out that the vast majority (more than 95%) of the millions of
passengers paying with a credit card did tip. So much for that theory.

 So how many people paying with cash tipped? All of them?
 In actuality, none of the passengers paying with cash had tipped! Then it quickly

became obvious. Whenever a passenger paid with cash and gave a tip, the driver didn’t
our data. By
of potential

 this, when
to trust that
in nefarious
d detached

aset all trips
f tipping for
this case we
ent data was
ightly differ-
’t wrong as

re 6.6 shows

ly about 5%

n of tip
sh payments
h tips are
em)
register it in whatever way was necessary for it to be included as part of
going through our ML sanity checks, we unearthed millions of instances
fraud in the NYC taxi system!

 Returning to the implications for our ML model: in a situation like
there’s a problem in the generation of the data, there’s simply no way
part of the data for building an ML model. If the answers are incorrect
ways, then what the ML model learns may be completely incorrect an
from reality.

 Ultimately, to sidestep the problem, we opted to remove from the dat
paid for with cash. This modified the objective: to predict the incidence o
only noncash payers. It always feels wrong to throw away data, but in
decided that under the new data-supported assumption that all cash-paym
untrustworthy, the best option was to use the noncash data to answer a sl
ent problem. Of course, there’s no guarantee that other tip records aren
well, but we can at least check the new distribution of tip amounts. Figu
the histogram of tip amounts after filtering out any cash-paid trips.

 With the bad data removed, the distribution is looking much better: on
of trips result in no tip. Our job in the next section is to find out why.

160 2 4 6 8
Tip amount (USD)

C
ou

nt

10 12 14

Figure 6.6 The distributio
amounts when omitting ca
(after discovering that cas
never recorded in the syst

137Modeling

6.2 Modeling
With the data prepared for modeling, you can easily use your knowledge from chapter
3 to set up and evaluate models. In the following subsections, you’ll build different
versions of models, trying to improve the performance with each iteration.

6.2.1 Basic linear model

You’ll start this modeling endeavor as simply as possible. You’ll work with a simple,
logistic regression algorithm. You’ll also restrict yourself initially to the numerical val-
ues in the dataset, because those are handled by the logistic regression algorithm nat-

 the model.
it them into
ta so no col-
been loaded
s something

unction
s
ll

Calculates ROC
curve and AUC
statistics
urally, without any data preprocessing.
 You’ll use the scikit-learn and pandas libraries in Python to develop

Before building the models, we shuffled the instances randomly and spl
80% training and 20% holdout testing sets. You also need to scale the da
umn is considered more important than others a priori. If the data has
into a pandas DataFrame, the code to build and validate this model look
like the following listing.

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from pylab import *

sc = StandardScaler()
data_scaled = sc.fit_transform(data[feats])

sgd = SGDClassifier(loss="modified_huber")

sgd.fit(
 data.ix[train_idx,feats],
 data['tipped'].ix[train_idx]
)

preds = sgd.predict_proba(
 data.ix[test_idx,feats]
)

fpr, tpr, thr = roc_curve(
 data['tipped'].ix[test_idx],
 preds[:,1]
)
auc = roc_auc_score(data['tipped'].ix[test_idx], preds[:,1])

plot(fpr,tpr)
plot(fpr,fpr)
xlabel("False positive rate")
ylabel("True positive rate")

Listing 6.1 Logistic regression tip-prediction model

Scales the data to be
between –1 and 1

Uses loss-f
that handle
outliers weFits the classifier on

the training features
and target data

Makes predictions on
the held-out test set

Plots ROC
curve

138 CHAPTER 6 Example: NYC taxi data

The last part of listing 6.1 plots the ROC curve for this first, simple classifier. The hold-
out ROC curve is shown in figure 6.7.

th a holdout
in weighted
ns, not use-
 the perfor-

s nonlinear.
el won’t cut
 you’ll use a
of accuracy
rithms (see
ompare dif-
or building

0.8
iv

e
ra

te

1.0

0.6

Random
baseline

Curve
There’s no way around it: the performance of this classifier isn’t good! Wi
AUC of 0.51, the model is no better than random guessing (flipping a co
95% “tip” and 5% “no tip” to predict each trip), which is, for obvious reaso
ful. Luckily, we started out simply and have a few ways of trying to improve
mance of this model.

6.2.2 Nonlinear classifier

The first thing you’ll try is to switch to a different algorithm—one that’
Considering how poor the first attempt was, it seems that a linear mod
it for this dataset; simply put, tipping is a complicated process! Instead,
nonlinear algorithm called random forest, well known for its high level
on real-world datasets. You could choose any of a number of other algo
the appendix), but we’ll leave it as an exercise for you to evaluate and c
ferent algorithms. Here’s the code (relative to the previous model) f
this model.

0.0

Tr
ue

-p
os

it

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.0

False-positive rate

Area under the curve (AUC) = 0.51

Figure 6.7 The receiver operating characteristic (ROC) curve of the logistic
regression tip/no-tip classifier. With an area under the curve (AUC) of 0.5,
the model seems to perform no better than random guessing. Not a good sign
for our model.

139Modeling

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from pylab import *

rf = RandomForestClassifier(n_estimators=100)
rf.fit(data.ix[train_idx,feats], data['tipped'].ix[train_idx])
preds = rf.predict_proba(data.ix[test_idx,feats])

fpr, tpr, thr = roc_curve(data['tipped'].ix[test_idx], preds[:,1])
auc = roc_auc_score(data['tipped'].ix[test_idx], preds[:,1])

can see a sig-
wing clearly
put features

passenger. If
to boost the

Listing 6.2 Random forest tip-prediction model

eatures
mportance
plot(fpr,tpr)
plot(fpr,fpr)
xlabel("False positive rate")
ylabel("True positive rate")

fi = zip(feats, rf.feature_importances_)
fi.sort(key=lambda x: -x[1])
fi = pandas.DataFrame(fi, columns=["Feature","Importance"])

The results of running the code in listing 6.2 are shown in figure 6.8. You
nificant increase in holdout accuracy—the holdout AUC is now 0.64—sho
that there’s a predictive signal in the dataset. Some combinations of the in
are capable of predicting whether a taxi trip will yield any tips from the
you’re lucky, further feature engineering and optimization will be able
accuracy levels even higher.

Plots ROC
curve

F
i

0.0

0.8

0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.0

False-positive rate

Area under the curve (AUC) = 0.64

Tr
ue

-p
os

iti
ve

 ra
te

Random
baseline

Curve

Figure 6.8 The ROC curve of the nonlinear random forest model. The AUC is
significantly better: at 0.64, it’s likely that there’s a real signal in the dataset.

140 CHAPTER 6 Example: NYC taxi data

You can also use the model to gain insight into what
features are most important in this moderately predic-
tive model. This exercise is a crucial step for a couple of
reasons:

■ It enables you to identify any cheating features
(for example, the problem with noncash pay-
ers) and to use that as insight to rectify any
issues.

■ It serves as a launching point for further fea-

he location
 amount. It
, expensive
ined in sec-

ll of the raw
mns.

rform some

e ML algo-
on trick of
 for each of
lgorithm to

e following

0

Feature Importance

1

2

3

4

dropoff_latitude

dropoff_longitude

pickup_latitude

pickup_longitude

0.165411

0.163337

0.163068

0.160285

trip_time_in_secs 0.122214

5

6

trip_distance

fare_amount

0.112020

0.067795

0.017850

0.014259

0.006974

0.004067

0.002720

ortant
m forest
nd pickup
m to
ture engineering. If, for instance, you identify
latitude and longitude as the most important
features, you can consider deriving other fea-
tures from those metrics, such as distance from
Times Square. Likewise, if there’s a feature that
you thought would be important but it doesn’t
appear on the top feature list, then you’ll want
to analyze, visualize, and potentially clean up or
transform that feature.

Figure 6.9 (also generated by the code in listing 6.2)
shows the list of features and their relative impor-
tance for the random forest model. From this figure, you can see that t
features are the most important, along with time, trip distance, and fare
may be that riders in some parts of the city are less patient with slow
rides, for example. You’ll look more closely at the potential insights ga
tion 6.2.5.

 Now that you’ve chosen the algorithm, let’s make sure you’re using a
features, including categorical columns and not just plain numerical colu

6.2.3 Including categorical features

Without going deeper into the realm of feature engineering, you can pe
simple data preprocessing to increase the accuracy.

 In chapter 2, you learned how to work with categorical features. Som
rithms work with categorical features directly, but you’ll use the comm
“Booleanizing” the categorical features: creating a column of value 0 or 1
the possible categories in the feature. This makes it possible for any ML a
handle categorical data without changes to the algorithm itself.

 The code for converting all of the categorical features is shown in th
listing.

7

8

9

passenger_count

surcharge

rate_code

10

11

tolls_amount

mta_tax

Figure 6.9 The imp
features of the rando
model. The drop-off a
location features see
dominate the model.

141Modeling

def cat_to_num(data):
 categories = unique(data)
 features = {}
 for cat in categories:

binary = (data == cat)
features["%s:%s"%(data.name, cat)] = binary.astype("int")

 return pandas.DataFrame(features)

payment_type_cats = cat_to_num(data['payment_type'])
vendor_id_cats = cat_to_num(data['vendor_id'])

ng 6.2 again
0. Note that

 You haven’t
ions applied

Listing 6.3 Converting categorical columns to numerical features

Function for
converting a
categorical
column to
a set of
numerical
columns

Converts four
categorical features
in the dataset to
numerical

portance

63023

61114

60988

58672

11172

06693

67567

19286

10330

08361

08247

rical
 bringing
without
store_and_fwd_flag_cats = cat_to_num(data['store_and_fwd_flag'])
rate_code_cats = cat_to_num(data['rate_code'])

data = data.join(payment_type_cats)
data = data.join(vendor_id_cats)
data = data.join(store_and_fwd_flag_cats)
data = data.join(rate_code_cats)

After creating the Booleanized columns, you run the data through listi
and obtain the ROC curve and feature importance list shown in figure 6.1
your holdout AUC has risen slightly, from 0.64 to 0.656.

 As model performance increases, you can consider additional factors.
done any real feature engineering, of course, because the data transformat
so far are considered basic data preprocessing.

Adds the converted
data to the full
dataset used for
training and testing

0.0

0.8

0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.0

False-positive rate

Area under the curve (AUC) = 0.656

New features

0

Feature Im

1

2

3

4

dropoff_latitude

pickup_latitude

dropoff_longitude

pickup_longitude

0.1

0.1

0.1

0.1

trip_time_in_secs 0.1

5

6

7

8

9

trip_distance

fare_amount

passenger_count

surcharge

0.1

0.0

0.0

0.0

payment_type:NOC 0.0

10 payment_type:CRD 0.0

Tr
ue

-p
os

iti
ve

 ra
te

Random
baseline

Curve

Figure 6.10 The ROC curve and feature importance list of the random forest model with all catego
variables converted to Boolean (0/1) columns, one per category per feature. The new features are
new useful information to the table, because the AUC is seen to increase from the previous model
categorical features.

142 CHAPTER 6 Example: NYC taxi data

6.2.4 Including date-time features

At this point, it’s time to start working with the data to produce new features, what
you’ve previously known as feature engineering. In chapter 5, we introduced a set of
date-time features transforming date and timestamps into numerical columns. You
can easily imagine the time of the day or day of the week to have some kind of influ-
ence on how a passenger will tip.

 The code for calculating these features is presented in the following listing.

ata through
 importance

Listing 6.4 Date-time features

verts date-time
mns (text) to

l dates and times

ur, day,
k features
p times

s hour, day,
 week features
rop-off times

ortance

2966e-01

2890e-01

6898e-01

4082e-01

0610e-01

4300e-02

9682e-02

2205e-02

4598e-02

7833e-02

3835e-02

tegorical
Datetime features (hour of day, day of week, week of year)

pickup = pandas.to_datetime(data['pickup_datetime'])
dropoff = pandas.to_datetime(data['dropoff_datetime'])
data['pickup_hour'] = pickup.apply(lambda e: e.hour)
data['pickup_day'] = pickup.apply(lambda e: e.dayofweek)
data['pickup_week'] = pickup.apply(lambda e: e.week)
data['dropoff_hour'] = dropoff.apply(lambda e: e.hour)
data['dropoff_day'] = dropoff.apply(lambda e: e.dayofweek)
data['dropoff_week'] = dropoff.apply(lambda e: e.week)

With these date-time features, you can build a new model. You run the d
the code in listing 6.2 once again and obtain the ROC curve and feature
shown in figure 6.11.

Con
colu
rea

Adds ho
and wee
to picku

Add
and
to d

0.0

0.8

0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.0

False-positive rate

Area under the curve (AUC) = 0.668

New features

Random
baseline

Curve

0

Feature Imp

1

2

3

4

dropoff_latitude

dropoff_longitude

pickup_latitude

pickup_longitude

1.34

1.33

1.32

1.31

trip_time_in_secs 1.00

5

6

7

8

9

trip_distance

fare_amount

dropoff_hour

pickup_hour

9.92

7.09

3.94

3.92

pickup_day 2.41

10 dropoff_day 2.41

Tr
ue

-p
os

iti
ve

 ra
te

Figure 6.11 The ROC curve and feature importance list for the random forest model, including all ca
features and additional date-time features

143Modeling

You can see an evolution in the accuracy of the model with additional data preprocess-
ing and feature engineering. At this point, you’re able to predict whether a passenger
will tip the driver with an accuracy significantly above random. Up to now, you’ve
looked only at improving the data in order to improve the model, but you can try to
improve this model in two other ways:

■ Vary the model parameters to see whether the default values aren’t necessarily
the most optimal

■ Increase the dataset size

e algorithms
e about scal-
 it to you to

 a model to
stand which
 data in new
 the feature
ent working

eatures have
raphical dis-
fs from trips

40.90
In this chapter, we’ve been heavily subsampling the dataset in order for th
to handle the dataset, even on a 16 GB–memory machine. We’ll talk mor
ability of methods in chapters 9 and 10, but in the meantime we’ll leave
work with this data to increase the cross-validated accuracy even further!

6.2.5 Model insights

It’s interesting to gain insight about the data through the act of building
predict a certain answer. From the feature importance list, you can under
parameters have the most predictive power, and you use that to look at the
ways. In our initial unsuccessful attempt, it was because of inspection of
importance list that we discovered the problem with the data. In the curr
model, you can also use the list to inspire some new visualizations.

 At every iteration of our model in this section, the most important f
been the pickup and drop-off location features. Figure 6.12 plots the geog
tribution of drop-offs that yield tips from the passenger, as well as drop-of
that don’t.

–73.90

–73.92

–73.94

–73.96

–73.98

–74.00

–74.02

–74.04

40.60 40.8540.8040.7540.7040.65

dr
op

of
f_

lo
ng

itu
de

dropoff_longitude

Figure 6.12 The geographical distribution of drop-offs

144 CHAPTER 6 Example: NYC taxi data

Figure 6.12 shows an interesting trend of not tipping when being dropped off closer
to the center of the city. Why is that? One possibility is that the traffic situation creates
many slow trips, and the passenger isn’t necessarily happy with the driver’s behavior.
As a non–US-citizen, I have another theory. This particular area of the city has a high
volume of both financial workers and tourists. We’d expect the financial group to be
distributed farther south on Manhattan. There’s another reason that tourists are the
most likely cause of this discrepancy, in my mind: many countries have vastly different
rules for tipping than in the United States. Some Asian countries almost never tip, and
many northern European countries tip much less, and rarely in taxis. You can make

s, of course,
out the real

lem suitable
s five chap-

aration, fea-
ptimization,

ng amounts

icly. A lot of

the domain
ake prema-

 on prema-

ly on. In an
 process of
e progress.
the domain
many other interesting investigations based on this dataset. The point i
that real-world data can often be used to say something interesting ab
world and the people generating the data.

6.3 Summary
This chapter introduced a dataset from the real world and defined a prob
for the machine-learning knowledge that you’ve built up over the previou
ters. You went through the entire ML workflow, including initial data prep
ture engineering, and multiple iterations of model building, evaluation, o
and prediction. The main takeaways from the chapter are these:

■ With more organizations producing vast amounts of data, increasi
of data are becoming available within organizations, if not publicly.

■ Records of all taxi trips from NYC in 2013 have been released publ
taxi trips occur in NYC in one year!

■ Real-world data can be messy. Visualization and knowledge about
helps. Don’t get caught in too-good-to-be-true scenarios and don’t m
ture assumptions about the data.

■ Start iterating from the simplest possible model. Don’t spend time
ture optimization. Gradually increase complexity.

■ Make choices and move on; for example, choose an algorithm ear
ideal world, you’d try all combinations at all steps in the iterative
building a model, but you’d have to fix some things in order to mak

■ Gain insights into the model and the data in order to learn about
and potentially improve the model further.

145Terms from this chapter

6.4 Terms from this chapter

Word Definition

open data Data made available publicly by institutions and organizations.

FOIL Freedom of Information Law. (The federal version is known as the Free-
dom of Information Act, or FOIA.)

too-good-to-be-true scenario If a model is extremely accurate compared to what you would have
thought, chances are that some features in the model, or some data

king biasing
peculiarities, are causing the model to “cheat.”

premature assumptions Assuming something about the data without validation, ris
your views of the results.

Advanced feature
engineering
This chapter covers
■ Using advanced feature-engineering concepts

to increase the accuracy of your machine-
learning system

■ Extracting valuable features from text by using
natural-language-processing techniques
pter 5 and
hapter 6. In
n use when
he two most
 techniques

data in your

 chapter 5.
niques, and
146

You explored the basic concepts behind feature engineering in cha
applied simple feature-engineering techniques to real-world data in c
this chapter, you’ll look at more-sophisticated techniques that you ca
faced with types of data that have become common in today’s world. T
important of these are text and images. This chapter presents advanced
for extracting features from text and image data, in order to use this
machine-learning pipelines.

7.1 Advanced text features
You already looked at simple feature engineering for text data in
This section provides more details about the ideas behind these tech

■ Extracting meaning from images and using them
as features in your machine-learning project

147Advanced text features

presents more-advanced concepts that can improve the accuracy of your models
even further.

 Recall that your mission in extracting features from text is to somehow convert
texts of various lengths and words into a common set of features. In chapter 5, you
learned about the bag-of-words representation, in which you count the occurrences of
words across all texts and use the counts of the top-N words as N new features. This
work of transforming natural-language text into machine-usable data is commonly
referred to as natural language processing, or NLP.

n NLP. It’s a
f many other
n about this
zation.

mon way to
uages), you

 even some-
o- or three-

 they’re the
 7.1 include
7.1.1 Bag-of-words model

Bag of words is one of the simplest but also most widely used techniques i
great approach to start with for any text-based problem. It’s also the basis o
more advanced methods that you’ll look at later in this chapter. You’ll lear
model in two parts: first, tokenization and transformation, and then vectori

TOKENIZATION AND TRANSFORMATION

The splitting of a text into pieces is known as tokenization. The most com
split is on words, but in some cases (for example, in character-based lang
may want to split on characters or split on pairs or groups of words or
thing more advanced. Groups of words in a split are known as n-grams. Tw
word combinations are known as bigrams and trigrams, respectively (and
most common after one-word unigrams). Bigrams in the example in figure

Split text
(e.g., on words)

The quick brown fox jumps over the lazy dog.

The lazy brown fox jumps over the dog.

Process words
(e.g., lowercase)

Count
occurrences

Defined
vocabulary

foxbrownquick lazy dogoverjumpsthe

221 2 2224

Text 1

Text 2

Tokenization

Transformation

Figure 7.1 The initial steps in the bag-of-words extraction algorithm

148 CHAPTER 7 Advanced feature engineering

“the lazy,” “brown fox,” and so forth. Trigrams include “brown fox jumps” and “jumps
over the.”

 Expanding to multiple words may help your models in some cases, by offering
more contextualization of the text. But using multiple words also typically inflates the
number of features quite dramatically. In practice, you usually start with only unigram
representations. If you want to move to higher-grade grams, you have to make sure to
use an ML algorithm that handles sparse data. You’ll learn more about that in the fol-
lowing subsection.

 The next step in our bag-of-words algorithm is to make any transformations neces-
ation is con-
th “fox” and
u may want

oper names
gful). Stem-

 for extract-
mming, for
e expressed
ustom han-

, depending

atures from.
 of features,
rting by the

ur ML mod-
bers corre-

.2 shows this

guage texts
t are simply
h, these are
ically aren’t
l words that
ccurrences,

occurrences
er text (the

 of the other
ar word is a
LTK Python
’t have to do
ent for your
sary to the tokens extracted from the text. A good example of a transform
verting all words to lowercase, such that you don’t produce features for bo
“Fox,” which may add to the noise of the model. In some cases, however, yo
to preserve the case, if it makes sense in your project (for example, if pr
are common in the text and highly predictive, or if ALL CAPS is meanin
ming—which strips word suffixes—can also be a powerful transformation
ing more signals out of different words with similar meanings. Using ste
instance, causes the words “jump,” “jumping,” “jumps,” and “jumped” to all b
as the token “jump” in your dictionary. Other transformations such as c
dling of numbers, punctuation, and special characters can also be useful
on the text at hand.

 Next, you can define the dictionary that you’ll generate your text fe
For machine-learning projects, it’s common to set a limit on the number
hence the number of words, in your dictionary. This is usually done by so
word occurrences and using only the top-N words.

VECTORIZATION

You can use your bag-of-words dictionary to generate features to use in yo
els. After defining the dictionary, you can convert any text to a set of num
sponding to the occurrences of each dictionary word in the text. Figure 7
process, which is called vectorization.

 But there’s a problem that we haven’t discussed yet. Most natural-lan
include many words that aren’t important for understanding the topic, bu
“filling.” These include words such as “the,” “is,” and “and.” In NLP researc
called stop words, and they’re usually removed from the dictionary as they typ
highly predictive of anything interesting and can dilute the more meaningfu
are important from an ML perspective. With our words already sorted by o
the usual way to remove stop words is to throw away all words with more
than a certain word-count threshold. Figure 7.2 shows an example; a larg
third row in the figure) has a much larger count of the word “the” than any
words. The challenge, then, is to define the threshold at which a particul
stop word and not a meaningful word. Most NLP libraries, such as the N
library, include prebuilt stop-word lists for a range of languages so you don
this every time. In some cases, though, the list of stop words will be differ

149Advanced text features

 choice is to

many words,
’re generat-

ots of zeros.
t, so we call

mon to have
ea to choose
hm that can
 naïve Bayes
d are there-
m forest are
ileage may

e evaluation

other, more-
This section

 counts. If a
 word “data”
e word also

y rare words

Defined
vocabulary

Vectorization

foxbrownquick lazy dogoverjumpsthe

111 1 1112

110 1 1112

Text 1

Text 2

ipedia page
t “quick brown

 pangram.

he rows show
 the sentence
all letters in
specific project, and you’ll need to choose a stop-word threshold (a standard
exclude any words that appear in more than 90% of all documents).

 Although not apparent in figure 7.2, any realistic dictionary will have
and usually only a small subset of those will be present in the texts that you
ing features for. This combination usually makes text features include l
Only a small number of the dictionary words will be found in a given tex
the bag-of-words features sparse. If you have many sparse features (it’s com
1,000 features with only a small percent nonzero elements), it’s a good id
an ML algorithm that can handle sparse features natively, or an algorit
deal with many low-significance features without sacrificing accuracy. The
algorithms in the scikit-learn Python library handle sparse data natively, an
fore well suited for text-classification problems. Algorithms such as rando
known to handle lots of low-significance features well, although your m
vary. You should always test the efficacy of different methods by using th
and optimization techniques discussed in chapter 4.

7.1.2 Topic modeling

The bag-of-words method is simple to understand and implement. But
advanced methods could lead to big increases in ML model accuracy.
introduces three of those methods.

 One problem with the bag-of-words model is the nature of simple word
certain word (not a stop word) is common in a corpus—for example, the
in a corpus of ML papers—it’s not necessarily informative to know that th
appears in a new text. Instead, you’d do better by focusing on relativel

1088 6 66465
Wik
abou
fox”

Figure 7.2 Using the vocabulary, you can now represent each text as a list of numbers. T
the count for the two small texts in figure 7.1 and the count for the Wikipedia page about
“The quick brown fox jumps over the lazy dog,” which is an English pangram (it includes
the English alphabet).

150 CHAPTER 7 Advanced feature engineering

that are more highly predictive of the outcome of interest. To this end, it’s common to
scale the word counts by the inverse of the total count of that word in the corpus.
Because you want to describe a text the best you can using only numbers, and a word
that isn’t abundant in the training corpus but is abundant in a new document is likely
more indicative of the meaning of the new document, you’re better off giving prefer-
ential treatment to that rare word.

TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

A commonly used algorithm that tries to solve this exact problem is called term fre-
quency–inverse document frequency, or tf-idf for short. This algorithm is calculated as a

idf).
 number of

her versions
erwise) and

e total num-
erm, so that
 tf-idf equa-

f text. It can
ctor of num-
 as distances
cument, you
his way, and
isting 7.1 in

 tf-idf vectors
ic indexing.

ing, or LSI)
d both con-
s to build a
 document.
ess in order

cept is a pat-
f “dog” may

l.” The algo-
re related by
e connected
product of the term frequency (tf) and the inverse document frequency (
 The tf can be calculated in different ways, but the simplest is to use the

times a word occurs in a particular document. It’s also common to use ot
of the tf factor, such as binary (1 if the word is in a document, and 0 oth
logarithmic (1 + log[tf]).

 The inverse document frequency is calculated as the logarithm of th
ber of documents, divided by the number of documents that contain the t
relatively uncommon words attain higher values. In its simplest form, the
tion looks like this:

Tf-idf can be powerful for generating good ML features from any corpus o
also be useful in other areas, such as search. Because you’re generating a ve
bers for any document, you can also find “distances” between documents,
between their tf-idf vector representations. If the user search query is a do
can find the distances between any other documents in your dataset in t
hence return a ranked list of documents to the user based on the query. L
the next section shows how to use the scikit-learn Python library to generate
from documents, along with a more advanced technique called latent semant

LATENT SEMANTIC ANALYSIS

Latent semantic analysis, or LSA (also commonly called latent semantic index
is a more sophisticated method of topic modeling. It’s also more advance
ceptually and computationally. The idea is to use the bag-of-word count
term-document matrix, with a row for each term and a column for each
The elements of this matrix are then normalized similarly to the tf-idf proc
to avoid frequent terms dominating the power of the matrix.

 The main trick of the LSA algorithm is in its notion of a concept. A con
tern of similar terms in the document corpus. For example, the concept o
have related terms (words, in this case) of “barking,” “leash,” and “kenne
rithm doesn’t label the concept “dog” but instead figures out which words a
their co-occurrence in documents and then ascertains that these words ar

tf idf term,doc,docs – count term in doc  count docs 
count docs with term 
--=

151Advanced text features

through a certain abstract concept. The word “dog” may itself be an important term
related to the “dog” concept. These topics are considered hidden or latent in the data,
hence the name latent semantic analysis.

 LSA uses singular value decomposition (SVD)1—a well-known mathematical tool—to
split the term-document matrix (A) into three matrices (T,S,D). T is the term-concept
matrix that relates the terms (for example, “barking” and “kennel”) to concepts (for
example, “dog”), and D is the concept-document matrix that relates individual docu-
ments to concepts that you’ll later use to extract the features from the LSA model.
The S matrix holds the singular values. In LSA, these denote the relative importance

mber of fea-
 singular val-
all that the

for your ML
x (D). When
res from the
 D = ATTS–1.
e new docu-
he SVD.
e knows lin-
ementations
includes the

-document
g the docu-

er), SVD is the
f LSA as “PCA

izes the tf-idf object
 default parameters

eates the tf-idf
tionary from
cuments

that a term has to a document. In the same way as you restricted the nu
tures in the bag-of-words and tf-idf algorithms, you can now select the top
ues and restrict the feature space to something more manageable; rec
term-document matrix (A) can be extremely large and sparse.

 Using the top-N components of the SVD, you generate N features
model by taking the corresponding rows from the concept-document matri
new documents come in for prediction, you can generate a new set of featu
previously learned LSA model by performing the matrix multiplication:
Here AT is the word count (or tf-idf), using the defined dictionary, for th
ment, and T and S are the term-concept and singular-value matrices from t

 Although it’s useful to understand the principles of LSA, not everyon
ear algebra well enough to do these calculations. Luckily, plenty of impl
can readily be used in your ML project. The scikit-learn Python library
functionality needed to run LSA by (1) using tf-idf to generate the term
matrix, (2) performing the matrix decomposition, and (3) transformin
ments to vectors, as shown in the following listing.

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

def latent_semantic_analysis(docs):
 tfidf = TfidfVectorizer()
 tfidf.fit(docs)
 vecs = tfidf.transform(docs)
 svd = TruncatedSVD(n_components=100)
 svd.fit(vecs)
 return svd.transform(vecs)

1 For readers familiar with principal component analysis (which is presented later in this chapt
same technique that enables you to compute PCA coordinates from a dataset. You can think o
for bag of words.”

Listing 7.1 Latent semantic analysis using scikit-learn

Initial
using

Cr
dic
do

Uses the dictionary
to generate a tf-idf
feature matrix

Initializes the LSA object,
using 100 coordinatesCreates SVD

matrices
Computes LSA features

for all documents

152 CHAPTER 7 Advanced feature engineering

Next, you’ll look at a few advanced extensions to LSA that have recently become pop-
ular in the field of topic modeling.

PROBABILISTIC METHODS

LSA is based on linear algebra (math with vectors and matrices), but an equivalent
analysis can be done using probabilistic methods that model each document as a sta-
tistical mixture of topic distributions. These concepts are all relatively advanced, and
we won’t go into the mathematical details here, but the probabilistic approach can
perform better in terms of model accuracy for some datasets.

 The probabilistic analogue to LSA is known as pLSA (for probabilistic). A more
ich specific
assumption
erm (word)
rse datasets.
n using the

 be tuned to
ance metric
orth noting
ew training

 other inter-
chapter 10,
solve a real-
ely different

m text. The
 expand the
o introduce
 some com-

st, by
nsim”

widely used version of this is called latent Dirichlet analysis (LDA), in wh
assumptions are made on the distribution of topics. You build in the
that a document can be described by a small set of topics and that any t
can be attributed to a topic. In practice, LDA can perform well on dive
The following code listing highlights how LDA can be used in Pytho
Gensim library.

import gensim.models.ldamodel.LdaModel

def lda_model(docs):
 return LdaModel(docs, num_topics=20)

def lda_vector(lda_model, doc):
 return lda_model[doc]

The number of topics used in the LDA model is a parameter that needs to
the data and problem at hand. We encourage you to define your perform
and use the techniques in chapter 4 to optimize your model. It’s also w
that the LDA in Gensim can be updated on the fly with new documents if n
data is coming in continuously. We encourage you to check out the many
esting natural-language and topic-modeling algorithms in Gensim. In
you’ll use some of these advanced text-feature-extraction techniques to
world machine-learning problem. The next section introduces a complet
method for text-feature extraction: expanding the content of the text.

7.1.3 Content expansion

We now turn to a completely different concept for extracting features fro
methods of this section don’t represent the text with numbers, but rather
text content to include more text (which can then be featurized) or t
other useful information for the specific ML problem. The following are
mon content-expansion methods.

Listing 7.2 Latent Dirichlet analysis in Python using Gensim

Must install Gensim fir
running “pip install ge

Builds LDA model, setting the
number of topics to extract

Generates features
for a new document

153Advanced text features

FOLLOW LINKS

If you’re looking to build an ML classifier by extracting text features from tweets (for
instance, for a Twitter sentiment analysis that classifies a post as positive or negative in
sentiment), you’ll often find the 140-character limit problematic. You might not have
enough information to obtain the desired accuracy of the model.

 Many tweets contain links to external web pages that can hold much more text,
and that you could expand the tweet with the text from the link in order to improve
the quality of the data. You could even follow links deeper on the web page to build a
larger corpus of text.

the text and
n an online
uld be any-
 the Wikipe-
 algorithms

ct of several
 word could
letely wrong
ies again by
at any other
ge-base text.
 entities fall

ntity “Tesla.”
ill be about
s most likely
 it might be

 analyze the
types of fea-

aluable data
entions, as

favorites. As
n from link
he count of
t languages.
 answer as a

ination and
 an iterative
KNOWLEDGE-BASE EXPANSION

A more advanced text-extension method is to detect named entities in
extend the original text with information about each named entity i
knowledge base, such as Wikipedia. In this situation, named entities wo
thing that you could look up on Wikipedia. You’d then grab the text from
dia entry for that named entity and perform any of the text-extraction
from section 7.1.2.

 Extracting named entities isn’t a trivial task, and has been the subje
research groups. One of the issues stems from ambiguous names. If one
have multiple meanings, you risk expanding your feature set with comp
information. One possible solution is to disambiguate the named entit
using a knowledge base like Wikipedia. First of all, you could assume th
words in the tweet, for example, would also be common in the knowled
You could also use the Wikipedia link graph to find how close two named
in the knowledge base. An example is a tweet that includes the named e
Some tweets will relate to the electronic car company, whereas others w
inventor Nikola Tesla. If the tweet contains the word “car” or “model,” it’
about Tesla, the company. If it contains the related entity of “Edison,”
about the person (Tesla and Edison worked together in NYC in 1884).

TEXT META-FEATURES

Another technique for extending the text features with valuable data is to
text for meta-features. Unlike the previously discussed techniques, these
tures are problem-dependent.

 Let’s take the example of tweets again. A tweet contains all sorts of v
that’s particular to tweets and can be extracted, such as hashtags and m
well as meta-information from Twitter, such as counts of retweets and
another example for web-based text, you could extract basic informatio
text, such as the top-level domain. In general text, you could extract t
words or characters or the number of special characters in differen
Extracting the language could be an ML classifier itself that provides the
feature to another classifier.

 To choose the right text meta-features, you should use your imag
knowledge of the problem at hand. Remember that the ML workflow is

154 CHAPTER 7 Advanced feature engineering

process; you can develop a new feature, go back through the pipeline, and analyze
how the accuracy is improved over time.

 You can use the text to get at other types of data as well. The text might include
dates and times that could be useful for the ML model to understand, or there may be
time information in the metadata of the text. Chapter 5 presented date-time feature
extractions, which can be used in this context as well.

 If you’re analyzing a web page, or there’s a URL in the text, you may have access to
images or videos that are important for understanding the context of the text. Extract-
ing features from images and videos requires even more-advanced techniques, which

nse and our
we navigate
ters, on the
this fact has
en it comes

hms in com-
as arguably
man levels,
you can get
r vision and
st computa-

n be used in
 raw pixels,

ause it may
ine-learning
s. You treat
el.
dimensional
ages in one

55 (for 8-bit
housands or
 potentially

h isn’t often
 without any
ying indoor
you’ll investigate next.

7.2 Image features
One of the strongholds of human intelligence is our visual and spatial se
ability to recognize patterns and objects in images and the 3D scenes
every day. Much of the way we think is based on these abilities. Compu
other hand, think in bits and their visual analogue, pixels. Historically,
severely limited computers’ ability to match human levels of cognition wh
to visual pattern recognition. Only with the advent of sophisticated algorit
puter vision and artificial intelligence—from which machine learning h
sprung—are researchers and practitioners getting closer to reaching hu
although most often in narrowly specified areas. On the other hand, if
close to matching human-level pattern recognition accuracy with compute
machine-learning techniques, you can reap some of the benefits of mo
tional systems: scalability, availability, and reproducibility.

 This section presents a few ways to extract features from images that ca
your ML workflows. First, you’ll look at simple image features including
colors, and image metadata.

7.2.1 Simple image features

The simplest way to deal with images is worth mentioning, not only bec
sometimes be enough, but also because it shows the true power of the mach
approach, as compared to manual or conventional statistical approache
the values of pixels in the image as the features that go into your ML mod

 In practice, you make a single row with all the pixels, converting the two-
image into one dimension. If it’s a color image, you have basically three im
(red, blue, green channels). Normal pixel values are 0.0 to 1.0, or 0 to 2
images). You may have guessed that for any modern image, this creates t
millions of features that will increase the computational requirements and
lead to overfitting, hence affecting the accuracy. That’s why this approac
used in practice. Still, you’d probably be surprised how well this can work
sophisticated feature engineering for some ML problems, such as classif
versus outdoor images.

155Image features

 In principle, all the information is encoded in the pixels. If you’re not going to use
the raw pixels for performance reasons (computationally or accuracy-wise), you have
to find a way to represent the image with fewer features that works well enough for
your specific problem. This is exactly the same problem you were solving in the previ-
ous section on text features and many other feature-engineering techniques. Toward
the end of section 7.2.2, we introduce some new methods for automatic feature
extraction, but most current practical ML projects on images use some of the tech-
niques described in this section.

COLOR FEATURES

scape of the
se, it sounds
ulate simple
ode, standard
n RGB (red-

or ranges of
much of the

s helpful for
recorded by
el to predict
rithm could
d the zoom

 missing values

annel plus 1)

 value in green

hannel plus 1)
Let’s say you’re trying to classify images into categories based on the land
images. Categories could be sky, mountain, or grass, for example. In this ca
useful to represent the images by the constituent colors. You can calc
color statistics of each color channel of the image, such as mean, median, m
deviation, skewness, and kurtosis. This leads to 6 x 3 = 18 features for commo
green-blue channel) images.

 Another set of features representing colors in the images are the col
the image. Table 7.1 shows a list of possible color ranges that will cover
color space.

IMAGE METADATA FEATURES

In addition to color information, the image may contain metadata that’
your problem. Most photographs, for example, include EXIF data that’s
the camera at the time the picture was taken. If you’re building a mod
whether an image is considered interesting or beautiful to a user, the algo
use the brand of the camera and the lens, the value of the aperture, an
level. Table 7.2 outlines image metadata features that may be useful.

Table 7.1 Examples of color-range features. You add 1 to the divisors to avoid producing
from dividing by 0.

Color range Definition

Red range Max value in red channel minus min value in red channel

Red-to-blue range Red range / (max value in blue channel minus min value in blue ch

Blue-to-green range (Min value in blue channel minus max value in blue channel) / (min
channel minus max value in green channel plus 1)

Red-to-green range Red range / (max value in green channel minus min value in green c

Table 7.2 Image metadata features that can be included in the ML pipeline

Feature Definition

Manufacturer The company that made the camera

Orientation The orientation of the camera (landscape or portrait)

156 CHAPTER 7 Advanced feature engineering

ine-learning
esented any
portant for

re-advanced
es.

ation from
h numerical
al methods.

r edges and
 image.

Date-time Time of the shooting (use the date-time features introduced in chapter 5)

Compression How the image is compressed (usually JPEG or RAW)

Resolution The number of pixels in the width and height dimensions

Aspect ratio A measurement indicated by dividing the height and width resolutions

Exposure time The number or fraction of seconds of exposure

)

Table 7.2 Image metadata features that can be included in the ML pipeline (continued)

Feature Definition

) produces
 Wikipedia,
With these simple features, you might be able to solve quite a few mach
problems that have images as part of the data. Of course, you haven’t repr
of the shapes or objects in the image, which will, for obvious reasons, be im
many image-classification problems! The next section introduces mo
computer-vision techniques commonly used to represent objects and shap

7.2.2 Extracting objects and shapes

So far, you haven’t considered objects or shapes when extracting inform
images. In this subsection, you’ll look at a few ways to represent shapes wit
features that can be automatically extracted via statistical and computation

EDGE DETECTION

Probably the simplest way to represent shapes in images is to find thei
build features on those. Figure 7.3 shows an example of edge detection in an

Aperture The f-number representing the aperture (for example, 2.8 or 4.0

Flash Whether the flash was on

Focal length The distance from the lens to the point of focus

Input image Canny edge-detection algorithm

Figure 7.3 Applying the Canny edge-detection algorithm to a photo of a girl (input on left
a new binary image (on right) with only the edges traced. (Image by JonMcLoone at English
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=44894482.)

157Image features

Several well-known algorithms can find edges in an image. Some of the most com-
monly used are the Sobel and Canny edge-detection algorithms. Figure 7.3 shows the
Canny algorithm.

 from those
l number of
f the image,

 of interest.
or example,
parts of the

ct particular
s (HOG). In
r particular

essing tech-
age regions
 is achieved

e image are

Image processing in Python with scikit-image
We’ve mentioned the scikit-learn Python library a few times in this book already, as
it provides an easy way to try many machine-learning algorithms. The analogue to this
in the computer-vision and image-processing world is scikit-image. This is an equally
useful way to try algorithms that we talk about in this section.
Now that you’ve extracted edges from images, you can extract features
edges. The simplest way is to calculate a number that represents the tota
edges in an image. If edges is your edge images and res is the resolution o
the equation is as follows:

Together with other features, this may be useful in determining objects
You can define other edge-based features depending on your use case. F
you could choose to calculate the preceding edge score for multiple
image in a grid.

ADVANCED SHAPE FEATURES

More-sophisticated feature-extraction algorithms that can be used to dete
shapes and objects exist. One of these is the histogram of oriented gradient
machine learning, these algorithms can be used to detect human faces o
animals in images, for example.

 The HOG algorithm is a multistep process of various image-proc
niques. The goal of the algorithm is to describe shapes and objects in im
that aren’t too sensitive to small changes in scale and orientation. This
as follows:

1 Calculate the gradient image (which direction the edges of th
“moving”)

2 Divide the image into small blocks called cells

If you’re using Pip, scikit-image can easily be installed with the following:

$ pip install scikit-image

Here’s a simple example of using this library for edge detection:

>>> import skimage
>>> image = skimage.data.camera()
>>> edges = skimage.filter.sobel(image)

edge_score edges
resx resy
-----------------------=

158 CHAPTER 7 Advanced feature engineering

3 Calculate the orientation of the gradients inside those cells
4 Calculate the histogram of those orientations in the individual cells

Usually, larger blocks of the image are defined from the smaller cells and used for
normalization of the gradient values in the cells. In this way, you can avoid being too
sensitive to changes in lighting or shadows. Each cell can then be flattened into a list
of features that describe the shapes in the image and can be used in the ML pipeline.

 As usual, you’re concerned with understanding the usefulness of the algorithms
from a practical perspective, and so you can go ahead and use an already implemented

e version of
 image. Fig-
h of Ameri-
.

,8),

mber of ori-
in cells, and

on scikit-
tion/
library for HOG features. The scikit-image Python library has an easy-to-us
HOG. The following listing shows how to calculate HOG features for an
ure 7.4 shows the result of the HOG transformation applied to a photograp
can astronaut Eileen Collins, the first female commander of a Space Shuttle

import skimage

image = skimage.color.rgb2gray(skimage.data.astronaut())
hog = skimage.feature.hog(image, orientations=9, pixels_per_cell=(8

cells_per_block=(3,3), normalise=True, visualise=True)

Here you see how to calculate HOG features easily while defining the nu
entations to consider, the size of the cells in pixels, the size of the blocks
whether to normalize and visualize the result.

Listing 7.3 Histogram of oriented gradients in Python with scikit-image

Input image Histogram of oriented gradients

Figure 7.4 Applying the HOG transformation. This image is from the HOG example page
image documentation (http://scikit-image.org/docs/dev/auto_examples/features_detec
plot_hog.html#sphx-glr-auto-examples-features-detection-plot-hog-py).

159Image features

 With HOG features, you have a powerful way to find objects in images. As with
everything, in certain cases, HOG doesn’t work well—for instance, when the object
changes orientation significantly. You should make proper tests of the ML system as
usual to determine usefulness for the problem at hand.

DIMENSIONALITY REDUCTION

We’re almost always in the game of dimensionality reduction when performing fea-
ture extraction, except perhaps for the content-expansion methods in the previous
section. But a few techniques are commonly used for dimensionality reduction in gen-
eral, and the most widely used is called principal component analysis (PCA).

n be used as
le of princi-

ges, whereas
eatures for a
, thus repre-
use as many

ly nonlinear
ensionality

aps.

Invented in
t the center
arning field
ds for some
t, had prob-
ded up as a
akthroughs

 Deep neural
s, but espe-
 layout of a

 PCA allows you to take a set of images and find “typical” images that ca
building blocks to represent the original images. Combining the first coup
pal components enables you to rebuild a large portion of the training ima
subsequent components will cover less-frequent patterns in the images. F
new image are generated by finding the “distance” from a principal image
senting the new image by a single number per principal image. You can
principal components as make sense in your ML problem.

 PCAs are known to be linear algorithms; they can’t represent inherent
data. There are several extensions to PCA or other types of nonlinear dim
reduction. An example that we’ve had good experiences with is diffusion m

AUTOMATIC FEATURE EXTRACTION

A renaissance has occurred in the world of artificial neural networks.
the ’80s and inspired by the biology of the brain, these networks were a
of the artificial intelligence field that has evolved into the machine-le
we know today. For a few decades, they were considered useful metho
ML problems. But because they were hard to configure and interpre
lems with overfitting, and were less computationally scalable, they en
last resort when real-world problems needed solving. Now, several bre
in machine-learning research have mostly taken care of these issues.
nets (DNNs) are now considered state of the art for many ML problem
cially those that deal with images, video, or voice. Figure 7.5 shows the
neural net.

Hidden

Input

Output

Figure 7.5 A simple artificial neural network.
Deep neural nets are made of many layers of these
simple networks. (Image from Wikipedia.)

160 CHAPTER 7 Advanced feature engineering

In DNNs, each layer is capable of defining a set of new features that are useful for the
problem at hand. The weights between nodes then define the importance of those
features for the next layer, and so forth. This approach was traditionally prone to over-
fitting, but recently developed techniques allow for the removal of node connections
in a way that the accuracy is maintained while decreasing the risk of overfitting.

 The use of DNNs, also known as deep belief networks or deep learning, is still a relatively
new field. We encourage you to follow its development.

7.3 Time-series features
in the form
 Time-series
cteristics of

loying static
value out of
pes of time-
etails some

t processes.
r time. Typi-
ekly, and so
s of classical

, measured

ential home

t (for exam-
urements of

ver time. As
consist of a

er metadata
ses are also
include the

 (this is also

 and so forth
Many datasets that are amassed by modern data-collection systems come
of time series, measurements of a process or set of processes across time.
data is valuable because it provides a window into the time-varying chara
the subjects at hand and enables ML practitioners to move beyond emp
snapshots of these subjects to make predictions. But fully extracting the
time-series data can be difficult. This section describes two common ty
series data—classical time series and point processes (event data)—and d
of the most widely used time-series features.

7.3.1 Types of time-series data

There are two main types of time-series data: classical time series and poin
Classical time series consist of numerical measurements that are taken ove
cally, these measurements are evenly spaced over time (hourly, daily, we
forth) but can also consist of irregularly sampled data. These are example
time-series data:

■ The value of the stock market, in billions of dollars (for example
hourly, daily, or weekly)

■ The day-to-day energy consumption of a commercial building or resid
■ The value, in dollars, of a client’s bank account over time
■ Sets of diagnostics monitored in an industrial manufacturing plan

ple, physical performance measurements of different parts or meas
plant output over time)

Point processes, on the other hand, are collections of events that occur o
opposed to measuring numerical quantities over time, point processes
timestamp for each discrete event that happens, plus (optionally) oth
about the event such as category or value. For this reason, point proces
commonly referred to as event streams. Examples of point processes
following:

■ The activity of a web user, measuring the time and type of each click
called clickstream data)

■ Worldwide occurrences of earthquakes, hurricanes, disease outbreak,

161Time-series features

■ The individual purchases made by a customer throughout the history of their
account

■ Event logs in a manufacturing plant, recording every time an employee touches
the system and every time a step in the manufacturing process is completed

An astute reader may note that for some time series, a one-to-one mapping exists
between the classical time-series representation and the underlying point process. For
example, a customer’s bank account can easily be viewed either as the value of the
account over time (classical time series) or as a list of the individual transactions

pes of time-
. (For exam-
e web clicks

just as easily
s of a crime

ublicly avail-
 1.5 million
act date and

e of ways: by
e series for

w event data
he resulting
data shows a

tegory

NNESS

MINAL

T

ARCOTIC

T

Y/THEFT

Y/THEFT

IOUS OCC
(point process). This correspondence can be useful in creating various ty
series features on a single dataset. But the conversion isn’t always possible
ple, it’s difficult to imagine what a classical time-series related to simpl
would be.)

 To make this more concrete, let’s look at time-series data that can be
viewed as a point process or a time series. Table 7.3 shows the first few row
dataset from San Francisco, collected between 2003 and 2014 (dataset p
able at https://data.sfgov.org). In all, the dataset consists of more than
crimes that occurred in the city. For each crime, the data includes the ex
time of the crime, type of crime, and location.

You can aggregate this raw data into classical time-series data in a multitud
year, by month, by day of week, and so on, potentially with a different tim
each district or category. Listing 7.4 demonstrates how to aggregate the ra
into a time series of the monthly number of crimes in San Francisco. T
time series of integer crime count by month is plotted in figure 7.6. The

Table 7.3 San Francisco crime data in its raw form, as a sequence of events

Incident number Date Time District Ca

80384498 04/13/2008 00:54 NORTHERN DRUNKE

80384147 04/13/2008 00:55 CENTRAL NONCRI

80384169 04/13/2008 00:56 BAYVIEW ASSAUL

80384169 04/13/2008 00:56 BAYVIEW DRUG/N

80384153 04/13/2008 00:57 BAYVIEW OTHER

80384175 04/13/2008 01:00 CENTRAL ASSAUL

80384943 04/13/2008 01:00 CENTRAL LARCEN

80392532 04/13/2008 01:00 INGLESIDE LARCEN

80384943 04/13/2008 01:00 CENTRAL FRAUD

80384012 04/13/2008 01:15 NORTHERN SUSPIC

162 CHAPTER 7 Advanced feature engineering

ecent uptick

[0::2]),

14000

13000

12000

11000r o
f c

rim
es

reates classical
me series
marked decline from the rate of 13,000 crimes per month in 2003, and a r
in crime activity.

import pandas as pd
from datetime import datetime
from matplotlib import pyplot as plt

df = pd.read_csv("sfpd_incident_all.csv")

df['Month'] = map(lambda x: datetime.strptime("/".join(x.split("/")
"%m/%Y"),df['Date'])

df_ts = df.groupby('Month').aggregate(len)["IncidntNum"]

plt.plot(df_ts.index,df_ts.values,'-k',lw=2)
plt.xlabel("Month")
plt.ylabel("Number of Crimes")

Listing 7.4 Converting SF crime event data to classical time series

10000

9000

8000
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

N
um

be

Year

Figure 7.6 Classical time series of monthly crime count in San Francisco. This data was
processed from the raw event data. For ML modeling, you can derive features from the
event data, the classical time series, or both.

C
ti

Plots time
series

163Time-series features

7.3.2 Prediction on time-series data
Just as there are two common types of time-series data, there are also two common types
of predictions that you can make from time-series data. The first is time-series forecasting,
which attempts to predict future values of the time series (or times of future events)
based on past measurements. Time-series forecasting problems include the following:

■ Predicting tomorrow’s price of a stock
■ Predicting tomorrow’s temperature in Phoenix, Arizona
■ Forecasting next year’s energy consumption in Denmark
■ Forecasting the date of the next major hurricane in North America

l time series,
on thread is
 predictions
 forecasting

tle attention
 For further

tion or regres-
re is to clas-
time series.

r will click a

h of a set of
o fail in the

 each user’s

ations based

ies classifica-
g time-series
s can also be

 approaches
nd describe

ng the time
sidering the
The first three of these tasks involve predicting future values of a classica
whereas the fourth is a prediction on a point-process dataset. The comm
that each task involves analyzing the values of a single time series to make
about the future. Note that the vast majority of literature on time-series
falls under the branch of time-series analysis, whereas comparatively lit
has been focused here by ML practitioners (though that is changing).
details, any Google or Amazon search will reveal an abundance of results!

 The second common type of time-series prediction is time-series classifica
sion. Instead of predicting future values of a single time series, the aim he
sify (or predict a real-valued output on) hundreds or thousands of
Examples of this type of problem include the following:

■ Using each user’s online clickstream to predict whether each use
specific ad

■ Employing a time series of QA measurements to determine whic
manufactured goods (for example, lightbulbs) are most likely t
next month

■ Predicting the lifetime value of each user of an online app based on
in-app activity stream from the first week after sign-up

■ Predicting which patients are most likely to suffer post-op complic
on their medical records

Unlike time-series forecasting, ML has had a large influence on time-ser
tion and regression. The following section focuses primarily on creatin
features for classification/regression purposes, but many of those method
applied for time-series forecasting.

7.3.3 Classical time-series features
This section describes several of the most common feature-engineering
for classical time series. We start with the simplest time-series metrics a
progressively more complicated and sophisticated approaches.

SIMPLE TIME-SERIES FEATURES

It may sound absurd, but the simplest time-series metrics involve ignori
axis altogether! Analyzing the distribution of measurements without con

164 CHAPTER 7 Advanced feature engineering

timestamps can often provide useful information for classification, regression, or fore-
casting. For discussion purposes, we outline four simple (yet powerful) metrics that
involve only the marginal distribution of time-series measurements:

■ Average—The mean or median of the measurements can uncover tendencies in
the average value of a time series.

■ Spread—Measurements of the spread of a distribution, such as standard devia-
tion, median absolute deviation, or interquartile range, can reveal trends in the
overall variability of the measurements.

■ Outliers—The frequency of time-series measurements that fall outside the range
ur standard
 cases, such

rginal distri-
urtosis), or
ibution (for

hich entails
or instance,

ay be highly
ould be the
wing listing

,

],

w =
 2014Find

data
fal

the

indowed
ard deviation

ed
and
ion
of the typical distribution (for example, larger than two, three, or fo
deviations from the mean) can carry predictive power in many use
as prediction of process-line interruptions or failures.

■ Distribution—Estimating the higher-order characteristics of the ma
bution of the time-series measurements (for example, skew or k
going a step further and running a statistical test for a named distr
example, normal or uniform), can be predictive in some scenarios.

You can make things more sophisticated by computing windowed statistics, w
calculating the preceding summary metrics within a specified time window. F
the mean or standard deviation of only the last week of measurements m
predictive. From there, you can also compute windowed differences, which w
difference in those metrics from one time window to the next. The follo
presents a code example of computing those features.

import pandas as pd
from datetime import datetime
import numpy as np

window1 = (datetime(2014,3,22),datetime(2014,6,21))

idx_window = np.where(map(lambda x: x>=window1[0] and x<=window1[1]
df_ts.index))[0]

mean_window = np.mean(df_ts.values[idx_window])
std_window = np.std(df_ts.values[idx_window])

window2 = (datetime(2013,3,22),datetime(2013,6,21))

idx_window2 = np.where(map(lambda x: x>=window2[0] and x<=window2[1
df_ts.index))[0]

 mean_wdiff = mean_window - np.mean(df_ts.values[idx_window2])
std_wdiff = std_window - np.std(df_ts.values[idx_window2])

Listing 7.5 Windowed statistics and differences

windo
springs which

 points
l within
window

Computes the w
mean and stand

Computes the windowed
difference from spring 2013

Computes the window
difference in mean

standard deviat

165Time-series features

ADVANCED TIME-SERIES FEATURES

Next, you move to more-sophisticated classical time-series features. Autocorrelation fea-
tures measure the statistical correlation of a time series with a lagged version of itself.
For example, the one-autocorrelation feature of a time series takes the original time
series and correlates it with the same time series shifted over by one time bin to the
left (with nonoverlapping portions removed). By shifting the time series like this, you
can capture the presence of periodicity and other statistical structure in the time
series. The shape of the autocorrelation function (autocorrelation computed over a
grid of time lags) captures the essence of the structure of the time series. In Python,

. Figure 7.7
function for

feature engi-
 sum of sine
ring in many
ckly identify
ved by using
ime series—
s a function
ent spectral
e San Fran-

tion (several
eriodogram,
pecified fre-
e location of
f oscillation
eriodogram

Computes the
periodogram

f
higher
hs

Fe

l

the statsmodels module contains an easy-to-use autocorrelation function
shows how the autocorrelation is computed and plots an autocorrelation
the SF crime data.

 Fourier analysis is one of the most commonly used tools for time-series
neering. The goal of Fourier analysis is to decompose a time series into a
and cosine functions on a range of frequencies, which are naturally occur
real-world datasets. Performing this decomposition enables you to qui
periodic structure in the time series. The Fourier decomposition is achie
the discrete Fourier transform, which computes the spectral density of the t
how well it correlates to a sinusoidal function at each given frequency—a
of frequency. The resulting decomposition of a time series into its compon
densities is called a periodogram. Figure 7.8 shows the periodogram of th
cisco crime data, computed using the scipy.signal.periodogram func
Python modules have methods for periodogram estimation). From the p
various ML features can be computed, such as the spectral density at s
quencies, the sum of the spectral densities within frequency bands, or th
the highest spectral density (which describes the fundamental frequency o
of the time series). The following listing provides example code for p
computation and features.

import pandas as pd
import numpy as np
import scipy.signal

f, psd = scipy.signal.periodogram(df_ts, detrend='linear')

plt.plot(f, psd,'-ob')
plt.xlabel('frequency [1/month]')
plt.ylabel('Spectral Density')
plt.show()

Features:
period_psd1 = 1./f[np.argmax(psd)]

sdens_gt_12m = np.sum(psd[f > 1./12])

sdens_ratio_12m = float(sdens_gt_12m) / np.sum(psd[f <= 1./12])

Listing 7.6 Periodogram features

Feature 1: period of highest
psd peak; for this data,
should be = 47.0 months

Feature 2: sum o
spectral density
than 1/12 mont

ature 3:
ratio of
spectral
density
higher

than to
ess than

1/12
months

166 CHAPTER 7 Advanced feature engineering

14000

13000

12000

11000

be
r o

f c
rim

es
10000

9000

8000
2003 20042003 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

N
um

Year

12-month lagged time seriesOriginal time series

1.0

0.8

0.6

0.4

0.2

0.0

–0.2
0 10 20 30 40 50

A
ut

oc
or

re
la

tio
n

Lag

Figure 7.7 Top: Correlation of the original time series and 12-month lagged time series
defines the 12-month autocorrelation. Bottom: The autocorrelation function for the SF
crime data. The autocorrelation is high for short time scales, showing high dependence
of any month’s crime on the previous months’ values.

167Time-series features

analysis liter-
e series as a
 been widely
as become a
conjunction
dom forests.

d as a linear
stimated.
 as the sum

(MA) model

escribes the

the observed
tates, which

1.8
1e7

1.6

1.4

1.2

1.0

ra
l d

en
si

ty

2.0

1e7

1.5

1.0

40 50

ra
l d

en
si

ty
function of
Several classical time-series models are commonly used in the time series
ature. The purpose of these models is to describe each value of the tim
function of the past values of the time series. The models themselves have
used for time-series forecasting for decades. Now, as machine learning h
mainstay in time-series data analysis, they’re often used for prediction in
with more-sophisticated ML models such as SVMs, neural nets, and ran
Examples of time-series models include the following:

■ Autoregressive (AR) model—Each value in the time series is modele
combination of the last p values, where p is a free parameter to be e

■ Autoregressive–moving average (ARMA) model—Each value is modeled
of two polynomial functions: the AR model and a moving-average
that’s a linear combination of the previous q error terms.

■ GARCH model—A model commonly used in financial analysis that d
random noise terms of a time series using an ARMA model.

■ Hidden Markov model (HMM)—A probabilistic model that describes
values of the time series as being drawn from a series of hidden s
themselves follow a Markov process.

0.8

0.6

0.4

0.2

0.0
0.0 0.1 0.2 0.3 0.4 0.5

S
pe

ct

Frequency [1/month]

0.5

0.0

0 10 20 30

S
pe

ct

Period [months]

Figure 7.8 Left: Periodogram of the San Francisco crime data, showing the spectral density as a
frequency. Right: The same periodogram with the x-axis transformed from frequency to period.

168 CHAPTER 7 Advanced feature engineering

You can use these models to compute time-series features in various ways, including
these:

■ Using the predicted values from each of the models (and the differences
between the predictions) as features themselves

■ Using the best-fit parameters of the models (for example, the values of p and q
in an ARMA(p,q) model) as features

■ Calculating the statistical goodness-of-fit (for example, mean-square error) of a
model and using it as a feature

ine-learning
if an ARMA
el that uses

t well (as for
till produce

s. As shown
 series. This
 in the pre-
 data. But a
 of its finer

an compute
oint-process

pute these
 granularity.
the past 48
ssible.
models like
uch as Pois-
ese models

 you to pre-
se methods
ne-learning
 the predic-
odness-of-fit

m text and
els that are
In this way, a blend of classical time-series models and state-of-the-art mach
methodologies can be achieved. You can attain the best of both worlds:
model is already highly predictive for a certain time series, the ML mod
those predictions will also be successful; but if the ARMA model doesn’t fi
most real-world datasets), the flexibility that the ML model provides can s
highly accurate predictions.

7.3.4 Feature engineering for event streams

This section presents a brief look at feature engineering for event stream
previously in listing 7.4, event data can be converted to a classical time
enables you to employ all the feature-engineering processes described
ceding two sections to extract classical time-series data on point-process
number of additional features can be computed on event data because
granularity.

 Analogous to the windowed statistics described in section 7.1.3, you c
simple windowed and difference statistics on event data. But because p
data allows an individual timestamp of each and every event, you can com
statistics on any time window that you want, down to an extremely fine
Further, statistics such as “time since last event,” “number of events in
hours,” and “average length of time between events” suddenly become po

 Finally, just as classical time series are often modeled with statistical
ARMA and HMM, point-process data is often described with models s
son processes and nonhomogeneous Poisson processes. In a nutshell, th
describe the rate of incoming events as a function of time and enable
dict the expected time until the next event. Feel free to explore the
more on your own! Just as with the classical time-series models, machi
features can be derived from point-process models in three ways: using
tions from the model, the parameters of the model, and the statistical go
of the model.

7.4 Summary
In this chapter, you looked at methods for generating features fro
images. You can use these features in your ML algorithms to build mod

169Summary

capable of “reading” or “seeing” with human-level perception. The main takeaways
are as follows:

■ For text-based datasets, you need to transform variable-length documents to a
fixed-length number of features. Methods for this include the following:

– Simple bag-of-words methods, in which particular words are counted for
each document.

– The tf-idf algorithm, which takes into account the frequency of words in the
entire corpus to avoid biasing the dictionary toward unimportant-but-common

antic analy-

 topics, and
rstanding of
example, in

y interesting

 image with

fining color

ge file itself;
 image files.
rom images.

anny edge-

 of oriented

t processes.

ies data:

uting time-

tion of the
ysis.
words.
– More-advanced algorithms for topic modeling, such as latent sem

sis and latent Dirichlet analysis.
– Topic-modeling techniques can describe documents as a set of

topics as a set of words. This allows sophisticated semantic unde
documents and can help build advanced search engines, for
addition to the usefulness in the ML world.

– You can use the scikit-learn and Gensim Python libraries for man
experiments in the field of text extraction.

■ For images, you need to be able to represent characteristics of the
numeric features:

– You can extract information about the colors in the image by de
ranges and color statistics.

– You can extract potentially valuable image metadata from the ima
for example, by tapping into the EXIF metadata available in most

– In some cases, you need to be able to extract shapes and objects f
You can use the following methods:
■ Simple edge-detection-based algorithms using Sobel or C

detection filters
■ Sophisticated shape-extraction algorithms such as histogram

gradients (HOG)
■ Dimensionality reduction techniques such as PCA
■ Automated feature extraction by using deep neural nets

■ Time-series data comes in two flavors: classical time series and poin
A plethora of ML features can be estimated from this data.

– Two principal machine-learning tasks are performed on time-ser
■ Forecasting the value of a single time series
■ Classifying a set of time series

– For classical time series, the simplest features involve comp
windowed summary statistics and windowed differences.

– More-sophisticated features involve the statistical characteriza
time series, using tools such as autocorrelation and Fourier anal

170 CHAPTER 7 Advanced feature engineering

– Various classical time-series models can be used to derive features. These
include AR, ARMA, GARCH, and HMM.

– From point-process data, you can compute all these features and more,
because of the finer granularity of the data.

– Common models for point-process data include Poisson processes and non-
homogeneous Poisson processes.

7.5 Terms from this chapter

the predictive

language.

number of

mple, “the,”

ll the data
ou need to

 method

necting them

y text prob-

ta (for exam-

lf, but some

ation about
ion, aperture).

ise of most

tures that

y simpler, typi-
ges. Instead

ers: the dis-
Word Definition

feature engineering Transforming input data to extract more value and improve
accuracy of ML models.

natural language processing The field that aims to make computers understand natural

bag of words A method for transforming text into numbers; counting the
occurrences of a particular word in a document.

stop words Words that are common but not useful as a feature (for exa
“is,” “and”).

sparse data When data consists of mostly 0s and few data cells, we ca
sparse. Most NLP algorithms produce sparse data, which y
use or transform for your ML algorithms.

tf-idf Term-frequency, inverse-document frequency. A bag-of-words
that’s normalized by text from the entire corpus.

latent semantic analysis A method for finding topics of interest in documents and con
to a set of words.

latent Dirichlet analysis An extension of the idea from LSA that works well with man
lems in practice.

content expansion The process of expanding the original content into more da
ple, by following links in a document).

meta-features A set of features that aren’t extracted from the content itse
connected metadata.

EXIF data A standard for defining metadata on images. Includes inform
the photo (for example, manufacturer of the camera, resolut

edge detection The process of detecting edges in images to remove the no
images.

HOG Histogram of oriented gradients. An approach to image fea
understands particular shapes and objects.

PCA Principal component analysis. A way to represent images b
cal images, thus reducing the number of dimensions in ima
of 100 pixels, an image can be approximated by two numb
tance to the two most principal components.

171Terms from this chapter

deep neural nets An extension to artificial neural nets that has recently shown to perform
well for machine learning on audiovisual data.

classical time series Series of numerical measurements over time.

point process Series of events collected over time, each with a precise timestamp
known.

time-series forecasting Predicting future values of an individual time series.

s a function of
amental
l for time-

Word Definition
periodogram Plot of the Fourier power spectral density of a time series a
frequency of oscillation. This technique can reveal the fund
modes of oscillation and is a useful feature-engineering too
series data.

Advanced NLP example:
movie review sentiment
This chapter covers
■ Using a real-world dataset for predicting

sentiment from movie reviews
■ Exploring possible use cases for this data and

the appropriate modeling strategy
 knowledge
ically, you’ll
 optimize a

 at hand to
st decisions
n build the
172

In this chapter, you’ll use some of the advanced feature-engineering
acquired in the previous chapter to solve a real-world problem. Specif
use advanced text and NLP feature-engineering processes to build and
model based on user-submitted reviews of movies.

 As always, you’ll start by investigating and analyzing the dataset
understand the feature and target columns so you can make the be
about which feature-extraction and ML algorithms to use. You’ll the

■ Building an initial model using basic NLP
features and optimizing the parameters

■ Improving the accuracy of the model by
extracting more-advanced NLP features

■ Scaling and other deployment aspects of using
this model in production

173Exploring the data and use case

initial model from the simplest feature-extraction algorithms to see how you can
quickly get a useful model with only a few lines of code. Next, you’ll dig a little deeper
into the library of feature-extraction and ML modeling algorithms to improve the
accuracy of the model even further. You’ll conclude by exploring various deployment
and scalability aspects of putting the model into production.

8.1 Exploring the data and use case
In this chapter, you’ll use data from a competition on Kaggle—a data-science chal-
lenge site where data scientists from around the world work on solving well-defined

you learn to
problem via

opcorn com-
 account on
 because you
anyway!
e individual
per, present

hat we have.
e dataset at
ch potential
l solve in the

ore the data
verse order.
questions to
 problem at
ner to think
 of the data-
 build some-

abase, IMDb
so that each
utcome vari-
ting for that
views in the

patterns and
stitute nega-
f the reviews
problems posed by companies to win prizes. You’ll work with this data as
use the tools developed in the previous chapters to solve a real-world
machine learning.

 The data used in this chapter is from the Bag of Words Meets Bags of P
petition (www.kaggle.com/c/word2vec-nlp-tutorial). You need to create an
the Kaggle platform to download the data, but that’s probably a good thing
might want to try your newly acquired ML skills on a big-prize competition

 In the following sections, we begin by describing the dataset, what th
columns mean, and how the data was generated. Next, we dive a level dee
the data attributes, and make some initial observations about the data t
From here, we brainstorm possible use cases that we could solve with th
hand and review the data requirements and real-world implications of ea
use case. Finally, we use this discussion to select a single use case that we’l
remainder of the chapter.

 Note that although we structure this section to first describe and expl
and then to figure out a use case to solve, typically the steps are taken in re
Usually an ML practitioner will start with a use case, hypothesis, or set of
answer and then search for and explore data to appropriately solve the
hand. This is the preferred methodology, because it forces the practitio
hard about the use case and the data required before going “in the weeds”
set. That said, it’s not uncommon to be handed a dataset and be asked to
thing cool!

8.1.1 A first glance at the dataset

Our dataset consists of written movie reviews from the Internet Movie Dat
(www.imdb.com). The training data consists of 50,000 reviews, selected
movie has no more than 30 reviews in the dataset. For each review, the o
able is encoded as a binary feature, with the value 1 if the manual IMDb ra
review is greater than 6, and the value 0 if the rating is less than 5. No re
intermediate ratings of 5–6 are included in the dataset.

 The challenge with this dataset is to devise an ML system to learn the
structure of language that constitute positive reviews versus those that con
tive reviews. Critically, you’ll train your model to learn only from the text o

174 CHAPTER 8 Advanced NLP example: movie review sentiment

and not from other contextual data such as the movie actors, director, genre, or year
of release. Presumably, that data would help the accuracy of your model predictions,
but it isn’t available in this dataset.

 In addition to a training dataset, a separate testing dataset of 25,000 reviews of
movies that don’t appear in the training dataset is provided. In principle, this set of data
could be used to validate the performance of your model and to estimate how well the
model will perform when deployed to a real-world production setting. But Kaggle
doesn’t supply the labels for the testing set. Therefore, you’ll construct your own test-
ing set by splitting Kaggle’s training set into 70% training and 30% testing.

pear in the
 in both the
s were good
gativity. But
ou’ve never
lead you to

of reviews of
ays be con-

ces that are

ce up to sev-
 critics, the
 a machine-
positive and
ews.
here and to
ype and fea-
views in fig-
strates how

movie is ter-
rd good, any
enge now is
e use of the

 statements.
ate positive

, we make the
ultiple reviews
 Note the importance of ensuring that no movies in the training set ap
testing set.1 If, for instance, reviews from the same movies were included
training and testing sets, then your model could learn which movie title
and bad, instead of focusing on the language constituting positivity and ne
in production you’ll be applying this ML model to new movies, with titles y
seen. This leakage of movies from the training to the testing set could
believe that your model is better than it is when predicting the sentiment
new movies. For this reason, we recommend that holdout testing sets alw
structed with temporal cutoffs, so that the testing set consists of instan
newer than the training instances.

8.1.2 Inspecting the dataset

The individual reviews in this dataset vary in length, from a single senten
eral pages of text. Because the reviews are pulled from dozens of film
vocabulary can vary dramatically from review to review. The key is to build
learning model that can detect and exploit the differences between the
negative reviews so that it can accurately predict the sentiment of new revi

 The first step of the ML process is to look at the data to see what’s t
begin thinking about the other steps of the ML process, such as model t
turization. To start the data review process, take a look at the 10 shortest re
ure 8.1. Look at the first row (id = 10962_3). This particular review demon
nuanced this problem can be: although the review clearly states that the “
rible,” it also says that there are “good effects.” Despite the use of the wo
person would clearly agree that this is a negative movie review. The chall
to teach the ML model that even if positive words such as good are used, th
phrase “movie is terrible” trumps all!

 Similarly, these 10 sample reviews include several examples of negative
Phrases such as “never get tired” and “no wasted moments” clearly indic

1 In our training set, we don’t have an indicator of which movie each review describes. Therefore
assumption that the training set is provided presorted by date, and we divide the set so that m
of the same movie fall together in the training or testing set.

175Exploring the data and use case

ature. This
information

t that these
uage is often
he power of
ctions under

lem without
ke, because
m and solu-

ticlass versus

e what real-

id

10962_3

2331_1

12077_1

266_3

4518_9

874_1

3247_10

7243_2

sentiment

0

0

0

0

1

0

1

0

review

This movie is terrible but it has some good effects.

I wouldn't rent this one even on dollar rental night.

Ming The Merciless does a little Bardwork and a movie most foul!

You'd better choose Paul Verhoeven's even if you have watched it.

Adrian Pasdar is excellent is this film. He makes a fascinating woman.

Long, boring, blasphemous. Never have I been so glad to see ending credits roll.

I don't know why I like this movie so well, but I never get tired of watching it.

no comment - stupid movie, acting average or worse... screenplay - no sense at all... SKIP IT!

movie is."

sted moments.

view, you’re
qualities of movies, even if the component words are all negative in n
demonstrates that to do well in predicting sentiment, you must combine
across multiple (neighboring) words.

 Looking through a few of the other (longer) reviews, it’s apparen
reviews typically consist of verbose, descriptive, flowery language. The lang
sarcastic, ironic, and witty. This makes it a great dataset to demonstrate t
ML to learn nuanced patterns from real data and to make accurate predi
uncertainty.

8.1.3 So what’s the use case?

Often practitioners of (non-real-world) machine learning dive into a prob
thinking hard about the practical use of their ML model. This is a mista
the choice of use case can help determine how you structure the proble
tion, including the following:

■ How to encode the target variable (for example, binary versus mul
real value)

■ Which evaluation criterion to optimize
■ What kinds of learning algorithms to consider
■ Which data inputs you should and should not use

So before you get started with ML modeling, you first need to determin
world use case you want to solve with this dataset.

 For each of three possible use cases, you’ll consider the following:

■ Why would the use case be valuable?
■ What kind of training data would you need?
■ What would an appropriate ML modeling strategy be?

5327_1

2469_10

0

1

A rating of \1\" does not begin to express how dull, depressing and relentlessly bad this

This is the definitive movie version of Hamlet. Branagh cuts nothing, but there are no wa

Figure 8.1 Ten example reviews in the training set, chosen from the shortest reviews. For each re
provided only an ID, the binary sentiment, and the text of the review.

176 CHAPTER 8 Advanced NLP example: movie review sentiment

■ What evaluation metric should you use for your predictions?
■ Is the data you have sufficient to solve this use case?

Based on the answers to those questions, you’ll choose a single use case, which you’ll
spend the remainder of the chapter solving.

USE CASE 1: RANKING NEW MOVIES

The first and most obvious use case for a movie review dataset is to automatically rank
all new movies based on the text of all their reviews:

■ Why would the use case be valuable?
ekend. Scor-
se case is to
otten Toma-
ie.

entiment of
rs to. With

 feasible.

L instance,
eview senti-
 could con-
eview on its
e. We prefer
ether could
dual reviews
aging them

ew and that
 of being a

e. What you
e rating for
ld lead you

cuses more
erested in a
e this Satur-
bility to get

 such as the
0%).
This could be a powerful way to decide which movie to watch this we
ing individual reviews is one thing, but obviously the more valuable u
score each movie on the overall positivity of its reviews. Sites such as R
toes get heavy traffic because of their ability to reliably rate each mov

■ What kind of training data would you need?
The basic necessities would be the review text, an indication of the s
each review, and knowledge about which movie each review refe
these three components, building a movie-ranking system would be

■ What would an appropriate ML modeling strategy be?
There are a couple of options: (a) You could treat each movie as an M
aggregate the individual reviews for each movie, and roll up the r
ment into either an average score or a multiclass model. (b) You
tinue to treat each review as an ML instance, score every new r
positivity, and then assign each new movie its average positivity scor
option (b), because aggregating all reviews for a single movie tog
result in some confusing patterns for ML—particularly if the indivi
are highly polarized! Scoring the individual results and then aver
into a “metascore” is a more straightforward approach.

■ What evaluation metric should you use for your predictions?
Assume here that you have a binary outcome variable for each revi
your ML algorithm assigns a score to each review on its likelihood
positive review, which you aggregate into a single score per movi
care about here is how closely your score matches the true averag
that movie (for example, percentage of positive reviews), which cou
to use a metric such as R2.

But you could imagine using a different evaluation metric that fo
weight at the top of the ranking list. In reality, you’re probably int
movie ranking in order to pick a flick from the top of the list to se
day. Therefore, you’d instead select a metric that focuses on your a
the top of the ranking list right. In this case, you’d select a metric
true-positive rate at a small false-positive rate (for example, 5% or 1

177Exploring the data and use case

■ Is the data you have sufficient to solve this use case?
Unfortunately, no. You have everything you need except knowledge of which
movie each review is describing!

USE CASE 2: RATING EACH REVIEW FROM 1 TO 10
A second possible use case is to auto-rate each review on a scale of 1 to 10 (the IMDb
scale) based on the set of user reviews about each movie:

■ Why would the use case be valuable?
Any new review could be automatically assigned a rating without any manual

labor that’s
s are provid-
jective score

w.

 real-valued
 as categori-
refer option
rical scale.

luation met-

sitive versus

e rest:

 2, whereby
or negative

 for IMDb to
ont page or
 posters.

r.

gn a predic-
review.
reading or scoring. This would cut down on a lot of manual
required to curate the IMDb website and movie ratings; or, if user
ing a score along with their rating, it could provide a more ob
based on the text of the user’s review.

■ What kind of training data would you need?
Just the text of each review and a score, from 1 to 10, for each revie

■ What would an appropriate ML modeling strategy be?
Again, there are two options: (a) Treat the outcome variable as a
number and fit a regression model. (b) Treat the outcome variable
cal and fit a multiclass classification model. In this case, we much p
(a) because, unlike classification, it considers the scores on a nume

■ What evaluation metric should you use for your predictions?
If you choose to run a regression model, the typical regression eva
rics such as R2 or mean squared error are natural choices.

■ Is the data you have sufficient to solve this use case?
Again, it’s not. You have only a Boolean version of each review (po
negative) and not the finely grained numerical score.

USE CASE 3: SEPARATING THE POSITIVE FROM THE NEGATIVE REVIEWS

The final use case to consider is separating all the positive reviews from th

■ Why would the use case be valuable?
This use case would represent a less granular version of use case
each new review could be automatically classified as positive
(instead of scored from 1 to 10). This classification could be useful
detect the positive reviews, which it could then promote to its fr
(better yet) sell to movie producers to use as quotes on their movie

■ What kind of training data would you need?
Only the review text and the binary positive versus negative indicato

■ What would an appropriate ML modeling strategy be?
You’d fit a binary classification model. From there, you could assi
tion score for each new review on the likelihood that it’s a positive

178 CHAPTER 8 Advanced NLP example: movie review sentiment

■ What evaluation metric should you use for your predictions?
It depends on how you want to use your predictions. If the use case is to auto-
matically pull out the 10 most positive reviews of the week (for example, to use
on the IMDb front page), then a good evaluation metric would be the true-
positive rate at a very small false-positive rate (for example, 1%). But if the goal
is to try to find all positive reviews while ignoring the negative reviews (for
example, for complete automated sentiment tagging of every review), then a
metric such as accuracy or area under the curve (AUC) would be appropriate.

■ Is the data you have sufficient to solve this use case?
 binary sen-
 a machine-

itten movie
he patterns
or each use
roblem, the
out putting

ative movie

d to use text
r sentiment
ing features
orking with

ollows:

d

chapter, we
ag of words.
 words, and
 how many
evisit bag of
Finally, yes! You have a training set of the movie review text and the
timent variable. In the remainder of the chapter, you’ll build out
learning solution for this use case.

To recap, you first learned the basic details about the dataset: hand-wr
ratings from IMDb. Then, you dove a little deeper to explore some of t
and trends in the data. Finally, you considered possible ML use cases. F
case, you explored the value of a machine-learning solution to the p
basic data requirements to build out an ML solution, and how to go ab
together a solution.

 Next, you’ll build out an ML solution to separate positive from neg
reviews.

8.2 Extracting basic NLP features and building
the initial model
Because the movie review dataset consists of only the review text, you nee
and natural-language features to build a meaningful dataset for you
model. In the previous chapter, we introduced various methods for extract
from text, and we use this chapter to discuss various practical aspects of w
ML and free-form text. The steps you’ll go through in this section are as f

1 Extracting features from movie reviews with the bag-of-words metho
2 Building an initial model using the naïve Bayes ML algorithm
3 Improving your bag-of-words features with the tf-idf algorithm
4 Optimizing model parameters

8.2.1 Bag-of-words features

As you may recall from our discussion of NLP features in the previous
started out with a simple technique to featurize natural-language data: b
This method analyzes the entire corpus of text, builds a dictionary of all
translates every instance in the dataset into a list of numbers, counting
times each word appears in the document. To refresh your memory, let’s r
words in figure 8.2.

179Extracting basic NLP features and building the initial model

use a simple
 in this pro-
rom the test
re you build
e model on

="\t")

Defined
vocabulary

Vectorization

foxbrownquick lazy dogoverjumpsthe

111 1 1112

110 1 1112

Text 1

Text 2

pedia page
t “quick brown
pangram.

 transform any
ts how many

ads the data

itializes the word-
unt vectorizer

 dictionary
erates
 set features

Gen
fe

test
In listing 8.1, you load the dataset, create a 70%–30% train-test split, and
word-count method for extracting features. An important point to realize
cess is that you can’t contaminate the bag-of-words dictionary with words f
set. This is why you split the dataset into training and testing subsets befo
the vectorizer dictionary—to get a realistic estimate of the accuracy of th
previously unseen data.

import pandas
d = pandas.read_csv("movie_reviews/labeledTrainData.tsv", delimiter

split = 0.7
d_train = d[:int(split*len(d))]
d_test = d[int((1-split)*len(d)):]

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()

features = vectorizer.fit_transform(d_train.review)
test_features = vectorizer.transform(d_test.review)
i = 45000
j = 10
words = vectorizer.get_feature_names()[i:i+10]
pandas.DataFrame(features[j:j+7,i:i+10].todense(), columns=words)

Take a look at a subset of the features generated in figure 8.3.

Listing 8.1 Building word-count features from the movie review dataset

1088 6 66465
Wiki
abou
fox”

Figure 8.2 The bag-of-words vectorization algorithm. From a dictionary of words, you can
new document (for example, Text 1, Text 2 in the figure) into a list of numbers that coun
times each word appears in the document.

Lo

Splits the data into
training and testing
subsets

In
co

Fits the
and gen
training

erates
atures
for the
ing set

180 CHAPTER 8 Advanced NLP example: movie review sentiment

 only a few
ets. This has
odel, some-
 predict the

to build the
 work much
 sparse data,
ry usage but
 feature set
onzero ele-

increase the

s created
ith more-

the Bayes
endence.

0

producer

1

2

3

4

0

0

0

0

0

producer9and

0

0

0

0

0

producers

0

0

0

0

0

produces

0

0

0

0

0

producing

0

0

0

0

0

product

0

0

0

1

0

production

0

0

0

1

1

productions

0

0

0

0

0

productive

0

0

0

0

0

productively

0

0

0

0

0

0

0

Words in the dictionary

del. The full
 unique words
 bag-of-words–
ocument.
From figure 8.3, it’s clear that the dataset consists of mostly zeros with
exceptions. We call such a dataset sparse, a common attribute of NLP datas
consequences when you want to use the dataset for features in an ML m
thing we discuss in the next section before building an actual model to
sentiment of reviews.

8.2.2 Building the model with the naïve Bayes algorithm

Now that you have a proper featurized dataset, you can use the features
model as usual. For highly sparse datasets like this, some ML algorithms
better than others. Specifically, some algorithms have built-in support for
and those algorithms are generally much more efficient, at least in memo
often also in CPU usage and time to build. If you inspect the generated
from listing 8.1, you’ll find that only 0.2% of the cells in the dataset have n
ments. Using the dense representation of the dataset would significantly
size of the data in memory.

The basics of the naïve Bayes classifier
The naïve Bayes (NB) classifier algorithm is a simple ML algorithm that wa
for use in text classification, an area of ML where it can still be competitive w
advanced general-purpose algorithms. The name stems from the fact that
formula is applied to the data with very “naïve” assumptions about indep

5 0

6 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Nonzero elementsRows in
the dataset

Figure 8.3 A small 7 × 10 subset view of the word-count features that you’ll use for building the mo
dataset is a sparse matrix of size 17,500 × 65,005 (17,500 documents in the training set by 65,005
in the training set). A sparse matrix is useful when most of the values are 0, which is the case in most
based features; in the full dictionary of words, individual words are unlikely to appear in a particular d

181Extracting basic NLP features and building the initial model

This assumption is what usually makes the algorithm less useful for general (dense)
problems, because the features are rarely anywhere near independent. For sparse-
text features, this assumption still isn’t true, but it’s true enough for the algorithm to
work surprisingly well in practice. The NB classifier is one of the few ML algorithms
that’s simple enough to derive in a few lines, and we explain some of the highlights
in this sidebar.

In this chapter, our goal is to classify a review by finding the probability p(Ckx) of the
review sentiment being “bad” (k = 0) or “good” (k = 1) based on the features x of the
instance. In probability theory using the Bayes formula, this can be written like so:

s of class
ss-feature
of the fea-

 good and
eed to fig-
 a specific
having the
t review.

 presence
ates such

nce:

 instance
 in a good
 we’ve left
implemen-
asics out-
p(Ckx) ~ p(Ck)p(xCk)

p(xCk) is known as the joint probability of the features x if the instance wa
Ck. Because of the independence assumption (the naïve part), there’s no cro
probability, and this becomes simply the product of the probability of each
tures given the class:

p(Ckx) ~ p(Ck)p(x1Ck)p(x2Ck)p(x3Ck)p(x4Ck)...

Because p(Ck) is the marginal class distribution—the overall breakdown of
bad sentiment reviews—which you can easily find from the data, you only n
ure out what p(x

i
Ck) is. You can read this expression as “the probability of

feature for a specific class.” For example, you’d expect the probability of
word great in a good-sentiment review being higher than in a bad-sentimen

You can imagine learning this from the data by counting the feature (word)
across all documents in each class. The probability distribution that gener
counts is called the multinomial distribution, and p(x

i
Ck) becomes

You use this in the previous equation and move to log space for convenie

Here b is log[p(Ck)] (known from the data), x represents the features of the
you want to predict, and wk is log(pki

)—the fraction of times a word appears
or bad document, which you’ll learn at model build time. Please note that
out various constants throughout this calculation, and there are multiple
tation details to consider when coding this algorithm from scratch, but the b
lined here remain true.

p Ck  p xi Ck 
i

N

=

p xi Ck  p
ki

xi

i


p Ck xi   p Ck  p
ki

xi

i
loglog

p Ck  log xi pki
 log

i

n

+=

b wkx+=

182 CHAPTER 8 Advanced NLP example: movie review sentiment

One of the algorithms that works well for classification with sparse natural language
processing (NLP) features is the naïve Bayes algorithm, specifically the multinomial
(see the sidebar). In the following listing, you build the model on the features from
listing 8.1.

from sklearn.naive_bayes import MultinomialNB

model1 = MultinomialNB()
model1.fit(features, d_train.sentiment)

 8.3 and call
port in this
sified docu-

rresponding
apter 4 and

e

ones model
the number
eference for

ugh the vec-

Listing 8.2 Building the first review sentiment model using multinomial naïve Bayes
pred1 = model1.predict_proba(test_features)

To evaluate the performance of the model, you define a function in listing
it on the initial model predictions. The accuracy metrics that you’ll re
chapter are the general classification accuracy (fraction of correctly clas
ments), the receiver operating characteristic (ROC) curve, and the co
area under the curve (AUC) number. These were all introduced in ch
used in many of our examples.

from sklearn.metrics import accuracy_score, roc_auc_score, roc_curv

def performance(y_true, pred, color="g", ann=True):
 acc = accuracy_score(y_true, pred[:,1] > 0.5)
 auc = roc_auc_score(y_true, pred[:,1])
 fpr, tpr, thr = roc_curve(y_true, pred[:,1])
 plot(fpr, tpr, color, linewidth="3")
 xlabel("False positive rate")
 ylabel("True positive rate")
 if ann:
 annotate("Acc: %0.2f" % acc, (0.2,0.7), size=14)
 annotate("AUC: %0.2f" % auc, (0.2,0.6), size=14)

performance(d_test.sentiment, pred1)

The result of running this code is shown in figure 8.4.
 Looking at figure 8.4, you can see that the performance of your bare-b

isn’t bad at all. You classify 88% of the reviews correctly, but you can dial
of false positives versus true positives up or down, depending on your pr
more noise or better detection rate.

 Let’s try this with a few new example reviews by passing some text thro
torizer and model for sentiment predictions:

>>> review = "I love this movie"
>>> print model1.predict(vectorizer.transform([review]))[0]
1

Listing 8.3 Evaluating the initial model

183Extracting basic NLP features and building the initial model

nother one:

y, let’s try to

n't

0.8

1.0

0.6

Trade false positives
for true positives

88% of classifications
are correct.

e
ra

te
A positive sentiment is indicated by 1, so this sounds about right. Let’s try a

>>> review = "This movie is bad"
>>> print model1.predict(vectorizer.transform([review]))[0]
0

A negative sentiment is indicated by 0, so again this is indeed correct. Oka
trick the model:

>>> review = "I was going to say something awesome, but I simply ca
because the movie is so bad."

>>> print model1.predict(vectorizer.transform([review]))[0]
0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.0

False-positive rate

Acc: 0.88
AUC: 0.94

Tr
ue

-p
os

iti
v

Figure 8.4 ROC curve of the classification performance of the simple bag-of-
words model. The classification accuracy—the fraction of correctly classified
reviews—as well as the AUC (area under the ROC curve) metrics are printed in
the figure. The accuracy shows that you’d expect to correctly classify 88% of
the reviews with this model, but by using the ROC curve, you can trade false-
positive rate (FPR) for true-positive rate (TPR), and vice versa. If there were
many reviews that humans needed to look through based on this classification,
you might want to fix the FPR at a low value, which would in turn lower the
true-positive detection rate.

184 CHAPTER 8 Advanced NLP example: movie review sentiment

No luck, the prediction is still correct. Maybe if you introduce more positive words into
the negative review?

>>> review = "I was going to say something awesome or great or good, but I
simply can't because the movie is so bad."

>>> print model1.predict(vectorizer.transform([review]))[0]
0

Nope, this is one clever model. The word bad must have a strong influence on the clas-
sification, so perhaps you can cheat the model by using that in a positive review:

."

is fun, but it
uage in the

al model by
etter values

d-count fea-
ncy of how
mon words

ting factors,
 that appear

n gain extra
o switch out
ext listing.

ow the tf-idf
e shows that
rous reviews

es the Tfidf
ctorizer to
ild features

Trains a new naïve
Bayes model on
the features and
makes predictions
>>> review = "It might have bad actors, but everything else is good
>>> print model1.predict(vectorizer.transform([review]))[0]
0

Finally, you succeed in somewhat cheating the model. This little exercise
also shows the power of the model in understanding arbitrary natural lang
movie review domain. In the next section, you’ll try to improve the initi
going a bit further than our simple word-count features and by finding b
for the parameters of the feature and modeling algorithms.

8.2.3 Normalizing bag-of-words features with the tf-idf algorithm

In the previous chapter, we introduced tf-idf as an upgrade to simple wor
tures. In essence, tf-idf normalizes the word counts based on the freque
often each word appears across the documents. The main idea is that com
get smaller weighting factors, and relatively rare words get larger weigh
which enables you to dig deeper into the (often highly informative) words
less often in the dataset.

 In this section, you’ll use tf-idf for your features to see whether you ca
accuracy. The change is easy with scikit-learn, because you simply need t
your CountVectorizer for a TfidfVectorizer. The code is shown in the n

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
features = vectorizer.fit_transform(d_train.review)

model2 = MultinomialNB()
model2.fit(features, d_train.sentiment)
pred2 = model2.predict_proba(vectorizer.transform(d_test.review))

performance(d_test.sentiment, pred2)

The performance of the tf-idf model is shown in figure 8.5. You can see h
features improved the model accuracy slightly. Specifically, the ROC curv
it should be better at avoiding false positives. Imagine that you had nume

Listing 8.4 Using tf-idf features in your model

Us
ve
bu

Plots the
results

185Extracting basic NLP features and building the initial model

false-positive
tive, so they

es modeling
fic details in
that the vari-

ereas these
odel perfor-
d this is the

 a bunch of
 of interest.
ent of each

0.9

1.0

0.8
Acc: 0.89

Better performance
of the tf-idf model

iti
ve

 ra
te
coming in but wanted to flag bad reviews for human inspection. A lower
rate would present fewer reviews to the reviewer that were actually posi
could work through the queue faster.

 Both our tf-idf NLP feature-extraction algorithm and our naïve Bay
algorithm have knobs that can be turned to tune the algorithm for speci
the dataset. We call such knobs hyperparameters. This comes from the fact
ables (features) of the model can be considered parameters as well, wh
algorithm parameters work at a higher level. Before you accept your m
mance, it’s important that you try different values for these parameters, an
topic of the next section.

8.2.4 Optimizing model parameters

The simplest way to find the best parameters of a model is to try to build
models with different parameters and look at the performance metric
The problem is that you can’t assume that the parameters are independ

0.0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.5

False-positive rate

AUC: 0.96

bag-of-words modeltf-idf model

Tr
ue

-p
os

Figure 8.5 ROC curves for the tf-idf model on top of the previous bag-of-words
model. You can see a slight improvement in both classification accuracy
and AUC (area under the ROC curve). The tf-idf model curve specifically shows
improvements in the low FPR range; the model would yield fewer false positives
for the same number of correctly classified reviews. If humans were in the
classification review loop, you’d have less noise to sift through.

186 CHAPTER 8 Advanced NLP example: movie review sentiment

other—varying one parameter may affect the optimal value of another. This can be
solved in a brute-force way by building a model for any combination of parameters.
But if there are many parameters, this quickly becomes intractable, especially if it
takes a while to build the model just once. We discussed some solutions in chapter 4,
but you’ll probably be surprised by how often ML practitioners still rely on the brute-
force way. You’ll need to build up intuition about which parameters may be more
independent of each other and which have the largest effect on which types of data-
set. For this exercise, you have three parameters to optimize: two tf-idf parameters
(max_features, min_df) and one naïve Bayes parameter (nb_alpha).

ild a model
C). The fol-

n_df)

an go ahead
 parameters
ext listing.

parameter
bination

he model
es the result
 The first thing you need is a function that you can call repeatedly to bu
and return the parameters and the metric of interest (in this case, the AU
lowing listing defines this function.

def build_model(max_features=None, min_df=1, nb_alpha=1.0):
 vectorizer = TfidfVectorizer(max_features=max_features, min_df=mi
 features = vectorizer.fit_transform(d_train.review)
 model = MultinomialNB(alpha=nb_alpha)
 model.fit(features, d_train.sentiment)
 pred = model.predict_proba(vectorizer.transform(d_test.review))
 return {
 "max_features": max_features,
 "min_df": min_df,
 "nb_alpha": nb_alpha,
 "auc": roc_auc_score(d_test.sentiment, pred[:,1])
 }

With the repeatable model building function defined in listing 8.5, you c
and run your optimization pipeline by defining the possible values of your
(chosen randomly or by intuition) and run the loop. This is done in the n

from itertools import product

param_values = {
 "max_features": [10000, 30000, 50000, None],
 "min_df": [1,2,3],
 "nb_alpha": [0.01, 0.1, 1.0]
}

results = []
for p in product(*param_values.values()):
 res = build_model(**dict(zip(param_values.keys(), p)))
 results.append(res)
 print res

Listing 8.5 Model building method useful for parameter optimization

Listing 8.6 Parameter optimization loop

Defines parameter
values to try to
optimize

For each
value com

Builds t
and sav

187Extracting basic NLP features and building the initial model

The parameters you optimize over are these:

■ max_features—The maximum number of word columns for the tf-idf algo-
rithm to create. From looking at the data, you know that all words amount to
about 65,000 columns, so you try out a number of a similar size in a range. None
specifies to use all words.

■ min_df—The minimum number of times a word must appear in the dataset to
be included in the features. This is an example of potential parameter depen-
dency, because the number of words in the dictionary (and hence max_features)
could be changed by changing min_df.

assifier. This
hm. The val-

eter means

oduct func-
makes it eas-
tions of a set
ting 8.6 are

d only three
han 10 min-
 easily imag-
ptimization

e
7
■ nb_alpha—The alpha (smoothing) parameter of the naïve Bayes cl
is the only parameter that you can tune on this specific ML algorit
ues to choose here require a bit more research into what the param
and how others have been using it in other circumstances.

The last thing to mention about the code in listing 8.6 is the use of the pr
tion from the itertools module—a collection of Python functions that
ier to work with data. This function is a clever way to generate all combina
of lists (Cartesian product). The results from running the code in lis
shown in figure 8.6.

 Figure 8.6 shows the output of some of the optimization runs. You ha
parameters with 36 possible value combinations, so this didn’t take more t
utes because the naïve Bayes training time is relatively low, but you could
ine wanting to try many more values of many more parameters, and the o

17

AUC max_features

18

19

20

21

0.955985

0.970304

0.967335

0.963369

30000

50000

50000

50000

0.968388 50000

22

23

24

25

26

0.965854

0.962516

0.958776

0.957700

50000

50000

50000

50000

0.956112 50000

27

28

0.973386 NaN

0.967335 NaN

min_df

3

1

2

3

1

2

3

1

2

3

1

2

nb_alpha

1.00

0.01

0.01

0.01

0.10

0.10

0.10

1.00

1.00

1.00

0.01

0.01

The highest AUC score
is for iteration 27.

Figure 8.6 A subset of results from
the parameter optimization loop. Th
parameter combination in iteration 2
produces the best model overall.

188 CHAPTER 8 Advanced NLP example: movie review sentiment

would take a long time. Another trick for finding the optimal parameters is to start
with a broad range of values and then dive more deeply into the optimal value range
with subsequent optimization runs over different parameter values. It’s clear from the
table how different parameters seem to improve the AUC of the model. Iteration 27
had the best results with these values:

■ max_features—None (all words, default)
■ min_df—1 (default)
■ nb_alpha—0.01

uite a bit by
. Let’s look

hers at their

2.5 3.0

You can see
 (c) a lower
sarily yields
None (all
best AUC is
So, interestingly, you managed to improve on the model performance q
finding a better value for the alpha parameter of the naïve Bayes algorithm
at the evolution of the AUC when varying each parameter (fixing the ot
optimal values) in figure 8.7.

10000 15000 20000 25000 30000 35000 40000 45000 50000

0.975

0.945

0.950

0.955

0.960

0.965

0.970

(a) AUC vs max_features

1.0 1.5 2.0

0.974

0.962

0.964

0.966

0.968

0.970

0.972

(b) AUC vs min_df

0.0 0.2 0.4 0.6 0.8 1.0

0.974

0.958

0.960

0.962

0.964

0.970

0.972

0.966

0.968

(c) AUC vs alpha

Figure 8.7 The AUC improvements from varying three parameters of the feature and ML algorithms.
that (a) a higher max_features gives a better AUC, (b) a lower min_df gives a better AUC, and
alpha gives a better AUC. This doesn’t mean that the best values for each of them individually neces
the best combined. The best combined parameters from our optimization run are max_features=
words, default), min_df=1 (minimum, default), alpha=0.01 (main reason for improvement). The
0.974. All graphs shown can be reproduced using the code in the accompanying Python notebook.

189Extracting basic NLP features and building the initial model

Each of these plots is only one perspective on the AUC evolution, because you’d need
a four-dimensional plot to plot the AUC as a function of all the parameters. But it’s
still interesting to see how the model responds to varying each value. For instance, the
higher the number of features, the better (the largest possible value won). The
smaller the number of min_df, the better (the smallest possible value won). And then,
the smaller the nb_alpha, the better. Because this has no theoretical lower limit, this
should prompt you to try even lower values in another run. We leave this as an exer-
cise for you (but, anecdotally, we weren’t able to find a much better value).

 The ROC curve of the optimized model is plotted with the previous models in fig-
r both met-
n pay off to

last thing to
eters could,
d count ver-
 a new set of
ss all choices
ld problems,
or example,
ou optimize
nes—again,

dels.
ure 8.8. You can see a substantial improvement in model performance fo
rics and all points on the ROC curve. This is a great example of how it ca
tune your model hyperparameters to gain extra prediction power. One
note here: you could, of course, imagine that new choices of model param
in turn, affect which feature and modeling algorithms (for example, wor
sus tf-idf) would perform best, and each algorithm would potentially have
parameters to optimize. To be fully rigorous, you’d need to optimize acro
of algorithms and their parameters, but this is infeasible for most real-wor
and the trade-off here is to go through your optimization in milestones. F
first you fix the NLP algorithm to use and then the ML model, and then y
those parameters. Your project could require a different set of milesto
you’ll develop intuition about these things as you build successive ML mo

0.0

0.9

0.1 0.2 0.3 0.4 0.5

1.0

0.6

0.7

0.8

0.5

False-positive rate

Acc: 0.92
AUC: 0.97

bag-of-words modeltf-idf modelOptimized model

Tr
ue

-p
os

iti
ve

 ra
te

Figure 8.8 The ROC curve of the optimized model versus the previous
models. In our test set evaluation, this model seems to be universally better
(at every point on the curve), and the expected accuracy increased
considerably.

190 CHAPTER 8 Advanced NLP example: movie review sentiment

The ROC curves in figure 8.8 conclude our initial modeling experiments. From basic
algorithms and very little code, you’ve managed to build a model with pretty good
accuracy on natural-language data alone. In the next section, you’ll go a step further
in your feature-engineering and modeling efforts and see various aspects of deploying
such a model into a real-world production-ready system.

8.3 Advanced algorithms and model deployment
considerations
In the previous section, we were concerned with building a model using relatively sim-

 section may
timizing the
he potential
rage you to

 in the form
up front. As
w sentiment
h. Often it’s
and get live

his model a
ral-language
ve extracted
tter support

troduced by
 ML model

ly been pro-
h as natural

 NLP library
viously used
rd2vec.
uments for
rds already

t, but it also
g 8.7, you’ll
tion charac-
matically in
ty or similar
ple features and ML algorithms. The accuracy of any of the models in that
have been good enough for our needs. You can try the next idea for op
model, but there’s always a trade-off between the time you spend and t
value brought by incremental improvements in model accuracy. We encou
get a handle on the value of each percentage improvement, for example,
of saved human-reviewer time, and how much you can afford to spend
you saw, our very first model was certainly capable of understanding revie
in many cases and may well have been a good enough model to begin wit
more valuable to put a slightly lower-accuracy model into production
feedback from the system if possible.

 With that advice out of the way, let’s go against it and try to optimize t
bit further. Next, you’ll look into generating features from a new natu
modeling technique, originally developed by Google: word2vec. After you’
the word2vec features, you’ll switch to the random forest algorithm to be
the new features.

8.3.1 Word2vec features

A relatively new approach to natural language processing has been in
Google in the form of the word2vec project. A word2vec model is itself an
that’s built using deep neural networks, a branch of ML that has recent
ducing state-of-the-art results, especially on human-related domains suc
language, speech, and images.

 To build a word2vec model on your training set, you’ll use the Gensim
for Python, which has a nice word2vec implementation built in. You pre
Gensim in chapter 7 to work with LDA, another topic model similar to wo

 In Gensim, you need to do a bit of extra work to prepare your doc
modeling, because the Gensim algorithms work on sentences (lists of wo
split up) instead of arbitrary documents. This can be more work up fron
gives you a better understanding of what goes into your model. In listin
build a simple tokenization function that removes stop words and punctua
ters, and converts all words to lowercase. Note that this was all done auto
the scikit-learn word vectorizers; we could have used the same functionali

191Advanced algorithms and model deployment considerations

functions from the NLTK Python NLP toolkit, but we chose to write it out ourselves here
for educational purposes.

import re, string

stop_words = set(['all', "she'll", "don't", 'being', 'over', 'through',
'yourselves', 'its', 'before', "he's", "when's", "we've", 'had', 'should',
"he'd", 'to', 'only', "there's", 'those', 'under', 'ours', 'has',
"haven't", 'do', 'them', 'his', "they'll", 'very', "who's", "they'd",

r',

some',

',
'would',
own',
rom',
o',
 'with',

 'my',
tself',
me',
'most',
 'so',

)

ow proceed
eters of the

Listing 8.7 Document tokenization

ocument into
 converting all
to lowercase

nonword
ctuation
'cannot', "you've", 'they', 'not', 'during', 'yourself', 'him', 'no
"we'll", 'did', "they've", 'this', 'she', 'each', "won't", 'where',
"mustn't", "isn't", "i'll", "why's", 'because', "you'd", 'doing', '
'up', 'are', 'further', 'ourselves', 'out', 'what', 'for', 'while',
"wasn't", 'does', "shouldn't", 'above', 'between', 'be', 'we', 'who
"you're", 'were', 'here', 'hers', "aren't", 'by', 'both', 'about',
'of', 'could', 'against', "i'd", "weren't", "i'm", 'or', "can't", '
'into', 'whom', 'down', "hadn't", "couldn't", 'your', "doesn't", 'f
"how's", 'her', 'their', "it's", 'there', 'been', 'why', 'few', 'to
'themselves', 'was', 'until', 'more', 'himself', "where's", "i've",
"didn't", "what's", 'but', 'herself', 'than', "here's", 'he', 'me',
"they're", 'myself', 'these', "hasn't", 'below', 'ought', 'theirs',
"wouldn't", "we'd", 'and', 'then', 'is', 'am', 'it', 'an', 'as', 'i
'at', 'have', 'in', 'any', 'if', 'again', 'no', 'that', 'when', 'sa
'how', 'other', 'which', 'you', "shan't", 'our', 'after', "let's",
'such', 'on', "he'll", 'a', 'off', 'i', "she'd", 'yours', "you'll",
"we're", "she's", 'the', "that's", 'having', 'once'])

def tokenize(docs):
 pattern = re.compile('[\W_]+', re.UNICODE)
 sentences = []
 for d in docs:
 sentence = d.lower().split(" ")
 sentence = [pattern.sub('', w) for w in sentence]
 sentences.append([w for w in sentence if w not in stop_words]
 return sentences

From this function, you can tokenize any list of documents, and you can n
to build your first word2vec model. For more information on the param
algorithm, please see the Gensim documentation.2

2 https://radimrehurek.com/gensim/models/word2vec.html

Splits the d
words after
characters

Removes every
character, such as punRemoves English

stop words

192 CHAPTER 8 Advanced NLP example: movie review sentiment

from gensim.models.word2vec import Word2Vec

sentences = tokenize(d_train.review)
model = Word2Vec(sentences, size=300, window=10, min_count=1,
 sample=1e-3, workers=2)
model.init_sims(replace=True)
print model['movie']
#> array([0.00794919, 0.01277687, -0.04736909, -0.02222243, …])

bers, in this
ur ML algo-
ow to repre-
ment (list of
next listing,

ures. As you
Bayes classi-
vec features
-count fea-

has learned
represented

n is incom-
nerated by a
o work with
 the random

Listing 8.8 Word2vec model

Generates sentences
from tokenize function

Builds and
normalizes
word2vec model

ord2vec
d movie

NumPy array
re vectors

entence,
r each
he mean
You can see how a single word is represented as a vector (of 300 num
case). In order to use the word2vec model to generate features for yo
rithm, you need to convert your reviews into feature vectors. You know h
sent single words as vectors, so a simple idea is to represent a review docu
words) as the average vector of all the words in the document. In the
you’ll build a function to do exactly this.

def featurize_w2v(model, sentences):
 f = zeros((len(sentences), model.vector_size))
 for i,s in enumerate(sentences):
 for w in s:

try:
vec = model[w]

except KeyError:
continue

f[i,:] = f[i,:] + vec
 f[i,:] = f[i,:] / len(s)
 return f

You’re now ready to build a model on your newly generated word2vec feat
may recall from our ML algorithm discussions in section 8.2.2, the naïve
fier works well with sparse data but not so well with dense data. The word2
have indeed converted your documents from the ~65,000 sparse word
tures into only hundreds of dense features. The deep-learning model
higher-level topics of the model (listing 8.8), and each document can be
as a combination of topics (listing 8.9).

8.3.2 Random forest model

The multinomial naïve Bayes algorithm introduced in the previous sectio
patible with the new word2vec features, because they can’t be considered ge
multinomial distribution. You could use other distributions to continue t
the naïve Bayes algorithm, but you’ll instead rely on an old friend of ours:

Listing 8.9 Word2vec featurization

Prints the vector from w
model for the wor

Initializes a
for the featu

Loops over each s
add the vectors fo
word, and takes t

193Advanced algorithms and model deployment considerations

forest algorithm. In the following listing, you’ll build a 100-tree random forest model on
the word2vec features and analyze the performance as usual on the test set.

features_w2v = featurize_w2v(model, sentences)

model4 = RandomForestClassifier(n_estimators=100, n_jobs=-1)
model4.fit(features_w2v, d_train.sentiment)

test_sentences = tokenize(d_test.review)
test_features_w2v = featurize_w2v(model, test_sentences)

our previous
s the model
C curve.

erformance
s to improve
 of correctly
bels or some

Listing 8.10 Building a random forest model on the word2vec features
pred4 = model4.predict_proba(test_features_w2v)
performance(d_test.sentiment, pred4, color="c")

The performance of the word2vec random forest model is compared to y
models in figure 8.9. You can see how your new model indeed improve
accuracy in your chosen evaluation metric and across all points on the RO

With your final model illustrated in figure 8.9, you’re satisfied with the p
and will stop optimization work for now. You could try many more thing
the accuracy even further. Most likely, not even humans would be capable
classifying the sentiment of all the reviews; there may be some incorrect la
reviews for which the sentiment isn’t easily understandable.

0.00

0.95

0.05 0.10 0.15 0.20 0.25

0.90

1.00

0.65

0.75

0.70

0.85

0.80

0.60

False-positive rate

Acc: 0.93
AUC: 0.98

bag-of-words modeltf-idf modelOptimized modelWord2vec model

Tr
ue

-p
os

iti
ve

 ra
te

Figure 8.9 The ROC curve of the word2vec model along with previous
models. You can see an improvement for all values of the ROC curve, also
reflected in the increased accuracy and AUC numbers.

194 CHAPTER 8 Advanced NLP example: movie review sentiment

 But the model can likely get much better than what you’ve achieved so far. We’ll
leave you, dear reader, with an initial list of things that we would try out, in rough
order of priority:

■ Use unlabeled data to build a better topic model.
The data section of the Kaggle competition website contains an unlabeled set of
reviews that you can use for training. Because you’re building a supervised
model, they don’t seem useful at first. But because you’re building a word2vec
model that needs to learn the nuances of the world of IMDb movie reviews—
and especially the connections between different words and concepts—it would

 model that
 before you

odels of this
 model. We
random for-

uch as “New
zation func-
o this could
tion.

age (in this
us places of
e review was
l libraries of
ion in your
punctuation
otally differ-
ust split the

al-world use
der some of

raining data?
ick a model
yes classifier
the random
be beneficial to use this data in order to improve your word2vec
goes into the features of your training set (the one that has labels)
build the model.

■ Optimize parameters.
You saw great improvement in model performance in the initial m
chapter after finding better values for the hyperparameters of the
since introduced a new NLP model (word2vec) and ML algorithm (
est), so there are many new parameters to optimize.

■ Detect phrases.
The Gensim library includes support for detecting phrases in text, s
York City,” which would be missed in our “dump” word-only tokeni
tion. The English language tends to include multiword concepts, s
be an interesting thing to include in your sentence-generation func

■ Handle multiple languages.
If you were uncertain about all the reviews being in a single langu
case, English), you’d have to deal with multiple languages in vario
the modeling pipeline. First, you’d need to know which language th
in, or you’d need to detect the language (for which there are severa
varying quality available). Then you’d need to use this informat
tokenization process to use different stop words and, potentially,
characters. If you were really unlucky, you’d even have to deal with t
ent sentence structures, such as Chinese text, where you can’t j
words when there’s a whitespace.

Now, imagine you’re satisfied with the model at hand. If this were a re
case, you’d want to put the model into production. You should then consi
the following aspects, depending on the exact use case:

■ How much training data do you have, and does the model get better with more t
This can affect the choice of ML algorithm because you need to p
that scales well with more training data. For example, the naïve Ba
supports partial training, also known as online learning, whereas
forest algorithm can be difficult to scale to larger datasets.

195Terms from this chapter

■ What is the volume of predictions, and do they need to be delivered in real time?
We’ll talk a great deal more about scaling up predictions with volume and
speed in the next chapter, but the takeaway is that this can have consequences
for the choice of algorithm and the infrastructure in which it’s deployed.

8.4 Summary
In this chapter, you learned how to go end to end on a real machine-learning use case,
along with the basics of natural language processing and optimizing model parame-
ters. Key takeaways for this chapter included the following:

rt by asking,
?”
y determine

enever possi-
 accuracy.
models and

d evaluation
alse negative

e word2vec
 to improve

el accuracy,
form predic-

d in many
age

rithms’
■ It’s essential to focus on the right problem. You should always sta
for each possible use case, “What’s the value of solving this problem

■ For each use case, you need to inspect the data and systematicall
whether the data is sufficient to solve the problem at hand.

■ Start with simple off-the-shelf algorithms to build an initial model wh
ble. In our example, we predicted review sentiment with almost 90%

■ Accuracy can be improved by testing and evaluating alternative
combinations of model parameters.

■ There are often trade-offs between different model parameters an
criteria. We looked at how the trade-off between false positive and f
rates for movie reviews is represented by the model’s ROC curve.

■ State-of-the-art natural-language and ML modeling techniques lik
are examples of how advanced feature engineering may enable you
your models.

■ Your choice of algorithms may depend on factors other than mod
such as training time and the need to incorporate new data or per
tions in near-real time.

■ In the real world, models can always be improved.

8.5 Terms from this chapter

Word Definition

word2vec An NLP modeling framework, initially released by Google and use
state-of-the-art machine-learning systems involving natural langu

hyperparameter
optimization

Various techniques for choosing parameters that control ML algo
execution to maximize their performance

Scaling machine-learning
workflows
This chapter covers
■ Determining when to scale up workflows for

model accuracy and prediction throughput
■ Avoiding unnecessary investments in complex

scaling strategies and heavy infrastructure
ry concern.
roduce pre-
econds (for
 clickstream
o be able to
think about
196

In real-world machine-learning applications, scalability is often a prima
Many ML-based systems are required to quickly crunch new data and p
dictions, because the predictions become useless after a few millis
instance, think of real-time applications such as the stock market or
data). On the other hand, other machine-learning applications need t
scale during model training, to learn on gigabytes or terabytes of data (
learning a model from an internet-scale image corpus).

■ Ways to scale linear ML algorithms to large
amounts of training data

■ Approaches to scaling nonlinear ML
algorithms—usually a much greater challenge

■ Decreasing latency and increasing throughput
of predictions

197Before scaling up

 In previous chapters, you worked mostly with data that’s small enough to fit, pro-
cess, and model on a single machine. For many real-world problems, this may be suffi-
cient to solve the problem at hand, but plenty of applications require scaling to
multiple machines and sometimes hundreds of machines in the cloud. This chapter is
about deciding on a scaling strategy and learning about the technologies involved.

 In the first part of this chapter, we introduce the various dimensions to consider
when facing a large dataset or a requirement for high-volume predictions. We present
ways that you can avoid investing a lot of time and resources in a fully scalable
approach, and some technologies to consider if there’s no way around it. The follow-

ow for train-
 workflow to

er to solve a
his chapter.

s on the use
scribing the
ing applica-
which could
of scalability
applications

we start with
th a systems

ary routines:
esource con-
ystem? Con-

 their ultimate

be made.

ctical), so a
uracy.
ing section goes more deeply into the process of scaling up the ML workfl
ing models on large datasets. Finally, we focus on scaling the prediction
large volumes or decreased latency.

 In the next chapter, you’ll get to use everything you’ve learned in ord
real-world big-data example, so hang on as you get through the basics in t

9.1 Before scaling up
The type of scalability required for any given problem ultimately depend
case and the computational constraints that exist. This section starts by de
kinds of scalability that are commonly required in modern machine-learn
tions. You’ll step through the various dimensions to consider and identify
be bottlenecks in your ML code. Later, after you’ve identified the types
required, you’ll learn about standard techniques to ensure that your ML
can handle real-world data rates and volumes.

 Instead of diving right into specific methods to scale ML applications,
a high-level overview. Using our ML workflow as a guide, let’s begin wi
view of ML scalability.

9.1.1 Identifying important dimensions

Let’s first deconstruct our machine-learning workflow into the two prim
model training and model prediction. For these two systems, how could r
straints affect the workflow, and how could these inhibit or break the s
sider table 9.1.

Table 9.1 Problems in model building that can occur due to lack of scalability, plus
consequences

Scalability problem Consequence

Training dataset is too large to fit a model. No model is fitted, so no predictions can

Training dataset is so large that model fitting
is slow.

Model optimization is infeasible (or impra
suboptimal model is used, sacrificing acc

198 CHAPTER 9 Scaling machine-learning workflows

During model building, the scalability issues that you’ll face stem from large training
sets. At one extreme, if your training dataset is so large that you can’t even fit a model
(for example, the data doesn’t fit in memory), then this is a problem that you must
find a way around. You can choose from three approaches: (1) find a smaller subset of
the data that you can learn on, (2) use a machine with more RAM, or (3) use a more
memory-efficient learning algorithm.

 In a bit, we describe a few quick ways to reduce your dataset size without signifi-
cantly impacting model quality. We follow this up with a discussion of how to scale
compute cycles to fit your problem via scalable data systems. Later in the chapter, we

to your data

ple models
ch as boost-
print of the
ophisticated
e, the same

ause model
rio, this can

loy a coarse
t unlike the

 nodes (hor-
ices) on the

m data that
U-intensive,

gy: spinning
ining, is that
or each data

their ultimate

grows and

ns is lost,
.

 no predic-
introduce scalable learning algorithms, which can allow you to scale ML
without relying on shortcuts or extra hardware.

 For slightly smaller datasets, it may be possible to fit only relatively sim
(such as linear/logistic regression) in lieu of more-sophisticated ones (su
ing), because of the extra computational complexity and memory foot
latter. In this case, you may be sacrificing accuracy by not fitting more-s
learning algorithms, but at least you’re able to fit a model. In this cas
options presented previously are viable approaches to try.

 In a related scenario, the massive size of your training dataset could c
fitting, and in turn model optimization, to be slow. Like the previous scena
cause you to use a less accurate model, because you’re forced to emp
tuning-parameter-optimization strategy or to forego tuning altogether. Bu
preceding situation, this predicament can be solved by spinning up more
izontal scaling) and fitting models (with different tuning parameter cho
different machines. We touch more on horizontal scaling in section 9.1.3.

 In the prediction workflow, the scalability issues you face stem fro
comes in very fast, prediction or feature-engineering processes that are CP
or prediction data batches that are very large. Consider table 9.2.

Luckily, all three of these challenges can be resolved with the same strate
up more machines. The advantage of prediction, as opposed to model tra
in the vast majority of use cases, predictions can be made independently f

Table 9.2 Problems in ML prediction that can occur due to lack of scalability, plus
consequences

Scalability problem Consequence

Data rates (streaming) are too fast for the ML system
to keep up.

The backlog of data to predict on
grows until ultimately breaking.

Feature-engineering code and/or prediction pro-
cesses are too slow to generate timely predictions.

The potential value of the predictio
particularly in real-time use cases

Data sizes (batch) are too large to process with
the model.

The prediction system breaks, and
tions are made.

199Before scaling up

instance.1 To generate predictions, at any one time you need to hold in memory only
the features for a single instance (and the ML model that you’ve built). Contrast that
scenario to model training: typically, the entire training set needs to be loaded into
memory. Thus, unlike the scalability problems during model training, prediction scal-
ability issues don’t require larger machines; they just require more of them—and, of
course, an efficient data management system to control them (more on this later).

 Whether you need to generate predictions more quickly, handle a higher volume
of instances, or deal with slow feature-engineering or prediction processes, the solu-
tion is to spin up more machines and send out different subsets of instances on each

d on all the
return them

xplore a few
diction.

 set and the
option is via-
raining data

portant sig-
ven improve
y data in two
ibe a statisti-

or example,
eatures) but
eaturization
llions of fea-
 eliminating
 a schematic

er models in
g algorithms
eatures that
hoice of ML
’re throwing

pendently. For
he predictions
node for processing. Then, assuming that the fitted model is distribute
nodes, you can generate predictions in parallel across all machines and
to a central database.

 In section 9.3, you’ll dive deeply into prediction systems. There, you’ll e
approaches to building computational systems for fast and scalable ML pre

9.1.2 Subsampling training data in lieu of scaling?

In some cases, model training may be infeasible with the entire training
available CPU resources. If you’re up against this challenge and no other
ble, then as a method of last resort, you may consider subsampling the t
before model building.

 Although in general we discourage subsampling data (you might lose im
nals), some ways of discarding data are better than others. Some might e
your model, depending on the ML algorithm at hand. You can throw awa
ways: discard features or discard instances. For each option, we’ll descr
cally rigorous method to reduce the size of your training data.

FEATURE SELECTION

Often, the broadness of a dataset creates the computational bottleneck. F
in genome data, a training set may contain data for millions of genes (f
for only hundreds of patients (instances). Likewise, for text analysis, the f
of data into n-grams can result in training sets containing upward of mi
tures. In these cases, you can make your model training scale by first
unimportant features in a process called feature selection. Figure 9.1 shows
of how feature selection works.

 As we discussed in chapters 4 and 5, feature selection can lead to bett
some cases. By intelligently removing features, you can make the learnin
hone in on the important signals without becoming distracted by the f
don’t matter. The actual loss or gain of feature selection depends on the c
model and on how much information is unknowingly lost because you

1 Note that in a handful of ML use cases, predictions can’t be made on separate instances inde
example, a time-series forecasting model, such as a financial or climate model, may rely on t
from multiple timestamps in generating a single forecast.

200 CHAPTER 9 Scaling machine-learning workflows

el appropri-
orking with

ion is Lasso.
for the most
 is efficient,
rms of their
, in terms of

’t even fit a
ces in your

can give you
grading the

ar model to
Lasso could
t be appro-

s to feature
ods typically

on, you may
 can use sta-
ur training

e hierarchi-
t instance as
ubsequently
This joining

Original training
data: 50 features

Lasso selects
f1, f3, f6…f15 … …

New dataset
used for training

Figure 9.1 Feature selection using
Lasso to reduce the dimensionality

 a machine-
away data, so you should always test your changes by validating your mod
ately. In this section, we talk about feature selection primarily as a way of w
large datasets.

 For massive training sets, our recommended method of feature select
Lasso is an efficient linear learning algorithm that automatically searches
predictive subset of features. Computing the entire trace of the algorithm
allowing the user insight into the entire ordering of all the features in te
predictive power in the linear model. Moreover, the best subset of features
the linear model predictions, is provided.

 If you’re (un)lucky enough to have such a large dataset that you can
Lasso model, you may consider fitting the Lasso to subsets of the instan
training set (and potentially averaging across runs of the algorithm). This
a good sense of which features can be removed from the model without de
statistical performance of your ML algorithm.

 The obvious downside to Lasso feature selection is that it uses a line
gauge the importance of each feature. A feature that’s selected out via
indeed have a nonlinear relationship with the target variable that may no
priately captured by Lasso. As an alternative, nonparametric approache
selection exist, such as random forest feature importance, but those meth
don’t scale to large datasets.

INSTANCE CLUSTERING

If after feature selection your training data is still too large to fit a model
consider subselecting instances. As an absolute method of last resort, you
tistical clustering algorithms to identify and remove redundancies in yo
instances.

 For this type of data reduction, we recommend using an agglomerativ
cal clustering algorithm. This approach will initialize with each training se
the sole member of its own cluster. Then, the two closest clusters are s
joined (using a predefined distance measure to determine “closeness”).

f1 f50f2 f1 f3f3 f15
of a large dataset to train
learning model

201Before scaling up

of nearby clusters continues until a stopping criterion (for example, number of clus-
ters) is reached. We recommend stopping this process as early as possible so you don’t
reduce too dramatically the information content of your data. The final reduced
training set consists of a single instance for each of the resulting clusters.

9.1.3 Scalable data management systems

Independent of the strategy you want to take for scaling up your ML workflow, you
need to be able to handle the data first. In the past decade, we’ve seen tremendous
focus on so-called big-data technologies. In this book, we use the term big data to mean

able amount
cts and how

 able to han-
ility. In con-
tical scaling,
 disk, mem-

ur machines
the previous
sification or
plexity of a
lar websites,
o use a hori-

More
memory
added

, you add
 load is
op. In
 handle
ount of

L servers
any data that’s too large to be processed by a single machine in a reason
of time. Here, we introduce some of the most successful big-data proje
they can be used in an ML framework.

 The basic principle in modern big-data systems is that you need to be
dle more data by adding more machines. This is known as horizontal scalab
trast, the alternative way of handling larger resource requirements is ver
whereby you upgrade the small number of machines you have with more
ory, or CPU cores. Figure 9.2 compares horizontal and vertical scalability.

Sometimes, and perhaps more often than you might think, upgrading yo
will be enough to scale up your machine-learning workflow. As stated in
sections, after the raw data has been processed and readied for your clas
regression problem, the data may not be big enough to warrant the com
true big-data system. But in some cases, when dealing with data from popu
mobile apps, games, or a large number of physical sensors, it’s necessary t
zontally scalable system. From now on, this is what we’ll assume.

Horizontal scalability Vertical scalability

New
nodes
added

Data distributed
evenly among nodes

Figure 9.2 Horizontal vs. vertical scalability for big-data systems. In horizontal systems
new nodes (machines) to your infrastructure to handle more data or computation, as the
distributed relatively evenly among nodes. An example of such a system is Apache Hado
vertically scaling systems, you add more resources to your existing machines in order to
higher loads. This approach is usually more efficient initially, but there’s a limit to the am
resources you can add. Examples of databases that work well with this approach are SQ
such as PostgreSQL.

202 CHAPTER 9 Scaling machine-learning workflows

 Horizontally scalable big-data systems have two main layers: storage and computa-
tion. In the storage layer, data is stored and passed on to the computational layer, where
data is processed. One of the most popular big-data software projects is Apache
Hadoop, which is still widely used in science and industry and is based on ideas from a
previously unseen level of scalability obtained at Google and other web-scale compa-
nies in the early 2000s.

 The storage layer in Hadoop is called the Hadoop Distributed File System (HDFS).
Datasets are partitioned and distributed over multiple machines so they can be pro-
cessed in parallel. Also, each partition is replicated so data is unlikely to be lost in the

educe to dis-
 framework,
 the data in

ilar to our
columns to
 and aggre-
ormed into
ystems such
of machines

rated. Many
rvice in the

oop MapRe-
s your large
ion between
es more effi-
se to where

lled Mahout
S and Map-
ay be worth
om the sim-
 approaches
 framework

 working on
in the MLlib
 the Apache

t and MLlib
thms. In the
ithms.
event of hardware or software failures.
 The computing layer of Hadoop uses a simple algorithm called MapR

tribute computation among the nodes in the cluster. In the MapReduce
the map step distributes data from HDFS onto workers that transform
some way, usually keeping the number of data rows the same. This is sim
feature-engineering processes in earlier chapters, where you add new
each row of input data. In the reduce step, the mapped data is filtered
gated into its final form. Many data-processing algorithms can be transf
MapReduce jobs. When algorithms are transformed to this framework, s
as Hadoop will take care of the distribution of work among any number
in your cluster.

 In principle, the storage and computational layers need not be integ
organizations use a storage system from a cloud provider, such as the S3 se
Amazon Web Services (AWS) cloud infrastructure, coupled with the Had
duce framework for computation. This has the benefit that AWS manage
volumes of data, but you lose one of the main points of the tight integrat
HDFS and MapReduce: data locality. With data locality, your system becom
cient because computational tasks are performed on subsets of the data clo
that data is stored.

 The Hadoop community has developed a machine-learning library ca
that implements a range of popular ML algorithms that work with HDF
Reduce in the Hadoop framework. If your data is in Hadoop, Mahout m
looking into for your machine-learning needs. Mahout is moving away fr
plistic MapReduce framework into more-advanced distributed computing
based on Apache Spark. Apache Spark, a more recent and widely popular
based on the ideas of Hadoop, strives to achieve better performance by
data in memory. Spark has its own library of machine-learning algorithms
library included with the framework. Figure 9.3 shows a simple diagram of
Spark ecosystem.

 Scalable ML algorithms are often linear for natural reasons. Both Mahou
include mostly linear ML algorithms or approximations to nonlinear algori
next section, you’ll look at how to approach scaling with both types of algor

203Scaling ML modeling pipelines

know before
ger datasets.
ur ML work-
our familiar

Querying
data in Spark
with SQL

Real-time
stream
processing
in Spark

Machine-learning
algorithms and
tools in Spark

Graph-processing
framework for Spark

Spark
SQL

Spark
Streaming

MLlib
(machine GraphX

(graph)
9.2 Scaling ML modeling pipelines
In the first section of this chapter, you looked at things that are good to
you take the plunge and invest in scaling up your workflow to handle lar
In this section, we assume that you’ve made the decision to scale out yo
flow and chosen a big-data processing system to use. Figure 9.4 updates
ML workflow diagram to the world of big data.

Apache Spark

learning)

Figure 9.3 The Apache Spark ecosystem based on the Spark core for
distributed computation. Spark SQL allows you to work with tables using
Python pandas or R data frames. Spark Streaming allows you to process
data in real time as it arrives, in contrast to the batch-processing nature
of Hadoop and classic Spark. MLlib is the machine-learning library that
includes a range of ML algorithms optimized for the Spark engine, and
GraphX is a library allowing efficient computation on large graphs such as
the social graph of a social network.

Big training data

Scalable ML algorithms

Scalable feature engineering High-throughput prediction

Figure 9.4 The modeling part of our familiar ML workflow
diagram with scalable components

204 CHAPTER 9 Scaling machine-learning workflows

In section 9.1.3, we introduced a few big-data-capable systems that can be used to
manage and process data of almost any size. Because they work on an instance-by-
instance basis, the feature-engineering processes that we’ve talked about in the book
so far can be done with simple map calls that are available in any of those systems.
Next, you’ll look at how some popular linear and nonlinear ML algorithms scale in
the face of big data.

9.2.1 Scaling learning algorithms

In the beginning of the chapter, you saw that during the learning phase, the funda-
rge training
tions of ML
 implemen-
 which each

L learning
 continually
set size that
ata volumes
 some train-

nd logistic)
 has been a

way that dis-
a (subset by
ive manner,
 hand, send-
formation is
ber of itera-
overall opti-
ear models

n’t necessar-
 these cases,
quire more

with nonlin-
dels as also
r portion of

ore-efficient
osen. But in
we discuss a
mental scalability challenge is dealing with the size, in memory, of very la
sets. To circumvent that problem, one option is to look for implementa
algorithms that either (a) use a smaller memory footprint than competing
tations of the same algorithm, or (b) can train over distributed systems in
node requires only a subset of the entire dataset.

 Out in the wild, countless implementations of the most common M
algorithms exist. From scikit-learn to mlpack, these implementations are
stretching the frontiers of memory efficiency (and thus increasing the data
can be trained on a single computer with a fixed amount of RAM). Yet, d
are still outpacing the gains in ML software and computer hardware. For
ing sets, the only option is horizontally scalable machine learning.

 The most commonly used distributed learning algorithm is linear (a
regression. The Vowpal Wabbit (VW) library popularized this approach, and
mainstay for scalable linear learning across multiple machines. The basic
tributed linear regression works is to first send subsets of the training dat
dataset rows) to the various machines in the cluster. Then, in an iterat
each machine performs an optimization problem on the subset of data on
ing back the result of the optimization to the central node. There, that in
combined to come up with the best overall solution. After a small num
tions of this procedure, the final model is guaranteed to be close to the
mal model (if a single model were fit to all the data at once). Hence, lin
can be fit in a distributed way to terabytes or more of data!

 As we’ve discussed numerous times in this book, linear algorithms are
ily adequate for modeling the nuances of data for accuracy predictions. In
it can be helpful to turn to nonlinear models. Nonlinear models usually re
computational resources, and horizontal scalability isn’t always possible
ear models. This can be understood loosely by thinking of nonlinear mo
considering complex interactions between features, thus requiring a large
the dataset at any given node.

 In many cases, it’s more feasible to upgrade your hardware or find m
algorithms or more-efficient implementations of the algorithms you’ve ch
other situations, scaling a nonlinear model is needed, and in this section
few ways to approach this.

205Scaling ML modeling pipelines

POLYNOMIAL FEATURES

One of the most widely used tricks to model nonlinear feature interactions is to create
new features that are combinations of the existing features and then train a linear
model including the nonlinear features. A common way to combine features is to mul-
tiply features in various combinations, such as feature 1 times feature 2, feature 2 squared,
or feature 1 times feature 2 times feature 5. Say a dataset consists of two features, f1 = 4 and
f2 = 15. In addition to using f1 and f2 in your model, you can generate new features f1
× f2 = 60, f1 ^ 2 = 16 and f2 ^ 2 = 225. Datasets usually contain a lot more than two fea-
tures, so this technique can generate a huge number of new features. These features

features. The
thon library.
hen adding

ture extrac-
 models on
ratively and
needs to be
ing to deal
e nonlinear
bic features,

ample data.
ce describes
Iris flowers
del will learn
t.

d prints
dated results

odel

nomial
s to the dataset

ds and prints
s-validated results
near model on
linear data
are nonlinear combinations of existing features. We call them polynomial
following listing shows how this can be achieved with the scikit-learn Py
The results of running the code in this listing show the accuracy gained w
polynomial features to a standard Iris flower classification model:

Accuracy (linear): 0.95 (+/- 0.12)
Accuracy (nonlinear): 0.98 (+/- 0.09)

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.cross_validation import cross_val_score

iris = datasets.load_iris()

linear_classifier = LogisticRegression()
linear_scores = cross_val_score(linear_classifier, \
 iris.data, iris.target, cv=10)
print "Accuracy (linear):\t%0.2f (+/- %0.2f)" % \
 (linear_scores.mean(), linear_scores.std() * 2)

pol = PolynomialFeatures(degree=2)
nonlinear_data = pol.fit_transform(iris.data)

nonlinear_classifier = LogisticRegression()
nonlinear_scores = cross_val_score(nonlinear_classifier, \
 nonlinear_data, iris.target, cv=10)
print "Accuracy (nonlinear):\t%0.2f (+/- %0.2f)" % \
 (nonlinear_scores.mean(), nonlinear_scores.std() * 2)

An example of another machine-learning toolkit that has polynomial fea
tion integrated is the Vowpal Wabbit library. VW can be used to build
large datasets on single machines because all computation is done ite
out of core, meaning that only the data used in the particular iteration
kept in memory. VW uses stochastic gradient descent and feature hash
with unstructured and sparse data in a scalable fashion. VW can generat
models by supplying the –q and –cubic flags to generate quadratic or cu

Listing 9.1 Making a linear model nonlinear by using polynomial features

Loads the s
Each instan
pictures of
that the mo
to tell apar

Builds an
cross-vali
of linear m

Adds degree-2 poly
interaction feature

Buil
cros
of li
non

206 CHAPTER 9 Scaling machine-learning workflows

corresponding to polynomial features where all pairs or all triplets of features have
been multiplied together.

DATA AND ALGORITHM APPROXIMATIONS

As you saw in the preceding section, the polynomial feature approach has the ability
to increase the accuracy of the model significantly, but also increases the number of
features polynomially. That might not be feasible for a large number of input features,
so here you’ll look at a few nonlinear algorithms that have well-known approximations
useful for scalable implementations. Other algorithms may have their own approxima-
tions for scalability, so we encourage you to investigate your favorite algorithm further.

u’ve already
erous deci-
st to many
t if the data
f the model
 could miti-

 other algo-
with the his-
 the column
nuance may

bors; special
model. Sup-
 the nonlin-
ent (BSGD)

 deep learn-
to very large
 researched

ent of algo-
s frequently.
and diverse
ntering the

l neural net-
l network or
ral network.
rdware, the

a long time.
 algorithms,
 the dataset
 A widely used nonlinear learning algorithm is random forest, which yo
read about in previous chapters. The random forest model consists of num
sion trees, and on first sight it may look trivial to scale random fore
machines by building only a subset of the trees on each node. Be aware tha
subsamples available at each node aren’t sufficiently similar, the accuracy o
can suffer. But building more trees or splitting the data more intelligently
gate the loss in accuracy.

 Another approximation that can be used to scale random forests and
rithms is a histogram approximation: each column in the dataset is replaced
togram of that column, which usually decreases the number of values in
significantly. If the number of bins in the histogram is too small, a lot of
be lost and model performance suffers.

 Another algorithm that has natural approximations is k-nearest neigh
approximate tree structures can be used to increase the scalability of the
port vector machines have seen multiple approximation methods to make
ear versions more scalable, including Budgeted Stochastic Gradient Desc
and Adaptive Multi-hyperplane Machines (AMM).

DEEP NEURAL NETS

A recent revolution in neural network research has spawned a new field of
ing that produces highly nonlinear models and has proven to be scalable
datasets. In the early days of machine learning, neural networks (NNs) were
heavily and applied widely in science and industry. Later, with the adv
rithms that were easier to reason about mathematically, NNs were used les
Recently, NNs again started producing state-of-the-art results on large
datasets after going through a few important evolutionary steps and e
realm of deep learning.

 Deep learning refers to a family of algorithms that extends the traditiona
work. Commonly, these models include many hidden layers in the neura
many single-layer networks combined. Figure 9.5 illustrates an example neu

 One of the disadvantages of deep neural nets are that even on GPU ha
computational resources needed to build and optimize models can take
In practice, you may be able to get just as good performance with other
such as random forests, using far less time and resources. This depends on

207Scaling predictions

 difficult to
ome refer to
tical analysis
ain depends
 can take on
dictions.
metimes by

. For a deep-
eeplearning

eano).

building an
m-detection
dreds of mil-
! Figure 9.6
e volume of
l time.

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 9.5 A neural network of two hidden
layers. Loosely modeled on the human brain,
the neurons (circles in each layer) are
connected with weights that are learned
during model training. The output variables
can be predicted by running the input variables
through the weighted connections. In deep
learning, this classical neural network

more hidden
ious degrees
and problem at hand, as always. Another disadvantage is that it can be
understand what’s going on under the hood of these neural net models. S
them as black-box models, because you have to trust the results of your statis
of the models without doing any introspection of their internals. This ag
on the use case. If you’re working with images, for example, the neurons
intuitive representations of various visual patterns that lead to specific pre

 Many deep-learning methods have shown to scale to large datasets, so
using modern graphic cards (GPUs) for performing certain computations
learning library in Python that supports GPUs, take a look at Theano (http://d
.net/software/theano/) or Keras (http://keras.io/), which is based on Th

9.3 Scaling predictions
Scaling ML isn’t only about scaling to larger datasets. Imagine you’re
email service, and you suddenly have millions of users. You built a nice spa
model, and it even scales to large datasets, but now you need to make hun
lions of predictions per day. That’s more than 10 thousand per second
illustrates this common pattern. In this section, we discuss ways to scale th
predictions and scale the velocity when predictions need to be used in rea

concept is expanded to include
layers of various shapes and var
of connectivity between layers.

Big training data

Scalable ML algorithms

Scalable feature engineering High-volume and/or high-velocity prediction

Figure 9.6 Scaling the prediction part of the ML workflow to high volumes or
high-velocity predictions

208 CHAPTER 9 Scaling machine-learning workflows

First, you’ll look at infrastructure architectures for scaling with the volume of predic-
tions so you can handle the large user base of your email client, for example. Next,
you’ll look at how to scale the velocity of predictions and guarantee an answer within a
given timeframe. This is important when your ML models are used in the real-time
feedback loop of, for example, humans on web or mobile devices.

9.3.1 Scaling prediction volume

In order to handle many predictions, you can use patterns known from computational
architecture for scaling workers to support any number of requests. The traditional

orker nodes
sh back the
ws how this

s, of course,
 handle the
 of workers

y of requests

d your work-
he optimal

rediction
too many
 are waiting
e.

ore
 in
se.

s are sent
 stores the
ng up when
n up.
approach is to have a queue of prediction jobs from which a number of w
pull predictions, load the model (if needed), make the prediction, and pu
results in whatever way makes sense for the application. Figure 9.7 sho
architecture might look for scaling predictions by volume.

This approach requires that the model can be loaded on all worker node
and that there are enough workers (or an autoscaling solution in place) to
number of predictions coming in. You can easily calculate the number
needed if you know the mean prediction time for a worker and the velocit
coming in:

n_workers = request_velocity * prediction_time

For example, if you have 10 prediction requests coming in per second, an
ers take 2 seconds to finish, you need at least 20 workers to keep up. T

Prediction
workers

Prediction
storage

Prediction queue
(buffer)

Client
(web/mobile)

Add more p
workers if
predictions
in the queu

Workers st
predictions
the databa

Figure 9.7 A possible infrastructure for a scalable prediction service. Prediction request
from the consumer to a queue, which delegates the job to a prediction worker. The worker
prediction in a database and delivers it back to the client when done. If the queue is cloggi
more predictions are streaming in than the workers can handle, more workers can be spu

209Scaling predictions

autoscaling solution here is to be able to spawn new workers from the number of
requests waiting in the queue over a certain period of time.

9.3.2 Scaling prediction velocity

In some cases, you need your predictions to be returned within a certain time after
the request was made by a client. Prediction velocity can be important, for example,
when predictions are made in response to a user action. Users expect feedback in real
time, and waiting even a few seconds can be detrimental to the user experience. Imag-
ine a Google search that takes 20 seconds—likely, you’d be long gone. Or, if you’re

 mean mak-

h as upgrad-
s of an algo-
as physically
 service that
database, or
n the follow-
. Now you’ll

 introduced
 basic idea is
 first predic-
mple of this

A possible
 for a
peline with
requirements.
 dispatcher
ediction job to
kers, hoping
 one will return
n time. It will
st one that
 to the client,
d record it in a
ase for later
nd analytics
ground,
le already
he next
making predictions about financial transactions, mere milliseconds could
ing or losing a lot of money.

 Various approaches are available to make your predictions faster, suc
ing your hardware or using more-efficient algorithms or implementation
rithm. You can also optimize the network and make sure that the client is
close to your servers as possible. In addition, you shouldn’t call any other
may introduce additional latency, such as recording the predictions to a
waiting for the data to be written to disk and replicated across a cluster. I
ing example, we’ll assume that you’ve already considered these points
take a look at two architectures for serving real-time predictions.

 The first architecture for fast predictions is similar to the architecture
in the preceding scale-by-volume section, but requires more workers. The
that each prediction request is sent to multiple workers at once, and the
tion that finishes is sent back to the customer. Figure 9.8 shows an exa
architecture.

Prediction
workers

Prediction
storage

Prediction
dispatcherClient

Dispatcher returns the
first prediction that
returns within the
timeout. The others
are discarded.

Dispatcher records
results to the database
after returning to client,
to keep latency low.

Figure 9.8
architecture
prediction pi
low-latency
A prediction
sends the pr
multiple wor
that at least
predictions i
return the fir
comes back
and afterwar
log or datab
inspection a
(in the back
possibly whi
working on t
prediction).

210 CHAPTER 9 Scaling machine-learning workflows

Another approach to real-time predictions is to make predictions in parts so the com-
putation can be distributed among multiple machines. Ensemble methods comprise a
class of algorithms that lend themselves well to this approach. We’ll again use random
forests as an example here.

 Random forest models consist of an ensemble of decision trees. The algorithm
makes a prediction from each tree and (in the case of classification) counts the votes
from each tree into the final probability. For example, if there are 10 trees and 6 of
them vote yes for a particular prediction instance, the forest returns 6/10, or 60%, as
the answer. Usually, the larger the total number of trees queried, the more accurate

em to trade
 list of trees
redicting on
ults from all
limit and at
le, if only 20
t as accurate
and confident the results. This can be used in a real-time prediction syst
accuracy for speed. If each prediction node is responsible for a tree or
from the forest, you ask each for a prediction. Whenever a node finishes p
its own trees, the result is returned to a collector service that collects res
nodes and makes the final prediction. The collector can observe a time
any time return the prediction in its current state, if necessary. For examp
of 1,000 trees have returned anything, the user gets an answer, but it’s no
as it could have been had all 1,000 trees had time to return an answer.

 Figure 9.9 shows a diagram of this architecture in action.

Prediction
workers

Prediction
storage

Prediction
producer

Prediction
consumer

Client

Prediction producer asks workers for
a partial prediction. Consumer collects
answers until time runs out, then
returns the result to the client.

Consumer records
results to the database
after returning to client,
to keep latency low.

Figure 9.9 Suggested architecture for a prediction pipeline that’s guaranteed
to return within a certain time, potentially sacrificing prediction accuracy and
confidence if some of the partial predictions haven’t returned yet. Prediction
requests are shipped to workers by the producer, while a consumer service
collects partial predictions ready to return to the client if time is up.

211Summary

A few systems are showing promise in supporting these scalable, real-time systems.
One is part of the previously mentioned Apache Spark ecosystem: Spark Streaming.
With Spark Streaming, you get a set of tools and libraries that makes it easier to build
real-time, stream-oriented data-processing pipelines. Don’t forget that any prediction
made usually has to go through the same feature-engineering processes that the train-
ing data went through at model-building time.

 Other projects include Apache Storm, Apache Kafka, AWS Kinesis, and Turi. Each
project has pros and cons for particular use cases, so we encourage you to investigate
the appropriate tool for your needs.

g systems to
le multima-

ese are some

le infrastruc-

o work on a

er than scal-

ely used sys-
 processing

ework

rm, Apache

:
r SVMs

ng data and

 distributed
9.4 Summary
In this chapter, you’ve investigated various ways to scale machine-learnin
large datasets by transforming the data or building a horizontally scalab
chine infrastructure. The main takeaways from the chapter are as follows:

■ Scaling up your machine-learning system is sometimes necessary. Th
common reasons:
– The training data doesn’t fit on a single machine.
– The time to train a model is too long.
– The volume of data coming in is too high.
– The latency requirements for predictions are low.

■ Sometimes you can avoid spending time and resources on a scalab
ture by doing the following:
– Choosing a different ML algorithm that’s fast or lean enough t

single machine without sacrificing accuracy
– Subsampling the data
– Scaling up vertically (upgrading the machine)
– Sacrificing accuracy or easing other constraints if it’s still cheap

ing up
■ If it’s not possible to avoid scaling up in a horizontal fashion, wid

tems are available for setting up a scalable data-management and
infrastructure:
– The Hadoop ecosystem with the Mahout machine-learning fram
– The Spark ecosystem with the MLlib machine-learning library
– The Turi (formerly GraphLab) framework
– Streaming technologies such as Spark Streaming, Apache Sto

Kafka, and AWS Kinesis
■ When scaling up a model-building pipeline, consider the following

– Choosing a scalable algorithm such as logistic regression or linea
– Scaling up other (for example, nonlinear) algorithms by maki

algorithm approximations
– Building a scalable version of your favorite algorithm using a

computing infrastructure

212 CHAPTER 9 Scaling machine-learning workflows

■ Predictions can be scaled in both volume and velocity. Useful approaches include
the following:
– Building your infrastructure so that it allows you to scale up the number of

workers with the prediction volume
– Sending the same prediction to multiple workers and returning the first one

in order to optimize prediction velocity
– Choosing an algorithm that allows you to parallelize predictions across multi-

ple machines

t and pro-

 to handle
hardware of

industry for
 and MapRe-
ng systems
ponent of the

a in memory
doop. MLlib is

 transfer can
g transferring
.

lynomial fea-
inear learning

sets without
op.

p only the cur-

umns to histo-

ing and retain-

t of features.
9.5 Terms from this chapter

Word Definition

big data A broad term usually used to denote data managemen
cessing problems that can’t fit on single machines.

horizontal/vertical scaling Scaling out horizontally means adding more machines
more data. Scaling up vertically means upgrading the
your machines.

Hadoop, HDFS, MapReduce,
Mahout

The Hadoop ecosystem is widely used in science and
handling and processing large amounts of data. HDFS
duce are the distributed storage and parallel processi
respectively, and Mahout is the machine-learning com
Hadoop ecosystem.

Apache Spark, MLlib Apache Spark is a newer project that tries to keep dat
to make it much more efficient than the disk-based Ha
the machine-learning library that comes with Spark.

data locality Doing computation on the data where it resides. Data
often be the bottleneck in big-data projects, so avoidin
data can result in a big gain in resource requirements

polynomial features A trick to extend linear models to include nonlinear po
ture interaction terms without losing the scalability of l
algorithms.

Vowpal Wabbit An ML tool for building models efficiently on large data
necessarily using a full big-data system such as Hado

out-of-core Computations are done out of core if you need to kee
rent iteration of data in memory.

histogram approximations Approximations of the training data that convert all col
grams for the learning process.

feature selection Process of reducing the size of training data by select
ing the best (most predictive) subset of features.

Lasso Linear algorithm that selects the most predictive subse
Very useful for feature selection.

213Terms from this chapter

deep neural nets An evolution of neural nets that scales to larger datasets and
achieves state-of-the-art accuracy. Requires more knowledge and
computational resources in practice than other algorithms, depend-
ing on the dataset and problem at hand.

prediction volume/velocity Scaling prediction volume means being able to handle a lot of data.
Scaling velocity means being able to do it fast enough for a specific
real-time use case.

accuracy vs. speed For real-time predictions, you can sometimes trade accuracy of the
ade.

g systems.

Word Definition
prediction for the speed with which the prediction is m

Spark Streaming, Apache Storm,
Apache Kafka, AWS Kinesis

Upcoming technologies for building real-time streamin

Example: digital
display advertising
This chapter covers
■ Visualizing and preparing a real-world dataset
■ Building a predictive model of the probability

that users will click a digital display
advertisement
ine-learning
e real-world
 short intro-
rives it, and
rtising spend
 9 to use in

 a few large
ur example
214

Chapter 9 presented techniques that enable you to scale your mach
workflow. In this chapter, you’ll apply those techniques to a large-scal
problem: optimizing an online advertising campaign. We begin with a
duction to the complex world of online advertising, the data that d
some of the ways it’s used by advertisers to maximize return on adve
(ROAS). Then we show how to put some of the techniques in chapter
this archetypal big-data application.

 We employ several datasets in our example. Unfortunately, only
datasets of this type are available to the public. The primary dataset in o

■ Comparing the performance of several
algorithms in both training and prediction
phases

■ Scaling by dimension reduction and parallel
processing

215Display advertising

isn’t available for download, and even if it were, it would be too large for personal
computing.

 One dataset that can be downloaded and used for noncommercial purposes is
from the Kaggle Display Advertising Challenge sponsored by Criteo, a company whose
business is optimizing the performance of advertising campaigns. The Criteo data-
set contains more than 45 million observations of 39 features, of which 13 are numer-
ical and 26 categorical. Unfortunately, as is common for datasets used in data science
competitions, the meaning of the features is obfuscated. The variable names are V1
through V40. V1 is the label, and V2 through V40 are features. In the real world,

sents. But as
lue and cre-

criteo-labs/

’t

l advertising
ata collected

 ads appear
 or laptops.
es are differ-
f techniques
 games and
 on distinct
cesses. Our

 print adver-
 publications,
it, and loca-

n of an ad is
 of which is

 publisher of
rs for adver-
ork of inter-
information
he user, and
you’d have the benefit of knowing what each feature measures or repre
the competition proved, you can nonetheless explore their predictive va
ate useful models.

 The Criteo dataset is available at https://s3-eu-west-1.amazonaws.com/
dac.tar.gz.

10.1 Display advertising
Half the money I spend on advertising is wasted; the trouble is, I don
know which half.

—John Wannamaker

In the days of Mad Men, this was an inescapable truth. But with digita
comes the opportunity to discover what works and what doesn’t via the d
as users interact with online ads.

 Online advertising is delivered through a myriad of media. Display
within web pages rendered in browsers, usually on personal computers
Because the rules for identifying users and the handling of internet cooki
ent on mobile browsers, mobile ad technology relies on a different set o
and generates quite different historical data. Native ads, embedded in
mobile apps, and pre-roll ads that precede online video content, are based
delivery technologies and require analyses tailored to their unique pro
examples are limited to traditional display advertising.

 Much of the terminology of display advertising was inherited from the
tising business. The websites on which ads can be purchased are known as
within which advertising space is characterized by size and format, or ad un
tion within the site and page is referred to as placement. Each presentatio
called an impression. Ads are sold in lots of 1,000 impressions, the price
known as CPM, (cost per thousand).

 When a user browses to a web page—say, xyz.com—it appears that the
xyz.com delivers the entire page. In reality, the page contains placeholde
tisements that are filled in by various advertisers through a complex netw
mediaries. Each web server that delivers ads maintains logs that include
about each impression, including the publisher, the internet address of t

216 CHAPTER 10 Example: digital display advertising

information contained in internet cookies, where information about previous deliveries
from the advertiser’s server may be stored. In the next section, you’ll look at the sorts
of data that’s captured during a display ad campaign.

10.2 Digital advertising data
Web servers capture data for each user request, including the following:

■ Client address—The IP address of the computer that made the request.
■ Request—The URL and parameters (for example, http://www.abc.com?x=1234&y

ting success-

age.
system mak-

e site is vis-

easurement
following:

yed.
fiers so that

cted from a
s users with

ressions will
ically, given
lity that the

10037853.com

10031681.com

10013014.com

10013014.com

10013014.com

ub_domain

s.
=abc01).
■ Status—The response code issued by the server; usually 200, indica

ful response.
■ Referrer—The web page from which the user linked to the current p
■ User agent—A text string that identifies the browser and operating

ing the request.
■ Cookie—A small file stored when a browser visits a website. When th

ited again, the file is sent along with the request.

In addition, many modern advertisements are served in conjunction with m
programs—small JavaScript programs that capture information such as the

■ Viewability—Whether and for how long the advertisement was displa
■ User ID—Browser cookies are used to leave behind unique identi

users can be recognized when encountered again.
■ Viewable seconds—Number of seconds advertisement was in view.

Figure 10.1 shows sample data from a campaign. Viewability data is extra
query string, and user_id is a randomly generated identifier that associate
previous visits.

10.3 Feature engineering and modeling strategy
Click is our target variable. You want to predict the likelihood that imp
result in clicks (sometimes called click-throughs or click-thrus). More specif
a specific user visiting a particular site, you’d like to know the probabi

0

1

2

3

4

2015-09-28 09:01:35

2015-09-21 00:25:42

2015-09-08 00:08:49

2015-09-15 09:37:24

2015-09-25 06:23:47

timestamp

False

False

False

False

False

click

False

True

False

False

False

viewed

0

3

0

0

0

v_secs

9b644f47729749cc80ac9a67df399cb0

f5b295de8cf1448c8fde3b4cb1650873

06c757b7637647fb96b2d911303d5ed5

0dfabf89-5da8-459d-a4f7-3dfea37497f5

4171bedc8a99412a980c8521eee86c83

user_id

Windows

Windows

Windows

Windows

Windows

operating_system

D

D

D

D

D

p

Figure 10.1 Impression data. Domain names are randomly generated substitutes for the real name

217Feature engineering and modeling strategy

user will click the advertisement. You have several choices in formulating the prob-
lem. You can try to predict the probability that a given user will click through, and
you can try to predict the click-through rate (CTR) for each publisher that presents
the ad.

 As is often the case, precisely what you model and the precise values you endeavor
to predict will ultimately be driven by asking these questions: How will the prediction be
used? In what manner will it be acted on? In this case, our advertiser has the option of
blacklisting certain publications, so the advertiser’s primary concern is identifying the
publications least likely to yield clicks. In recent years, real-time bidding technologies

ssions based
ur example

ome histori-
blem is that

he expected
 absence of

performing,
acklisting all
t will enable
al of perfor-

ith. You can
ing systems.
lection, you
ser, and the
 a wealth of

 dimensional-
sional space.

ot a curse, a

ders, the sys-
nts on Yelp.
ollections of
sed on com-
of common
s with items
ad of many

 the publica-
er responses
ry of achiev-
osen in this
ponders.
have been developed that enable advertisers to bid for individual impre
on user and publication features provided by the bidding system, but o
advertiser hasn’t adopted real-time bidding yet.

 You might wonder at this point why the advertiser doesn’t just look at s
cal data for all the publications and blacklist those with low CTRs. The pro
when the overall CTR for a campaign is in the neighborhood of 0.1%, t
value of clicks for a publication with only a few impressions is zero. The
clicks doesn’t indicate a low CTR. Further, when we aggregate the best-
low-volume publications, we often observe above-average CTR (so just bl
the low-volume pubs isn’t a good strategy). You’re looking for a model tha
you to predict publications’ performance without the benefit of a great de
mance history.

 At first glance, you might imagine you don’t have much to work w
count impressions, clicks, and views for users, publishers, and operat
Maybe time of day or day of the week has some effect. But on further ref
realize that the domains a user visits are features that describe the u
users who visit a domain are features of the domain. Suddenly, you have
data to work with and a real-world opportunity to experience the curse of
ity—a phrase used to describe the tribulations of working in high-dimen
As you explore the data, you’ll see that a wealth of features can be, if n
mixed blessing.

 You may recognize the logic you’ll apply here as the basis of recommen
tems that suggest movies on Netflix, products on Amazon, and restaura
The idea of characterizing users as collections of items, and items as c
users, is the basis of collaborative filtering, in which users are clustered ba
mon item preferences, and items are clustered based on the affinities
users. Of course, the motivation for recommenders is to present user
they’re likely to purchase. The advertising problem is a variation; inste
items, the same advertisement is presented in a wide variety of contexts:
tions. The driving principle is that the greatest likelihood of achieving us
(clicks) will be on publications that are similar to those that have a histo
ing responses. And because similarity is based on common users, pubs ch
manner will attract people who are similar in their preferences to past res

218 CHAPTER 10 Example: digital display advertising

10.4 Size and shape of the data
You’ll start with a sample of 9 million observations, a small-enough sample to fit into
memory so you can do some quick calculations of cardinality and distributions.

%matplotlib inline
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

m matrix is
arge, sparse
olumns of a
tionally well

ng 10.1 rep-
ly 10 billion
 from 9 mil-
vices (AWS)
ou go.
bles. In list-
pub_domain

Listing 10.1 A first look at the data
df = pd.read_pickle('combined.pickle')

nImps = len(df)
nPubs = len(df.pub_domain.unique())
nUsers = len(df.user_id.unique())

print('nImps={}\nnPubs={}\nnUsers={}'.format(nImps, nPubs, nUsers))

nImps=9098807
nPubs=41576
nUsers=3696476

(nPubs * nUsers) / 1000000

153684

Fortunately, most users never visit most of the domains, so the user/ite
sparsely populated, and you have tools at your disposal for dealing with l
matrices. And nobody said that users and domains must be the rows and c
gigantic matrix, but it turns out that some valuable algorithms work excep
when it’s possible to operate on a user/item matrix in memory.

 Oh, and one more thing: the 9 million observations referenced in listi
resent roughly 0.1% of the data. Ultimately, you need to process rough
impressions, and that’s just one week’s worth of data. We loaded the data
lion impressions into about 53% of the memory on an Amazon Web Ser
instance with 32 GB of RAM, so this will certainly get more interesting as y

 Next, let’s look at how the data is distributed over the categorical varia
ing 10.1, we already started this process by computing the cardinality of
and user_id.

import seaborn as sns

nClicks = df.click.value_counts()[True]
print('nClicks={} ({}%)'
.format(nClicks, round(float(nClicks) * 100 / nImps, 2)))

Listing 10.2 Distributions

Loads data from a
compressed archive

Number of impressions

Number of publisher domains

Number of distinct users

Size of the user/item matrix divided
by 1 million for readability

153.684 billion cells—a
rather large matrix

Seaborn is a statistical
visualization library.

219Size and shape of the data

nClicks=10845 (0.12%)

nViews = df.viewed.value_counts()[True]
print('nViews={} ({}%)'.format(nViews,
round(float(nViews) * 100 / nImps, 2)))

nViews=3649597 (40.11%)

df.groupby('pub_domain').size()

pub_domain
D10000000.com 321
D10000001.com 117

s, and a few
 graphically,
0 so you can

ly 0.12%, or
le, you need
el. This isn’t

Group by domain and look
at number of impressions
per domain

gram of
 that the
ber of
her

wed.
D10000002.com 124
D10000003.com 38
D10000004.com 8170
…

f = df.groupby('pub_domain').size()
f.describe()

count 41576.000000
mean 218.847580
std 6908.203538
min 1.000000
25% 2.000000
50% 5.000000
75% 19.000000
max 1060001.000000

sns.distplot(np.log10(f));

Figure 10.2 shows that many domains have a small number of impression
have large numbers of impressions. So that you can see the distribution
we plotted the base 10 log rather than the raw frequencies (we use base 1
think of the x-axis as 100, 101, 102…).

 Perhaps most significantly, you can see that clicks are relatively rare, on
0.0012. This is a respectable overall click-through rate. But for this examp
large datasets in order to have enough target examples to build your mod

7–1 0 1 2 3 4 5 6

2.5

0.0

0.5

1.0

1.5

2.0

Figure 10.2 The histo
impression data shows
distribution of the num
impressions over publis
domains is heavily ske

220 CHAPTER 10 Example: digital display advertising

unusual. We’re often trying to predict relatively rare phenomena. The capacity to pro-
cess huge datasets by using big-data technologies has made it possible to apply
machine learning to many whole new classes of problems.

 Similarly, impression frequency by user_id is highly skewed. An average user has
2.46 impressions, but the median is 1, so a few heavy hitters pull the mean higher.

10.5 Singular value decomposition
Chapters 3 and 7 mentioned principal component analysis, or PCA, an unsupervised
ML technique often used to reduce dimensions and extract features. If you look at

ave approxi-
exploratory

tunately you

ue decomposi-
us ways, and
ome of the
ntic analysis
earn Python
ou’ve done
 denotes an
e p by q (for
 q]). It turns
ft and right

 by a row in
olumn:

g about the
ors (the vec-
he extent to
 implication
ine that two
each user as a feature of the publications they’ve interacted with, you h
mately 3.6 million features per publication, 150 billion values for your
sample of data. Obviously, you’d like to work with fewer features, and for
can do so fairly easily.

 As it turns out, PCA has several algorithms, one of which is singular val
tion, or SVD. You can explain and interpret SVD mathematically in vario
mathematicians will recognize that our explanation here leaves out s
beauty of the underlying linear algebra. Fortunately, like the latent sema
covered in chapter 7, SVD has an excellent implementation in the scikit-l
library. But this time, let’s do just a little bit of the matrix algebra. If y
matrix multiplication, you know that dimensions are important. If A[n x p]

n-by-p matrix, you can multiple A by another matrix whose dimensions ar
example, B[p x q]), and the result will have dimensions of n by q (say, C[n x

out that any matrix can be factored into three components, called the le
singular vectors and the singular values, respectively.

 In this example, n is the number of users, each of which is represented
matrix A, and p is the number of pubs, each of which is represented by a c

What makes this interesting is that the singular values tell you somethin
importance of the features represented by the left and right singular vect
tors are the rows of U and VT). In particular, the singular values tell you t
which the corresponding feature vectors are independent. Consider the
of interdependent or covariant features. Or to make it a bit easier, imag

A is a matrix with n
rows and p columns.

Left singular
vectors

A[n × p] = U[n × n] S[n × p] VT
[p × p]

Singular values

Right singular
vectors

221Singular value decomposition

features, A and B, are identical. After feature A has been considered by the model,
feature B has nothing to contribute. It contains no new information. As builders of
predictive models, the features you want are independent, and each one is at least a
weak predictor of your target. If you have many weak predictors, so long as their pre-
dictions are better than random, in combination they gain strength. But this phenom-
enon, the ensemble effect, works only when features are independent.

 Let’s run SVD on our advertising data and have a look at the resulting singular values.

 to limit the
 magnitude;

Listing 10.3 SVD on advertising data

rix
ns
user_idx, pub_idx = {}, {}
for i in range(len(users)):
 user_idx[users[i]] = i
for i in range(len(pubs)):
 pub_idx[pubs[i]] = i

nTrainUsers = len(df.user_id.unique())
nTrainPubs = len(df.pub_domain.unique())
V = sp.lil_matrix((nTrainUsers, nTrainPubs))
def matput(imp):
if imp.viewed:

V[user_idx[imp.user_id], pub_idx[imp.pub_domain]] = 1

df5[df5.click == True].apply(matput, axis=1)

run svds (svd for sparse matrices)

u, s, vt = svds(V, k = 1550)

plt.plot(s[::-1])

When you ran SVD, you used the k = maximum singular values parameter
calculation to the 1,550 largest singular values. Figure 10.3 shows their

First substitutes
integer indices for user
and pub symbolic keys

Creates a sparse mat
of user/pub interactio

16000 200 400 600 800 1000 1200 1400

30

0

5

10

15

20

25

Figure 10.3 Singular values for advertising data

222 CHAPTER 10 Example: digital display advertising

you can see that there are about 1,425 nonzero values, and that beyond the 450 most
independent feature vectors, the rest are highly covariant. This isn’t surprising.
Although there are over 3 million users, remember that most of them interact with
very few pubs. Consider that of these, 136,000 were observed exactly once (on ebay.com,
by the way). So if each user vector is a feature of the pub, ebay.com has 136,000 fea-
tures that are identical.

 Our SVD reduced more than 3 million features to around 7 thousand, a 400:1
reduction. Knowing this, you have a much better sense of the resources that will be
needed. In the next section, you’ll look at ways to size and optimize the resources nec-

ze your data
 at hand in
ur disposal.

asurements.
 m4.2xlarge
stic Compute
ess memory
on means a
 separately.
 virtualized
TB disk vol-
ds, you can
n provision

saction files
uantities of

file contains
per second
t 92 hours.

ng multiple
ours.

 that 10 mil-
ry, it would
ld afford it,

our require-
ch we mean
records, but
s the user/

arse matrix,
essary to train your models.

10.6 Resource estimation and optimization
So far, you’ve looked at the cardinalities and distributions that characteri
and done some feature engineering. In this section, you’ll assess the task
terms of the computational workload relative to the resources you have at yo

 To estimate resource requirements, you need to start with some me
First let’s look at your available resources. So far, you’ve been using a single
Amazon EC2 instance. Let’s decode that quickly. EC2 is Amazon’s Ela
Cloud. Each instance is a virtual server with dedicated CPU, random acc
(RAM), and disk or solid-state online storage. The m4.2xlarge designati
server with eight cores and 32 GB of memory. Disk space is provisioned
Our single instance has 1 terabyte of elastic block storage (EBS). EBS is
storage, set up so that it appears that your instance has a dedicated 1
ume. You’ve set up your instance to run Linux. Depending on your nee
easily upgrade your single instance to add cores or memory, or you ca
more instances.

 Next, let’s have a look at your workload. Your raw data resides in tran
on Amazon’s Simple Storage Service, S3, which is designed to store large q
data inexpensively. But access is a lot slower than a local disk file. Each
around 1 million records. You can read approximately 30,000 records
from S3, so if you process them one at a time, 10 billion will take abou
Downloading from S3 can be speeded up by around 75%, by processi
downloads in parallel (on a single instance), so that gets you down to 23 h

 But speed isn’t your only problem. Based on your earlier observation
lion records loaded into memory consume 53% of your 32 GB of memo
take 1.7 terabytes of memory to load your entire dataset. Even if you cou
Amazon doesn’t have an instance with that much RAM.

 Fortunately, you don’t need all the data in memory. Furthermore, y
ment isn’t just a function of the size of the data, but of its shape—by whi
the cardinality of its primary keys. It turns out that there are 10 billion
only about 10 million users and around 300 thousand pubs, which mean
pub matrix is around 3 trillion entries. But when you populated your sp

223Resource estimation and optimization

there were values in only about 0.01% of the cells, so 3 trillion is reduced to 300 million.
Assuming one 64-bit floating-point number per value, your user/pub matrix will fit in
about 2.5 of your 32 GB.

 To cut processing time, you need to look at doing things in parallel. Figure 10.4
illustrates using worker nodes (additional EC2 instances, in this case) to ingest the raw
data in parallel.

dependently
d with their

educe, and
sion of what
 of which is

e results are
p optimizes
 data over a

ptimizes the
hat’s already
des load the
r to process

llel process-
frameworks.
 easily add a
But you can
 at a greater

High-volume
storage

Compute
node

23 hours
The worker nodes do more than read the data from S3. Each one in
builds a sparse matrix of users and items. When all the workers are finishe
jobs, these are combined by your compute node.

 Chapter 9 described some big-data technologies: Hadoop, MapR
Apache Spark. The processes described here are a highly simplified ver
happens in a MapReduce job. A large task is broken into small units, each
dispatched (mapped) to a worker. As workers complete their subtasks, th
combined (reduced), and that result is returned to the requestor. Hadoo
this process in several ways. First, rather than having the workers retrieve
network, each worker node stores part of the data locally. Hadoop o
assignment of tasks so that whenever possible, each node works on data t
on a local volume. Spark goes one step further by having the worker no
data into memory so they don’t need to do any I/O operations in orde
the tasks they’re assigned.

 Although this example problem is large enough to require a little para
ing, it’s probably not worth the effort required to implement one of these
You need to run your entire workflow only once per day, and you could
few more instances and get the whole process down to an hour or less.
easily imagine an application requiring you to run a variety of processes

Worker node

Worker node

Worker node

Worker node

Compute
node

High-volume
storage

5.75 hours

Figure 10.4 Parallel processing scales the initial data acquisition.

224 CHAPTER 10 Example: digital display advertising

frequency, where having the worker nodes retain the raw data in memory over the
course of many processing cycles would boost performance by orders of magnitude.

10.7 Modeling
Your goal for the model is to predict CTR for each pub. You started with user interac-
tions as features and used SVD to reduce the feature space. From here, there are sev-
eral approaches to making predictions. Your first model will be a k-nearest neighbors
(KNN) model. This is a simple but surprisingly effective recommender model.

 You’ll also train a random forest regressor. Random forests are a form of decision-tree-
 feature set

ice that the
tor (column
 from itself.
u’d expect,
so note that
ords, dissim-
 define dis-
.

ilarity, or
he extent
s are
s example,
binary,
ser has

based learning; many random samples of data and random subsets of the
are selected, and decision trees are constructed for each selection.

10.8 K-nearest neighbors
Figure 10.5 shows simplified user/item and dissimilarity matrices. Not
diagonal of the dissimilarity matrix is all zeros because each pub’s user vec
in the user/item matrix) is identical to itself, and therefore zero distance
You can see that the distance between pub3, pub4, and pub7 is zero, as yo
because their respective columns in the user/item matrix are identical. Al
pub1’s distance to pub5 is the same as pub5’s distance to pub1. In other w
ilarity is symmetric. Interestingly, some recommender algorithms don’t
tance symmetrically. Item A may be like item B, but item B isn’t like item A

user1

user2

user3

user4

user5

0

1

1

0

1

pub1

0

1

0

0

1

pub2

1

0

0

0

1

pub3

1

0

0

0

1

pub4

0

1

0

0

1

pub5

1

1

1

0

1

pub6

1

0

0

0

1

pub7

User / item matrix

pub1

pub2

pub3

pub4

pub5

pub6

pub7

0.0

1.0

1.7

1.7

1.0

1.0

1.7

pub1

1.0

0.0

1.4

1.4

0.0

1.4

1.4

pub2

1.7

1.4

0.0

0.0

1.4

1.4

0.0

pub3

1.7

1.4

0.0

0.0

1.4

1.4

0.0

pub4

1.0

0.0

1.4

1.4

0.0

1.4

1.4

pub5

1.0

1.4

1.4

1.4

1.4

0.0

1.4

pub6

1.7

1.4

0.0

0.0

1.4

1.4

0.0

pub7

Dissimilarity matrix

Figure 10.5 The dissim
distance, matrix shows t
to which user interaction
similar or different. In thi
the user/item matrix is
indicating whether the u
interacted with the pub.

225K-nearest neighbors

You compute the similarity (actually, dissimilarity, or distance) between each pair of
pubs, using one of several available measures. You then choose the most common, the
Euclidean distance.

 After you’ve computed pairwise distances, the next step is to compute your pre-
dicted CTR for each pub. In KNN, the predicted target value is calculated by averag-
ing the values of the target values for k-nearest neighbors, presuming that each
example observation will be most similar to its nearest neighbors. There are several
important questions at this juncture. First, what should you choose for the value of k?
How many neighbors should be considered? Also, it’s common to give greater weight

 target value

ble values of
g formulas,

 or two near-
ent. This is

airly distant.
 normalized

ist squared

eighting
edicted
 through 20

 VT is user/
ning set

tem transposed
set
to the closest neighbors, usually by weighting the calculation of the mean
by 1/distance or [1/distance]2.

 Listing 10.4 shows a calculation of predicted values for a range of possi
k by using scikit-learn NearestNeighbors. Here you try three weightin
each of 20 values of k. Figure 10.6 shows that the best predictors are one
est neighbors, and averaging over a larger range offers no real improvem
probably because our data is sparse, and nearest neighbors are often f
Note that the variation over the values of k is also small. In any case, the
RMSE for our test set predictions is in the range of 5%. Not bad!

from sklearn.neighbors import NearestNeighbors

weightFunctions = {
 'f1': lambda x: [1 for i in range(len(x))],
 'f2': lambda x: 1 / x,
 'f3': lambda x: 1 / x ** 2
}

for idx, f in enumerate(weightFunctions):
 rmseL = []
 wf = weightFunctions[f]
 for nNeighbors in range(1,20, 1):

neigh = NearestNeighbors(nNeighbors)

neigh.fit(VT)
act = pd.Series()
pred= pd.Series()

for i in range(TT.shape[0]):
d = neigh.kneighbors(tt[i,:], return_distance=True)
W = pd.Series([v for v in d[0][0]])
y = pd.Series(pubsums.iloc[d[1][0]].CTR)
act.append(pd.Series(tsums.iloc[i].CTR))
pred.append(pd.Series(np.average(y, weights = wf(W))))

Listing 10.4 KNN predictions

Equal weights

1/dist

1/d

For each of the three w
schemes, computes pr
target values for k = 1

Initializes

Finds k-nearest neighbors;
item transposed of the trai

TT is user/i
of the test

 mse = act.sub(pred).pow(2).mean() / (pred.max() - pred.min())
 mseL.append(rmse)
 plt.subplot(130+idx+1)
 plt.plot(range(1,20,1), mseL)
 plt.tight_layout(pad=2.0)

226 CHAPTER 10 Example: digital display advertising

eplacement,
h sample, a
es. To make
tly, and the

n. For many
ms such as
 advantages
nd, and the
arn; see fig-

302520

5.294
w = 1

5.282

5.284

N
or

m
al

iz
ed

 R
M

S
E

5.286

5.288

5.290

5.292

w = 1/d w = 1/d2

eachRate
10.9 Random forests
In the training phase of random forests, data is sampled repeatedly, with r
in a process called bagging, sometimes called bootstrap aggregating. For eac
decision tree is constructed using a randomly selected subset of the featur
predictions on unseen data, each decision tree is evaluated independen
results are averaged (for regression) or each tree “votes” for classificatio
applications, random forests may be outperformed by other algorith
boosted trees or support vector machines, but random forests have the
that they’re easy to apply, their results are easy to interpret and understa
training of many trees is easily parallelized. Once again, you’ll use scikit-le
ure 10.7.

300 5 10 2515 20 300 5 10 2515 20 0 5 10 15
5.278

5.280

k

Figure 10.6 RMSE for three weighting functions and values of k = 1 to k = 30

exposure reach reachRate vlmps vRate vReach vRnlmpsmeanViewTime

0.6

0.0

0.1

0.2

0.3

0.5

0.4

Figure 10.7 Variable importance for the random forest regression

227Other real-world considerations

from sklearn.ensemble import RandomForestRegressor
from sklearn import cross_validation

features = ['exposure', 'meanViewTime', 'nImps', 'reach', 'reachRate',
'vImps', 'vRate', 'vReach', 'vReachRate']

X_train, X_test, y_train, y_test = cross_validation.train_test_split(
df[features], df.CTR, test_size=0.40, random_state=0)

reg = RandomForestRegressor(n_estimators=100, n_jobs=-1)

nter')

of CTR, but
lore ways to
dels in this
n ensemble
 entirely dif-
g, or stacked
eatures that
sually logis-

ensionality,
As we men-
f digital ads:
ion have an
widely from
tuation may

Listing 10.5 Random forest regression

features are simple
aggregates by pub

ith 100 trees;
vailable cores

s training
the model
model = reg.fit(X_train, y_train)

scores = cross_validation.cross_val_score(model, X_train, y_train)
print(scores, scores.mean())

([0.62681533, 0.66944703, 0.63701492]), 0.64442575999999996)

model.score(X_test, y_test)

0.6135074515145226

plt.rcParams["figure.figsize"] = [12.0, 4.0]
plt.bar(range(len(features)), model.feature_importances_, align='ce
_ = plt.xticks(range(len(features)), features)

The optimized random forest regression provides a useful prediction
it’s not as good as the KNN prediction. Your next steps might be to exp
combine these, and possibly other, models. Methods that combine mo
way are called ensemble methods. Random forests are, in their own right, a
method, as bagging is a way of generating multiple models. To combine
ferent models such as the two in this example, you might employ stackin
generalization, in which the predictions from multiple models become f
are combined by training and prediction using yet another ML model, u
tic regression.

10.10 Other real-world considerations
You looked at the real-world issues that come with big data: high dim
computing resources, storage, and network data transfer constraints.
tioned briefly, the entire process may be replicated for several species o
mobile, video, and native. Real-time bidding and user-level personalizat
entirely different set of concerns. The data at your disposal may vary
one program to the next, and the models that work perfectly in one si
fail entirely for another.

Splits data into test and train,
features and targets; trains on
60% of the data, holds out 40%
for test

Runs the random forest regression w
n_jobs parameter tells RF to use all a

Cross-validation split
set to evaluate

Runs the model
on the test set

228 CHAPTER 10 Example: digital display advertising

 In our example, we had a large historical dataset to start with. But our recom-
mender-like approach has an issue known as the cold-start problem. When a new user or
a new product enters the system with no history to rely on, you have no basis for build-
ing associations. For our purposes, a few unknowns don’t matter, but when a new cam-
paign starts from scratch, you have no history at all to work with. Models built on the
basis of other similar campaigns may or may not be effective.

 In the real world, there’s a great advantage to having a variety of tools and mod-
els that can be employed. The larger and more complex the environment, the greater
the benefit of having such a suite of feature-building, data-reduction, training, pre-

 automated

ay diminish
ss practices
digital land-
 which you
w web tech-
 models are
ured again.
 that rely on
a significant
money, but

t will be far
ercome the

 somewhat
ls. Although
en depends
ts from this

e modeling,
nsider how

or optimiza-

orking data-
n be benefi-
n reduced it
h approach

 computing
 bottleneck
diction, and assessment tools well organized and built into a coherent
workflow.

 Advertising is a great example of a business in which externalities m
the effectiveness of your predictive models. As technology and busine
change, behaviors change. The growth of mobile devices has changed the
scape dramatically. Real-time bidding completely changes the level on
apply optimization. New forms of fraud, ad blockers, new browsers, and ne
nology all change the dynamics that you’re modeling. In the real world,
built, tested, deployed, measured, rebuilt, retested, redeployed, and meas

 Digital advertising is a multibillion-dollar business, and for the brands
it, optimizations that reduce wasted expenditures, even a little, can have
return on investment. Each wasted impression you can eliminate saves
when replaced with one that results in gaining a customer, the benefi
greater than the cost savings—and will more than justify the effort to ov
many challenges of this dynamic business.

10.11 Summary
This chapter covered elements of a real-world machine-learning problem
more broadly than just choosing algorithms, training, and testing mode
these are the heart of the discipline of machine learning, their success oft
on surrounding practicalities and trade-offs. Here are some of the key poin
chapter’s example:

■ The first step is always to understand the business or activity you’r
its objectives, and how they’re measured. It’s also important to co
your predictions can be acted on—to anticipate what adjustments
tions can be made based on the insight you deliver.

■ Different feature-engineering strategies may yield very different w
sets. Casting a wide net and considering a range of possibilities ca
cial. In the first model, you expanded the feature set vastly and the
using SVD. In the second, you used simple aggregations. Whic
works best depends on the problem and the data.

■ After exploring a subsample of data, you were able to estimate the
resources needed to perform your analyses. In our example, the

229Recap and conclusion

wasn’t the ML algorithms themselves, but rather the collection and aggregation
of raw data into a form suitable for modeling. This isn’t unusual, and it’s impor-
tant to consider both prerequisite and downstream workflow tasks when you
consider resource needs.

■ Often, the best model isn’t a single model, but an ensemble of models, the pre-
dictions of which are aggregated by yet another predictive model. In many real-
world problems, practical trade-offs exist between the best possible ensembles
and the practicality of creating, operating, and maintaining complex workflows.

■ In the real world, there are often a few, and sometimes many, variations on the
they’re com-

n’t constant.
 ML models

e and some-

 practiced in
 enable you

 items.

item prefer-

e combined.

performance

he training

imensional

ers or regres-
ions based on

 forests and

bine the pre-
.

problem at hand. We discussed some of these for advertising, and
mon in any complex discipline.

■ The underlying dynamics of the phenomena you model often are
Business, markets, behaviors, and conditions change. When you use
in the real world, you must constantly monitor their performanc
times go back to the drawing board.

10.12 Terms from this chapter

10.13 Recap and conclusion
The first goal in writing this book was to explain machine learning as it’s
the real world, in an understandable and interesting way. Another was to

Word Definition

recommender A class of ML algorithms used to predict users’ affinities for various

collaborative
filtering

Recommender algorithms that work by characterizing users via their
ences, and items by the preferences of common users.

ensemble method An ML strategy in which multiple models’ independent predictions ar

ensemble effect The tendency of multiple combined models to yield better predictive
than the individual components.

k-nearest neigh-
bors

An algorithm that bases predictions on the nearest observations in t
space.

Euclidean
distance

One of many ways of measuring distances in feature space. In two-d
space, it’s the familiar distance formula.

random forest An ensemble learning method that fits multiple decision tree classifi
sors to subsets of the training data and features and makes predict
the combined model.

bagging The process of repeated sampling with replacement used by random
other algorithms.

stacking Use of a machine-learning algorithm, often logistic regression, to com
dictions of other algorithms to create a final “consensus” prediction

230 CHAPTER 10 Example: digital display advertising

to recognize when machine learning can solve your real-world problems. Here are
some of the key points:

■ Machine-learning methods are truly superior for certain data-driven problems.
■ A basic machine-learning workflow includes data preparation, model building,

model evaluation, optimization, and prediction.
■ Data preparation includes ensuring that a sufficient quantity of the right data

has been collected, visualizing the data, exploring the data, dealing with miss-
ing data, recoding categorical features, performing feature engineering, and

 nonlinear,
lassification

ion, perfor-

e of unstruc-
cally.
, the rate at
 in the con-

ith us for 50
eric applica-
 data as the
ments, and
ne learning
ough of the
ractitioners
ocesses that
e helped to
solve impor-

 our institu-
re good rea-
wave. Will it
y, but adop-
in machine-
dvancing in
stract skills.
d anticipate

tinguishable
osed, it did
always watching out for bias.
■ Machine learning uses many models. Broad classes are linear and

parametric and nonparametric, supervised and unsupervised, and c
and regression.

■ Model evaluation and optimization involves iterative cross-validat
mance measurement, and parameter tuning.

■ Feature engineering enables application of domain knowledge and us
tured data. It can often improve the performance of models dramati

■ Scale isn’t just about big data. It involves the partitioning of work
which new data is ingested, training time, and prediction time, all
text of business or mission requirements.

The mathematics and computer science of machine learning have been w
years, but until recently they were confined to academia and a few esot
tions. The growth of giant internet companies and the propagation of
world has gone online have opened the floodgates. Businesses, govern
researchers are discovering and developing new applications for machi
every day. This book is primarily about these applications, with just en
foundational mathematics and computer science to explain not just what p
do, but how they do it. We’ve emphasized the essential techniques and pr
apply regardless of the algorithms, scale, or application. We hope we'v
demystify machine learning and in so doing helped to advance its use to
tant problems.

 Progress comes in waves. The computer automation wave changed
tions. The internet tidal wave changed our lives and our culture. There a
sons to expect that today’s machine learning is but a preview of the next
be a predictable rising tide, a rogue wave, or a tsunami? It’s too soon to sa
tion isn’t just proceeding; it’s accelerating. At the same time, advances
learning tools are impressive, to say the least. Computer systems are a
entirely new ways as we program them to learn progressively more-ab
They’re learning to see, hear, speak, translate languages, drive our cars, an
our needs and desires for goods, services, knowledge, and relationships.

 Arthur C. Clark said that any sufficiently advanced technology is indis
from magic (Clark’s third law). When machine learning was first prop

231Recap and conclusion

sound like magic. But as it has become more commonplace, we’ve begun to under-
stand it as a tool. As we see many examples of its application, we can generalize (in the
human sense) and imagine other uses without knowing all the details of its internal
workings. Like other advanced technologies that were once seen as magic, machine
learning is coming into focus as a natural phenomenon, in the end more subtle and
beautiful than magic.

Further reading
 language,
12).

 Modeling

e: Straight
sted when

 for busi-
w We Live,
ton Mifflin

com
For those of you who’d like to learn more about using ML tools in the Python
we recommend Machine Learning in Action by Peter Harrington (Manning, 20

For a deep dive with examples in the R language, consider Applied Predictive
by Max Kuhn and Kjell Johnson (Springer, 2013).

Cathy O’Neil describes her and Rachel Schutt’s book, Doing Data Scienc
Talk from the Frontline (O'Reilly Media, 2013) as “a course I wish had exi
I was in college.” We agree.

If you’re interested in the implications of big data and machine learning
nesses and society, consider Big Data, A Revolution That Will Transform Ho
Work, and Think by Viktor Mayer-Schönberger and Kenneth Cukier (Hough
Harcourt, 2013).

Online resources include the following:

■ www.predictiveanalyticstoday.com—For industry news
■ www.analyticbridge.com and its parent site, www.datasciencecentral.
■ www.analyticsvidhya.com—Analytics news focused on learning
■ www.reddit.com/r/machinelearning—Machine-learning discussion
■ www.kaggle.com—Competitions, community, scripts, job board

appendix
Popular machine-learning

algorithms

Requires
normalization

Yes

Yes
232

Name Type Use
Linear/

nonlinear

Linear
regres-
sion

Regression Model a scalar target with one or more
quantitative features. Although regression
computes a linear combination, features
can be transformed by nonlinear functions if
relationships are known or can be guessed.

R: www.inside-r.org/r-doc/stats/lm
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.linear_model.Line-
arRegression.html#sklearn.linear_model
.LinearRegression

Linear

Logistic
regres-
sion

Classification Categorize observations based on quantita-
tive features; predict target class or proba-
bilities of target classes.

R: www.statmethods.net/advstats/glm.html
Python: http://scikit-learn.org/stable/
modules/generated/
sklearn.linear_model.LogisticRegres-
sion.html

Linear

233Popular machine-learning algorithms

Name Type Use
Linear/

nonlinear
Requires

normalization

SVM Classifica-
tion/regres-
sion

Classification based on separation in high-
dimensional space. Predicts target classes.
Target class probabilities require additional
computation. Regression uses a subset
of the data, and performance is highly data
dependent.

R: https://cran.r-project.org/web/packages/
e1071/vignettes/svmdoc.pdf

Linear Yes

Yes

Yes

No
Python: http://scikit-learn.org/stable/mod-
ules/svm.html

SVM with
kernel

Classifica-
tion/regres-
sion

SVM with support for a variety of nonlinear
models.

R: https://cran.r-project.org/web/packages/
e1071/vignettes/svmdoc.pdf
Python: http://scikit-learn.org/stable/mod-
ules/svm.html

Nonlinear

K-near-
est neigh-
bors

Classifica-
tion/regres-
sion

Targets are computed based on those
of the training set that are “nearest” to
the test examples via a distance formula
(for example, Euclidean distance). For
classification, training targets “vote.”
For regression, they are averaged. Predic-
tions are based on a “local” subset of
the data, but are highly accurate for some
datasets.

R: https://cran.r-project.org/web/packages/
class/class.pdf
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.neighbors.KNeigh-
borsClassifier.html

Nonlinear

Decision
trees

Classifica-
tion/regres-
sion

Training data is recursively split into
subsets based on attribute value tests,
and decision trees that predict targets
are derived. Produces understandable
models, but random forest and boosting
algorithms nearly always produce lower
error rates.

R: www.statmethods.net/advstats/cart.html
Python: http://scikit-learn.org/stable/mod-
ules/tree.html#tree

Nonlinear

234 APPENDIX Popular machine-learning algorithms

Random
forest

Classifica-
tion/regres-
sion

An “ensemble” of decision trees is used to
produce a stronger prediction than a single
decision tree. For classification, multiple
decision trees “vote.” For regression, their
results are averaged.

R: https://cran.r-project.org/web/packages/
randomForest/randomForest.pdf
Python: http://scikit-learn.org/stable/mod-

Nonlinear No

No

Yes

Name Type Use
Linear/

nonlinear
Requires

normalization
ules/generated/sklearn.ensemble.Random-
ForestClassifier.html

Boosting Classifica-
tion/regres-
sion

For multitree methods, boosting algorithms
reduce generalization error by adjusting
weights to give greater weight to examples
that are misclassified or (for regression)
those with larger residuals.

R: https://cran.r-project.org/web/packages/
gbm/gbm.pdf
https://cran.r-project.org/web/packages/
adabag/adabag.pdf
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.ensemble.Gradient-
BoostingClassifier.html

Nonlinear

Naïve
Bayes

Classification A simple, scalable classification algorithm
used especially in text classification tasks
(for example, spam-classification). It assumes
independence between features (hence,
naïve), which is rarely the case, but the
algorithm works surprisingly well in specific
cases. It utilizes the Bayes theorem,
but is not “Bayesian” as used in the field
of statistics.

R: https://cran.r-project.org/web/packages/
e1071/
Python: http://scikit-learn.org/stable/mod-
ules/classes.html#module-
sklearn.naive_bayes

Nonlinear

235Popular machine-learning algorithms

Neural
network

Classifica-
tion/regres-
sion

Used to estimate unknown functions that are
based on a large number of inputs, through
the back-propagation algorithm. Generally
more complex and computationally expen-
sive than other methods, but powerful for
certain problems. The basis of many deep
learning methods.

R: https://cran.r-project.org/web/packages/

Nonlinear Yes

Name Type Use
Linear/

nonlinear
Requires

normalization
neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/
nnet/nnet.pdf
Python: http://scikit-learn.org/dev/modules/
neural_networks_supervised.html
http://deeplearning.net/software/theano/

Vowpal
Wabbit

Classifica-
tion/Regres-
sion

An online ML program developed by John
Langford at Yahoo Research, now Microsoft.
It incorporates various algorithms, including
ordinary least squares and single-layer neu-
ral nets. As an online ML program, it doesn't
require all data to fit in memory. It's known
for fast processing of large datasets.
Vowpal Wabbit has a unique input format and
is generally run from a command line rather
than through APIs.
https://github.com/JohnLangford/
vowpal_wabbit/wiki

XGBoost Classifica-
tion/Regres-
sion

A highly optimized and scalable version of
the boosted decision trees algorithm.
https://xgboost.readthedocs.org/en/latest/

index

A

accuracy assessment 78–86

algorithms
linear 137
logistic regression 137

text features 147–149
tokenization and

transformation 147–148
48–149
er 79–81,

thods 57
cross-validation 82–85
holdout method 82–84
k-fold cross-validation

84–85

machine learning 140
nonlinear 138
random forest 138

Amazon Web Services. See AWS

vectorization 1
bandwidth paramet

83–84, 100, 105
basis expansion me
warnings regarding 86
overfitting and model

optimism 79–82

AMM (Adaptive Multi-hyper-
plane Machines) 206

approximations

BIC (Bayesian information
criterion) 99

big-data systems, scaling ML
–202

87, 89,

ns 141

ng 226

tochastic Gra-
206

57
2, 140
,
40
12

s 36, 44,

8–29

0
160–163,
236

accuracy score 74
accuracy vs. speed 213
active learning method 33
ad targeting 32
Adaptive Multi-hyperplane

Machines. See AMM
additive models 57
advertising example 214–231

display advertising 215–216
feature engineering

216–217
impression data 218–220
k-nearest neighbors

224–225
modeling strategy 216–217
random forests 226–227
real-world considerations

227–229
resource estimation and

optimization 222–224
singular value decomposition

220–222
terminology 229

AI (artificial intelligence) 4
AIC (Akaikie information

criterion) 99

learning algorithms 206
overview 119

AR (autoregressive) model 167
ARMA (autoregressive–moving

average) model 167
artificial intelligence. See AI
assumptions, premature 135
AUC (area under the curve) 92,

105, 138–139, 141, 182
Auto MPG dataset 49, 53, 69, 96
autocorrelation 165–166, 169
automatic feature

extraction 159–160
average metric 164
AWS (Amazon Web

Services) 202, 218
AWS Kinesis 211, 213

B

backward elimination 118–121,
124, 126

bagging 57, 229
bag-of-words model

NLP movie review example
178–180, 184–185

workflows 201
bigrams 147
binary classification

94–95, 111–112
Booleanized colum
boosting 57, 101
bootstrap aggregati
box plots 46
BSGD (Budgeted S

dient Descent)

C

Canny algorithm 1
categorical data 13
categorical features

booleanizing 1
categorical metrics
categorical variable

111
categories type 37
churn prediction 2
class confusion 89
class probabilities 9
classical time series

168–169, 171

INDEX 237

classification 59–67
building classifier and mak-

ing predictions 61–63
of complex, nonlinear

data 64–66
with multiple classes 66–67

classification models, evaluation
of 87–96

accuracy trade-offs and ROC
curves 90–93

class-wise accuracy and confu-
sion matrix 89

machine-learning
approach 11–15

traditional approaches 8–11
data collection

amount of training data
required 33

deciding which features to
include 30

obtaining ground truth for
target variable 32

whether training set is repre-
sentative enough 35

resource estimation and
optimization 222–224

singular value decomposition
220–222

terminology 229
digital media 23
dimensionality reduction 58, 75,

122, 159
Dirichlet analysis 152
display advertising 215–216
distribution metric 164
DNNs (deep neural nets) 159,

tion 191
eature engi-
09–110
7, 51

torage) 222
ute

–157, 170
al

210, 227, 229
225, 229

20–21, 77–105
dels 87–96
-offs and
90–93

racy and con-
x 89
ification

cy
78–86

82–85
 model

9–82
ls 96–100
is 99–100
 for 97–99
0, 82, 92, 99,

tion, feature
d 110–112

es 29
re 156

es, feature
d 108
multiclass classification 93–96
classification tree algorithm 57
classifier 59
class-wise accuracy 89
clickstream data 160
click-through rate. See CTR
clustering 58, 75
cold-start problem 228
collaborative filtering 217, 229
collecting data 18
complex, nonlinear data

classification of 64–66
performing regression

on 73–75
computational layer 202
conditional probability 31, 45
confusion matrix 89–91, 94–96,

104–105
content expansion 152–154, 170

follow links 153
knowledge-base expansion

153
text meta-features 153–154

CountVectorizer 184
covariant features 220
covariate shift 35
CPM (cost per thousand) 215
CSV files 130
CTR (click-through rate) 217
–cubic flag 205
curse of dimensionality 217
CV (cross-validation) 82–86

holdout method 82–84
k-fold cross-validation 84–85
warnings regarding 86

D

data
digital display advertising

example 218–220
using to make decisions 7–17

challenges 16–17

data enhancements 19
data instances 86
data locality 202, 212
data munging 22
data normalization 42
data rates 198
data sparsity 115
data visualization

box plots 46
density plots 48
mosaic plots 44
scatter plots 50

data volume and velocity, scaling
models with 25

data wrangling 22
DataFrame 137
dataset size, increasing 143
dataset-splitting 88
date and time features

112–113
datetime string 113
decision boundary 14–15
decision trees algorithms 100
deep belief networks 160
deep learning 160, 206
deep neural nets. See DNNs
demand forecasting 32
density plots 48
dependent variable 29
deviance 63
diffusion maps 159
digital display advertising

example 214–231
digital advertising data 216
display advertising 215–216
feature engineering 216–217
impression data 218–220
k-nearest neighbors

224–225
modeling strategy 216–217
random forests 226–227
real-world considerations

227–229

171, 206, 213
document tokeniza
domain expertise, f

neering and 1
dummy variables 3

E

EBS (elastic block s
EC2 (Elastic Comp

Cloud) 222
edge detection 156
encoding categoric

features 37
ensemble methods
Euclidean distance
evaluating models

classification mo
accuracy trade

ROC curves
class-wise accu

fusion matri
multiclass class

93–96
predictive accura

assessment
cross-validation
overfitting and

optimism 7
regression mode

residual analys
simple metrics

evaluation metric 8
101, 105

event data 160
event recommenda

engineering an
event streams 160
EXIF data 155, 170
explanatory variabl
exposure time featu
external data sourc

engineering an

INDEX238

F

false positive rate. See FPR
feature engineering

date and time features
112–113

defined 107
digital display advertising

example 216–217
domain expertise and

109–110
event recommendation

fraud detection 32
Freedom of Information Law. See

FOIL
full prediction probabilities 90

G

gamma parameter 65, 101
GARCH model 167
Gaussian mixture models 58
generalized additive models 57
Gensim 152, 190–191, 194

imputation 7, 39, 51
increasing dataset size 143
independent variables 29
inference 55–56, 75
informative missing data 39
input features 29–31, 33, 43–44,

47, 50
input variables 50, 54, 57
instance clustering, subsam-

pling training data 200–201
instances 18
integer features 36

r 56
5–216
111
7

4
 173–174,

8, 57, 79
ms 100

on 82–86,

8
ghbors)
vertising
4–225
68
ansion 153

165

lysis 169–170
space 133

111
et
169–170

204–207
m
ons 206
206–207
ach

0, 137
 analysis 56
110–112
feature selection 116–126

for data exploration
121–122

forward selection and
backward elimination
119–121

real-world example of
123–125

image features 154–160
extracting objects and

shapes 156–160
simple 154–156

reasons to use 107–109
creating easily-interpreted

features 108
creativity enhancement

108–109
external data sources 108
transforming original data

to relate to target 107
unstructured data

sources 108
text features 146–154

bag-of-words model
147–149

content expansion 152–154
simple 114–116
topic modeling 149–152

time-series features 160–170
classical 163–168
event streams 168–170
prediction on time-series

data 163
types of time-series

data 160–162
FOIL (Freedom of Information

Law) 130
folds 84
follow links 153
forward selection 118–121, 126
fourier analysis 165
FPR (false positive rate) 124, 183

graphic cards 207
grid search 101–105
ground truth 35, 51
guessing missing values 40

H

HDFS (Hadoop Distributed File
System) 202

held-out data 21
heterogeneous dataset 18
hierarchical clustering 58
high-dimensional space 217
histogram approximations 206,

212
HMM (Hidden Markov

model) 167
HOG (histogram of oriented

gradients) 157, 170
holdout method 82–84, 87–88,

105
horizontal scaling 201, 204, 212
hyperparameters 185, 189,

194–195

I

image features 154–160
extracting objects and

shapes 156–160
advanced shape features

157–159
automatic feature

extraction 159–160
dimensionality

reduction 159
edge detection 156–157

simple 154–156
color features 155
metadata features 155–156

image metadata features 155–156
IMDb (Internet Movie

Database) 173

intercept paramete
internet cookies 21
invited data feature
itertools module 18

K

k disjoint subsets 8
Kaggle 5, 110–111,

194
kernel coefficient

parameter 102
kernel smoothing 4
kernel SVM algorith
kernel trick 66
k-fold cross-validati

104–105
k-folds 84, 104
k-means method 5
KNN (k-nearest nei

digital display ad
example 22

overview 57, 67–
knowledge-base exp

L

labels 25
lagged time series
Lasso 200, 212
latent semantic ana
latitude/longitude
lat/lng data feature
LDA (latent Dirichl

analysis) 152,
learning algorithms

data and algorith
approximati

deep neural nets
polynomial appro

205–206
linear algorithms 6
linear discriminant

INDEX 239

linear model 200, 205
linear regression 69, 72
location data 23
logistic regression 12–15, 56, 61,

63, 100, 137
log-odds 13
LSA (latent semantic

analysis) 150–152
LSI (latent semantic

indexing) 150

M

mixture models 57
ML workflows, scaling 196–212

big-data systems 201–202
identifying important

dimensions 197–199
learning algorithms 204–207

approximations 206
deep neural nets 206–207
polynomial approach

205–206
modeling pipelines 203–207
overview 197–202

evaluating 20–21
optimizing 21–22

model prediction 197
model training 196–199, 207
modeling 53–59

digital display advertising
example 224

input and target, finding rela-
tionship between 53–55

methods of 56–57
nonparametric methods 57
parametric methods 56–57

xi data
7
del 137–138

gorical
–141
-time
–143
143–144

ifier 138–140
g good
6
56

 unsuper-
g 58–59
, scaling ML
–207

ess 21

ple 172–195
res 178–180,

aïve Bayes
80–184
ameters

odel 192–195
8
ovies 176–177
iew from 1 to

itive from
iews 177–178
s 190–192
d error) 80,

tion 93–96
caling 58
ssification
machine learning 3–26
boosting model

performance 22–25
data preprocessing and fea-

ture engineering 22–24
improving models continu-

ally with online
methods 24

scaling models with data
volume and velocity 25

overview 4–7
terminology 25–26
using data to make

decisions 7–17
challenges 16–17
machine-learning

approach 11–15
traditional approaches 8–11

workflow 17–22
data collection and

preparation 18
evaluating model

performance 20–21
learning model from

data 19–20
optimizing model

performance 21–22
magic-box model 19
Mahout library 202
manifold learning 58
manufacturer feature 155
MapReduce algorithm 202
MDR (missed detection

rate) 124
mean squared error. See MSE
meta-features 170
methods of modeling 56–57

nonparametric methods 57
parametric methods 56–57

missing data 32, 38–39, 51
missing values 18, 36, 38–41, 61,

69, 74

predictions 207–212
velocity 209–212
volume 208–209

subsampling training
data 199–201

feature selection 199–200
instance clustering 200–201

MLlib library 202
mlpack 204
MNIST dataset 94–95
model evaluation 77–105

classification models 87–96
accuracy trade-offs and

ROC curves 90–93
class-wise accuracy and con-

fusion matrix 89
multiclass classification

93–96
predictive accuracy

assessment 78–86
cross-validation 82–85
overfitting and model

optimism 79–82
regression models 96–100

residual analysis 99–100
simple metrics for 97–99

model fitting 81
model optimization 79–82

cross-validation 82–85
tuning parameters 100–105

algorithms and 100–101
grid search 101–105

model parameters 21, 143
model performance

boosting with advanced
techniques 22–25

data preprocessing and fea-
ture engineering 22–24

improving models continu-
ally with online
methods 24

scaling models with data
volume and velocity 25

New York City ta
example 13

basic linear mo
including cate

features 140
including date

features 142
model insights
nonlinear class

purpose of findin
model 55–5

inference 55–
prediction 55

supervised versus
vised learnin

modeling pipelines
workflows 203

models 25
model-testing proc
mosaic plots 44
movie review exam

bag-of-words featu
184–185

dataset 173–175
model

building with n
algorithm 1

optimizing par
185–190

random forest m
use case 175–17

ranking new m
rating each rev

10 177
separating pos

negative rev
word2vec feature

MSE (mean square
105

multiclass classifica
multidimensional s
multiple classes, cla

with 66–67

INDEX240

N

naïve Bayes algorithms 57, 149,
178

NaN (Not a Number) 38
NearestNeighbors 225
negative classes 95
neural nets 57
New York City taxi data

example 129–145
defining problem and prepar-

ing data 134–136

numerical values,
predicting 68–75

building regressor and
making predictions
69–72

performing regression on
complex, nonlinear
data 73–75

O

object and shape

mosaic plots 44–46
scatter plots 50–51

pLSA (probabilistic latent
semantic analysis) 152

point process 161, 171
Poisson processes 168
polynomial features 205–206,

212
polynomial regression 56
positive classes 95
prediction

classification and 59–67
ier and mak-
ns 61–63
plex, nonlin-
66
 multiple
7
8–75
ssor and mak-
ns 69–72
ression on

nlinear

86
2–85
d 82–84

idation

ding 86
odel
–82
ions 135

22–24,

es 36–38
n 42–43
ing

gineering

nt analysis.

nts

er 90
semantic
SA
odel 20

odeling

90–91
modeling 137–145
basic linear model 137–138
including categorical

features 140–141
including date-time

features 142–143
model insights 143–144
nonlinear classifier

138–140
visualizing data 130, 134

N-grams 147
NLP (natural language process-

ing), movie review
example 172–195

bag-of-words features
178–180, 184–185

dataset 173–175
model 180–190
random forest model

192–195
use case 175–178
word2vec features 190–192

NNs (neural nets), learning
algorithms 206–207

noisy data 54
nondiagonal items 95
nonhomogeneous Poisson

processes 168
nonlinear algorithm 64, 67,

73–74, 138
nonlinear data

classification of 64–66
performing regression

on 73–75
nonlinear models 204–206
nonparametric algorithms 15,

57, 75
normalized data 42
Not a Number. See NaN
numerical columns 132, 140,

142
numerical features 36, 141
numerical metrics 11

extraction 156–160
advanced shape features

157–159
automatic feature extraction

159–160
dimensionality reduction 159
edge detection 156–157

one per category per
feature 141

one-versus-all trick 95
online learning 24, 26
online methods, improving

models continually
with 24

open data 130, 145
optimization procedure 63
optimizing models 21–22,

79–82
cross-validation 82–85
tuning parameters 100–105

algorithms and 100–101
grid search 101–105

optimizing parameters 194
orientation feature 155
outliers metric 164
out-of-core 212
overfitting, resolving with cross-

validation 82–85

P

pandas library 137
parametric methods 56–57
parametric models 12, 14–15,

57, 75
payment type feature 135
payment_type column 132
PCA (principal component

analysis) 58, 159, 170
periodogram 165, 167, 171
plots

box plots 46
density plots 48

building classif
ing predictio

classifying com
ear data 64–

classifying with
classes 66–6

regression and 6
building regre

ing predictio
performing reg

complex, no
data 73–75

predictive accuracy
assessment 78–

cross-validation 8
holdout metho
k-fold cross-val

84–85
warnings regar

overfitting and m
optimism 79

premature assumpt
preparing data 18
preprocessing data

36–43
categorical featur
data normalizatio
dealing with miss

data 38–40
simple feature en

40–42
principal compone

See PCA
principal compone

regression 57
probabilistic classifi
probabilistic latent

analysis. See pL
probabilistic ML m
probabilistic topic m

methods 152
probability vectors
Python Pandas 203

INDEX 241

Q

quadratic discriminant
analysis 56

quartiles 46

R

R data frames 203
RAM (random access

memory) 222
random forest algorithm. See RF

ROC (receiver operating
characteristic) curve 89–93,
95–96, 104–105, 138–139,
141–142

R-squared value 97–98

S

S3 (Simple Storage Service) 222
sample-selection bias 35
scaling ML workflows 196–212

big-data systems 201–202

stemming 148
stop words 115, 148, 170
storage layer 202
straight line 72
striping word suffixes 148
subnodes 57
subsampling training data

199–201
feature selection 199–200
instance clustering 200–201

supervised learning
overview 6–7, 26

sed
–59
75
hines 57,

e
) 151,

r
65

 32, 34
r 40
erse docu-
y 150, 170,
187
trix 151

54
del 147–149
nd
on 147–148
48–149
n 152–154
3
e
53
res 153–154

149–152
c
–152
ethods 152
y-inverse doc-
ency 150
153–154
4

random forests
digital display advertising

example 226–227
NLP movie review

example 192–195
overview 57

RBF (radial basis function)
102

real-time bidding 217
recall process 4, 6, 25
receiver operating characteristic.

See ROC
recommenders 217
regression 68–75

building regressor and mak-
ing predictions 69–72

performing on complex,
nonlinear data 73–75

regression models
evaluation of 96–100

residual analysis 99–100
simple metrics for 97–99

overview 72, 75
regularization technique 63
representative data 33
representativeness training

sets 35
residual analysis 99–100
resolution feature 156
resource estimation and

optimization, digital
display advertising
example 222–224

response variables 29, 50
return on advertising spend. See

ROAS
RF (random forest) algorithm

74, 101, 112, 123
ridge regression 57
RMSE (root-mean-square

error) 97
ROAS (return on advertising

spend) 214

identifying important
dimensions 197–199

learning algorithms 204–207
approximations 206
deep neural nets 206–207
polynomial approach

205–206
modeling pipelines 203–207
overview 197–202
predictions 207–212

velocity 209–212
volume 208–209

subsampling training data
199–201

feature selection 199–200
instance clustering

200–201
scaling models, with data volume

and velocity 25
scatter plots 50–51, 70–71, 132
scenarios, too-good-to-be-

true 135
scikit-image 157–158
scikit-learn library 61, 137,

149–151, 157, 204–205
semantic analysis 151
simple models 56
Simple Storage Service. See S3
singular value decomposition.

See SVD
Sobel algorithm 157
spam detectors 59
Spark Streaming 213
sparse data 115, 148–149, 170
spectral density 165
splines 57
spread metric 164
stacking 227, 229
statistical correlation

techniques 10
statistical deviance 63
statistical modeling 56
statsmodels module 165

versus unsupervi
learning 58

supervised models
support vector mac

64–65
SVD (singular valu

decomposition
220–222

SVM (support vecto
machine) 64–

T

tabular data 18
target variables 111
targets 25
telecom churn 30,
temporal data orde
term frequency-inv

ment frequenc
178, 184–185,

term-document ma
testing data 21
text features 146–1

bag-of-words mo
tokenization a

transformati
vectorization 1

content expansio
follow links 15
knowledge-bas

expansion 1
text meta-featu

simple 114–116
topic modeling

latent semanti
analysis 150

probabilistic m
term frequenc

ument frequ
text meta-features
TfidfVectorizer 18
threshold 90–92

INDEX242

time-series features 160–170
classical 163–168

advanced 165–168
simple 163–164

for event streams 168–170
time-series data

prediction on 163
types of 160–162

time-series forecasting 163, 167,
171

Titanic Passengers dataset 57,
59–61, 64, 87, 101–102

training phase 68
training set 29–30, 33–35, 44,

81–83
transformation, text features

147–148
trigrams 147
tuning parameters

algorithms and 100–101
grid search 101–105

U

vectorizer dictionary 179
vectorizers 190
velocity, scaling

predictions 209–212
vertical scaling 201, 212
viewable seconds 216
visualizing data 130–134
volume, scaling

predictions 208–209
Vowpal Wabbit 205, 212

W

es 164, 169
0

NLP
xample

learning

d
18

20–21
rom data

l
21–22
tokenization 147–148, 191
too-good-to-be-true

scenarios 135
topic modeling 149–152

latent semantic analysis
150–152

probabilistic methods 152
term frequency-inverse

document frequency
150

TPR (true positive rate) 183
traditional display

advertising 215
training data

feature selection 199–200
instance clustering 200–201

underfitting data 100, 105
unigrams 147
unknown parameters 56
unlabeled data 194
unseen data 179
unstructured data sources, fea-

ture engineering and 108
unsupervised learning, versus

supervised learning 58–59
unsupervised models 75

V

variables of interest 28
vectorization, text features

148–149

windowed differenc
word vectorizers 19
word2vec features,

movie review e
190–192

workflow, machine
17–22

data collection an
preparation

evaluating model
performance

learning model f
19–20

optimizing mode
performance

Brink ● Richards ● Fetherolf

M
achine learning systems help you fi nd valuable insights
and patterns in data, which you’d never recognize with
traditional methods. In the real world, ML techniques

give you a way to identify trends, forecast behavior, and make
fact-based recommendations. It’s a hot and growing fi eld, and
up-to-speed ML developers are in demand.

Real-World Machine Learning will teach you the concepts and
techniques you need to be a successful machine learning prac-
titioner without overdosing you on abstract theory and com-
plex mathematics. By working through immediately relevant
examples in Python, you’ll build skills in data acquisition and
modeling, classifi cation, and regression. You’ll also explore
the most important tasks like model validation, optimization,
scalability, and real-time streaming. When you’re done, you’ll
be ready to successfully build, deploy, and maintain your own
powerful ML systems.

What’s Inside
● Predicting future behavior
● Performance evaluation and optimization
● Analyzing sentiment and making recommendations

No prior machine learning experience assumed. Readers
should know Python.

Henrik Brink, Joseph Richards, and Mark Fetherolf are experi-
enced data scientists engaged in the daily practice of machine
learning.

Real-World Machine Learning

MACHINE LEARNING/PROGRAMMING

M A N N I N G

“This is that crucial other
book that many old hands

wish they had
 back in the day.”—From the Foreword by
Beau Cronin, 21 Inc.

“A comprehensive guide
on how to prepare data for
ML and how to choose the
 appropriate algorithms.”—Michael Lund, iCodeIT

“Very approachable. Great
information on data

preparation and feature
engineering, which are
 typically ignored.”—Robert Diana

RSI Content Solutions

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	How to use this book
	Intended audience
	Code conventions, downloads, and software requirements
	Author Online

	about the authors
	about the cover illustration
	Part 1—The machine-learning workflow
	1 What is machine learning?
	1.1 Understanding how machines learn
	1.2 Using data to make decisions
	1.2.1 Traditional approaches
	1.2.2 The machine-learning approach
	1.2.3 Five advantages to machine learning
	1.2.4 Challenges

	1.3 Following the ML workflow: from data to deployment
	1.3.1 Data collection and preparation
	1.3.2 Learning a model from data
	1.3.3 Evaluating model performance
	1.3.4 Optimizing model performance

	1.4 Boosting model performance with advanced techniques
	1.4.1 Data preprocessing and feature engineering
	1.4.2 Improving models continually with online methods
	1.4.3 Scaling models with data volume and velocity

	1.5 Summary
	1.6 Terms from this chapter

	2 Real-world data
	2.1 Getting started: data collection
	2.1.1 Which features should be included?
	2.1.2 How can we obtain ground truth for the target variable?
	2.1.3 How much training data is required?
	2.1.4 Is the training set representative enough?

	2.2 Preprocessing the data for modeling
	2.2.1 Categorical features
	2.2.2 Dealing with missing data
	2.2.3 Simple feature engineering
	2.2.4 Data normalization

	2.3 Using data visualization
	2.3.1 Mosaic plots
	2.3.2 Box plots
	2.3.3 Density plots
	2.3.4 Scatter plots

	2.4 Summary
	2.5 Terms from this chapter

	3 Modeling and prediction
	3.1 Basic machine-learning modeling
	3.1.1 Finding the relationship between input and target
	3.1.2 The purpose of finding a good model
	3.1.3 Types of modeling methods
	3.1.4 Supervised versus unsupervised learning

	3.2 Classification: predicting into buckets
	3.2.1 Building a classifier and making predictions
	3.2.2 Classifying complex, nonlinear data
	3.2.3 Classifying with multiple classes

	3.3 Regression: predicting numerical values
	3.3.1 Building a regressor and making predictions
	3.3.2 Performing regression on complex, nonlinear data

	3.4 Summary
	3.5 Terms from this chapter

	4 Model evaluation and optimization
	4.1 Model generalization: assessing predictive accuracy for new data
	4.1.1 The problem: overfitting and model optimism
	4.1.2 The solution: cross-validation
	4.1.3 Some things to look out for when using cross-validation

	4.2 Evaluation of classification models
	4.2.1 Class-wise accuracy and the confusion matrix
	4.2.2 Accuracy trade-offs and ROC curves
	4.2.3 Multiclass classification

	4.3 Evaluation of regression models
	4.3.1 Using simple regression performance metrics
	4.3.2 Examining residuals

	4.4 Model optimization through parameter tuning
	4.4.1 ML algorithms and their tuning parameters
	4.4.2 Grid search

	4.5 Summary
	4.6 Terms from this chapter

	5 Basic feature engineering
	5.1 Motivation: why is feature engineering useful?
	5.1.1 What is feature engineering?
	5.1.2 Five reasons to use feature engineering
	5.1.3 Feature engineering and domain expertise

	5.2 Basic feature-engineering processes
	5.2.1 Example: event recommendation
	5.2.2 Handling date and time features
	5.2.3 Working with simple text features

	5.3 Feature selection
	5.3.1 Forward selection and backward elimination
	5.3.2 Feature selection for data exploration
	5.3.3 Real-world feature selection example

	5.4 Summary
	5.5 Terms from this chapter

	Part 2—Practical application
	6 Example: NYC taxi data
	6.1 Data: NYC taxi trip and fare information
	6.1.1 Visualizing the data
	6.1.2 Defining the problem and preparing the data

	6.2 Modeling
	6.2.1 Basic linear model
	6.2.2 Nonlinear classifier
	6.2.3 Including categorical features
	6.2.4 Including date-time features
	6.2.5 Model insights

	6.3 Summary
	6.4 Terms from this chapter

	7 Advanced feature engineering
	7.1 Advanced text features
	7.1.1 Bag-of-words model
	7.1.2 Topic modeling
	7.1.3 Content expansion

	7.2 Image features
	7.2.1 Simple image features
	7.2.2 Extracting objects and shapes

	7.3 Time-series features
	7.3.1 Types of time-series data
	7.3.2 Prediction on time-series data
	7.3.3 Classical time-series features
	7.3.4 Feature engineering for event streams

	7.4 Summary
	7.5 Terms from this chapter

	8 Advanced NLP example: movie review sentiment
	8.1 Exploring the data and use case
	8.1.1 A first glance at the dataset
	8.1.2 Inspecting the dataset
	8.1.3 So what’s the use case?

	8.2 Extracting basic NLP features and building the initial model
	8.2.1 Bag-of-words features
	8.2.2 Building the model with the naïve Bayes algorithm
	8.2.3 Normalizing bag-of-words features with the tf-idf algorithm
	8.2.4 Optimizing model parameters

	8.3 Advanced algorithms and model deployment considerations
	8.3.1 Word2vec features
	8.3.2 Random forest model

	8.4 Summary
	8.5 Terms from this chapter

	9 Scaling machine-learning workflows
	9.1 Before scaling up
	9.1.1 Identifying important dimensions
	9.1.2 Subsampling training data in lieu of scaling?
	9.1.3 Scalable data management systems

	9.2 Scaling ML modeling pipelines
	9.2.1 Scaling learning algorithms

	9.3 Scaling predictions
	9.3.1 Scaling prediction volume
	9.3.2 Scaling prediction velocity

	9.4 Summary
	9.5 Terms from this chapter

	10 Example: digital display advertising
	10.1 Display advertising
	10.2 Digital advertising data
	10.3 Feature engineering and modeling strategy
	10.4 Size and shape of the data
	10.5 Singular value decomposition
	10.6 Resource estimation and optimization
	10.7 Modeling
	10.8 K-nearest neighbors
	10.9 Random forests
	10.10 Other real-world considerations
	10.11 Summary
	10.12 Terms from this chapter
	10.13 Recap and conclusion

	Appendix—Popular machine-learning algorithms
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back cover

