
Paper 70

Reading External Files Using SAS® Software

Clinton S. Rickards, Purdue Pharma L.P.

ABSTRACT
In the real world, most data are not stored in
SAS data sets. Typical data repositories used by
business and academia include legacy
mainframe files, client/server relational database
management systems, and simple text files on
desktop computers. While we want to use SAS
to examine, to analyze, to display, and to graph
this data, SAS works best with data stored in
SAS data sets, not with data stored in their
native forms.

Fortunately, SAS has very powerful tools for
reading a wide variety of external files, from the
most rudimentary to the most complex. This
paper is an updated and expanded version of
similar papers presented by the author at
previous SAS conferences and will introduce
DATA step techniques for reading standard
external files not stored in data base
management systems or proprietary file
structures.

We will begin with a brief overview of what to do
before writing any code, followed by an
examination of the SAS statements used to read
an external file. Starting with very simple files,
we will study programs that utilize more
complicated features, including reading into
arrays, multiple format files, variable length files,
and multiple record files.

INTRODUCTION
Much raw data is stored in “flat files”. SAS
procedures usually require a SAS data set or
view as input. DATA steps serve as the bridge
to transform flat files into SAS data sets. If you
understand the features available in the DATA
step and how to point the SAS Supervisor to the
location of your external data, there are few file
formats that cannot be read into a SAS data set.

All of the examples run under Release 6.07 and
later releases.

BEFORE YOU START
Writing the actual DATA step is typically no more
than 10-20 percent of the work. The remainder
is spent exploring your data. Exploration
includes designing the structure of the SAS data
set to be created and determining the
organization of the raw data file to be read.

SAS Data Set Design
SAS data sets are often poorly designed. To
design an efficient SAS data set, consider the
purpose to which the data set will be used.
Determine the variables you need and the range
of values to be contained.

Questions to ask when designing SAS data sets
include: What are the variable names to be
created? Are arrays needed? Is the projected
size of the data set so large that using shorter
variable lengths or compressing the data set are
desirable? Should the data set be split into
multiple data sets to reduce the storage of
redundant information? Should the data be
translated into coded values?

Raw Data Organization
In determining the organization of the raw data
file, one must understand how the file is
described in its native form. Questions to ask
include: Do the records have a single format or
are there multiple record formats on the file (e.g.,
a master record followed by a detailed record)?
How are numeric fields formatted (signed or
unsigned, packed, floating point, etc.)? How are
"group" fields (e.g., personal names, which may
contain a title, first name, middle name, last
name, and suffix) handled? Are there multiple
logical records per physical record or does a
single logical record require multiple physical
records? Are there repeated fields (i.e. arrays)?
Is the file stored on tape or disk?

POINTING SAS TO THE EXTERNAL FILE
There are three ways to point SAS to external
files: operating system control statements,
FILENAME statements, and INFILE statements.

Operating System Control Statements
This method uses commands or statements
interpreted by the operating system rather than
the SAS Supervisor to allocate a fileref. The
SAS Supervisor is the part of the SAS System
that interprets SAS statements.

A fileref (file reference) is a nickname used in
place of the full filename. A fileref created under
MVS is sometimes called a “DD Name”. For
example, when a SAS program is executed in
MVS batch, one might use a DD allocation
statement to assign a fileref.

Beginning Tutorials

Generally, the fileref is created before a SAS
session is started. Some platforms permit the
use of the X statement to assign a fileref after
the session has started. Please check the SAS
Companion for your platform for details. A
disadvantage of assigning filerefs with operating
system commands that the filerefs will not be
available in the Display Manager FILENAME
window.

FILENAME Statement
This statement creates a fileref that links a
physical file with the SAS system. When the
operating system does not provide control
statements to assign filerefs (e.g., directory
based platforms such as MS-DOS, Windows,
and OS/2, and servers running under Unix or
Windows NT), FILENAME or INFILE statements
must be used. The FILENAME statement is
executed within a SAS session prior to the DATA
step.

The syntax of the FILENAME statement is:

FILENAME fileref <device-type> ’external-name’
 <host-options>;

where:
 fileref is any valid SAS name

device-type indicates the type of device. It is
optional and defaults to DISK.

’external-name’ is the name of the file on the
host system. The quotes are required.

host-options specify any options that vary from
operating system to operating system. Carefully
read the SAS Companion for your operating
system to understand the meaning and usage of
these options.

You may use FILENAME in conjunction with
operating system definitions to specify
information about the file not covered by the
operating system. In general, one or the other
alone is sufficient.

INFILE Statement
INFILE is used to tell a DATA step from which
file to read when an INPUT statement is
executed. If the argument after the keyword
‘INFILE’ is quoted, the SAS Supervisor treats it
as an actual external file name. Otherwise, the
SAS Supervisor assumes that it is a fileref.

 An INFILE statement should be used in each
data step reading an external file and must be
executed before the input statement. You can
have more than one INFILE statement, which
allows you to read multiple files with a single
DATA step. When the INFILE statement is
absent from a DATA step, the INPUT statement
will default to INFILE CARDS.

When SAS begins each iteration of a DATA
step, it "forgets" from which file(s) it had read.
This means that you must be careful to execute
an INFILE for each DATA step that must
reference an external file.

The general syntax of INFILE statement is:

INFILE file-spec <options> <host options>;

where file-spec identifies the source of the data.
file-spec may have 3 forms:

fileref is the fileref assigned to the required
external file. The fileref must be assigned
before the DATA step by using an operating
system definition or FILENAME statement.

’external-file’ specifies the name of the
required external file. This form is
equivalent to specifying the external file with
a FILENAME statement.

CARDS (or CARDS4) indicates that the data
immediately follows the CARDS statement at
the end of the data step. In Release 6.07 or
later, DATALINES (or DATALINES4) may be
specified instead.

options specify SAS options to control reading
the file or to provide information about the file.
Commonly used options will be described in the
INFILE STATEMENT OPTIONS section.

host-options are host specific options.

Examples
The following examples are functionally
equivalent.

CMS
FILEDEF SALESDAT DISK
 NOVEMBER SALES A

Beginning Tutorials

FILENAME SALESDAT
 ’NOVEMBER SALES A’;

X ’FILEDEF SALESDAT DISK
 NOVEMBER SALES A’;

INFILE SALESDAT;
/* with prior FILENAME or */
/* FILEDEF statement */

INFILE ’NOVEMBER SALES A’;

MVS JCL
//SALESDAT DD
// DSN=F456.SALES.DATA.NOVEMBER,
// DISP=SHR

FILENAME SALESDAT
 ’F456.SALES.DATA.NOVEMBER’
 DISP=SHR;

INFILE SALESDAT;
/* with prior FILENAME or */
/* DD statement */

INFILE
 ’F456.SALES.DATA.NOVEMBER’
 DISP=SHR;

MVS TSO
ALLOC F(SALESDAT)
 DA(’F456.SALES.DATA.NOVEMBER’)
 SHR

FILENAME salesdat
 ’F456.SALES.DATA.NOVEMBER’
 disp=shr;

INFILE salesdat;
/* with prior FILENAME or */
/* ALLOC statement */

INFILE
 ’F456.SALES.DATA.NOVEMBER’
 disp=shr;

X "ALLOC F(SALESDAT)
 DA(’F456.SALES.DATA.NOVEMBER’)
 SHR";

Windows (all versions)
FILENAME salesdat
 ’C:\SALES\NOVEMBER.DAT;’
INFILE salesdat;
/* with prior FILENAME */

INFILE ’C:\SALES\NOVEMBER.DAT’;

Comparison of Methods
The three methods of pointing to an external file
have considerable functional overlap. For
applications that need resources that must be
scheduled (such as tapes), that require options
not provided by the FILENAME statement, or
that will be handled by support staff not familiar
with SAS, it is better (if not required) to assign
filerefs through operating system definitions.

However, if the application is to be executed
interactively through Display Manager or requires
SAS specific options not provided by operating
system definitions, use of the FILENAME
statement may be a better choice.

INPUT STATEMENT BASICS
The INPUT statement is used to instruct the
SAS Supervisor how to read the file. When an
INPUT statement is executed, it reads from the
file pointed to by the most recently executed
INFILE statement (since a DATA step may have
more than one INFILE statement). With few
restrictions, you can use any or all of these
styles in a single INPUT statement.

LIST Input merely lists the desired variable
names in the INPUT statement. List input
assumes that the data values are separated by
one or more delimiters (blank is the default
delimiter - see INFILE STATEMENT OPTIONS
section). It is the easiest style to code but the
most prone to problems relating to data location,
unwanted imbedded blanks, and wasted cpu
resourses. An example of list input would be:

INPUT vendor $ apples pears;

The $ after VENDOR indicates that VENDOR is
a character variable. APPLES and PEARS are
numeric data.

Also available are format modifiers, which allow
you to combine the functionality of list input and
formatted input (see the section labeled
FORMATTED Input) while altering the standard
operation of the informats. The format modifiers
are:

: SAS will read data until it encounters a
delimiter or the end of the record, or for the
length specified by the informat, whichever
comes first; unmodified formatted input
always reads the length specified in the
informat.

& indicates that a character value has one or
more single embedded delimiters, so that
consecutive delimiters are needed to delimit
the value. SAS will read data from the file
until it encounters the first of these events:
consecutive delimiters, the end of the
record, or the column pointer has moved
past the length specified by the informat (see
the COLUMN pointer controls section).

COLUMN Input specifies the columns to be
read for each variable. The following INPUT
statement illustrates column input:

Beginning Tutorials

INPUT vendor $ 1-20
 apples 22-25
 pears 27-30 ;

FORMATTED Input specifies the SAS informat
to be used in translating the raw data into a
variable. This form of input is the only form that
will work with non-standard data (e.g. packed,
hexadecimal, date/time). The following example
illustrates formatted input:

INPUT vendor $char20.
 apples 5.
 pears pd5.
 ;

NAMED Input is of the form variable=.
This style of input requires that the variable
name be included with the data, as in:

vendor=JOHN apples=5 pears=4

This type of data would be read by this program:

INPUT vendor= $
 apples=
 pears=
 ;

Examples
Let us assume that the file to be read contains
the name of local farms and the number of
bushels of apples and pears that your store
purchased from them. Further, let us also
assume that the data is in text format. A
complete program to read this file could be:

FILENAME vendors ’external-name’;
DATA purchasd.fruit;
 INFILE vendors;
 INPUT vendor $ 1-20
 apples 21-25
 pears 26-30
 ;
RUN;

The FILENAME statement assigns the fileref
VENDORS before the DATA step, and the
INFILE points to fileref VENDORS. If the
numeric data were in a packed format, formatted
input would be required as shown in this
example:

FILENAME vendors ’external-name’;
DATA purchasd.fruit;
 INFILE vendors;
 INPUT
 vendor $ 1-20
 apples pd5.
 pears pd5.
 ;

Variable Lengths
An important consideration when deciding which
method of input to use (list, column, formatted,
or named) is the desired lengths of the variables
in the resulting SAS data set. SAS determines

the length of a variable based on how it is
referenced in the program, subject to certain
defaults.

Numeric variables (including dates) and
character variables read by list or named input
default to 8 bytes. Character variables read by
formatted input or format modified list input are
set to the length as specified by the informat.
Character variables read by column input are set
to the number of columns being read. The
LENGTH and ATTRIB statements can be used
to set the variables to the length desired (more
or less than the default) but must be coded
before the INPUT statement.

Invalid Data
When SAS encounters invalid data, it sets the
value to missing, places a note in the log, and
prints the input record in the log. Depending on
the application, these notes may be immaterial.
Two format modifiers alter how invalid data
elements are handled.

? suppresses the invalid data message but
continues to print the invalid input record

?? suppresses the invalid data message and
printing of the invalid input record by setting
the automatic variable _ERROR_ to 0

INPUT STATEMENT ADVANCED FEATURES
The last example illustrates two problems with
the input techniques examined so far. First, the
location of PEARS is not immediately obvious.
SAS must add the length of APPLES to the
number of columns VENDOR uses. Second, if
only the number of PEARS is required, SAS
must waste effort reading APPLES and
VENDOR even though they are not needed.

Although acceptable in our small example, these
problems become material when reading large
files. This section provides the tools to
overcome these and other problems.

Input Pointer Controls
SAS maintains two pointers, the column pointer
and the line pointer, to track what raw data will
be read during the execution of an INPUT
statement. You can change these pointers to re-
read data, change the order in which data fields
are read, or handle logical records that are
defined by multiple physical records. Use of
these pointer controls also makes the INPUT
statement more self-documenting.

COLUMN pointer controls:

 @expression

Beginning Tutorials

 +expression

@ moves the pointer to the column number
resulting from expression. expression can be a
numeric constant, a variable containing the
column number, or an expression enclosed in
parenthesis. For example, @44, @START,
@(START+COUNT*5) are valid expressions.

expression can also be a character constant, a
character variable, or an expression that results
in a character string. SAS searches for the
character expression, starting at the current
column pointer location, and sets the column
pointer to the first character following the string.
For example, @’FIRSTNAME’, @’$’, @START
and @(’$$’||SEARCH4) are all valid expressions.

+ moves the pointer left or right the number of
columns resulting from expression. expression
can be a numeric constant, a variable containing
the number of columns to move, or a numeric
expression enclosed in parenthesis. Expressions
resulting in positive numbers move the pointer to
the right, negative results move the pointer to the
left. Negative numeric constants must be
enclosed in parentheses. For example, +5,
+START, +(-5), and +(START+COUNT*5) are
valid expressions.

These examples accomplish the same task:

INPUT
 @1 vendor $char20.
 @21 apples 5.
 @26 pears 5.
 ;

start = 1;
INPUT
 @start vendor $CHAR20.
 apples 5.
 pears 5.
 ;

INPUT
 @1 vendor $20.
 +5 pears 5.
 +(-10) apples 5.
 ;

Note in the last example that PEARS is read
before APPLES by using the +5 and +(-10)
column pointer controls. Normally, we prefer the
form shown in the first example. It clearly shows
the starting location, length, and informat of each
variable.

LINE Pointer Controls:

 #expression
 /

moves the pointer to a specific line number
based on the result of expression.
expression can be a numeric constant, a
variable containing the line number, or an
expression enclosed in parenthesis.

/ moves the pointer to the beginning of the
next line. You can use multiple / to move
more than one line.

These INPUT statements are functionally
equivalent:

INPUT
 #1 @1 lastname $char25.
 #2 @16 phonenum 9.
 #4 @30 city $25.
 ;

INPUT
 @1 lastname $char25.
 / @16 phonenum 9.
 // @30 city $25.
 ;

cityloc = 4;
INPUT
 #1 @1 lastname $char25.
 #2 @16 phonenum 9.
 #cityloc @30 city $25.
 ;

Beginning Tutorials

Line Hold Specifiers
Line hold specifiers are used to maintain the
position of the line and column pointers on the
current line in the external file through multiple
INPUT statements or multiple iterations of a
single data step. Placed at the end of the INPUT
statement, they instruct SAS not to read a new
record when the next INPUT statement is
executed. This capability is the key element of
techniques used to read more complex files and
to improve efficiency.

@ (trailing at-sign) tells SAS to keep this record
current until either an INPUT is executed without
a trailing @ or trailing @@, or until this iteration
of the DATA step is completed.

In the following example, only TYPE A
observations are written. Since the variables B,
C, and D are read only when TYPE is A, wasted
processing is avoided.

DATA trash;
 INFILE trash;
 INPUT type $ @;
 IF type = ’A’ THEN DO;
 INPUT b c d;
 OUTPUT;
 END;
RUN;

@@ (double trailing at-sign) tells SAS to keep
this record current through successive iterations
of the DATA step. The line will be released
when the first of three events occurs: the column
pointer moves past the end of the record; an
INPUT statement is executed without a @ or
@@; or when the DATA step iteration ends and
the last executed INPUT statement did not have
a @@. For example, the following program
reads multiple observations from each input
record:

DATA trash;
 INFILE trash;
 INPUT type $ size @@;
RUN;

WARNING: When using @ or @@, care must
be taken to avoid infinite loops. For example,
the following program may result in an infinite
loop:

DATA streets;
 INFILE address;
 INPUT @1 street $20. @@;
RUN;

Remember that using line hold specifiers may
require you to either explicitly end execution of
the DATA step with a STOP or ABORT
statement or to release the input line with an
INPUT statement without line hold specifiers. If

you use @ to hold the input record across
multiple INPUT statements within the same
iteration of the DATA step, you must execute an
INPUT without a line hold specifier to input the
next record within the same iteration of the
DATA step (although the record will be
automatically released at the end of the DATA
step iteration). If you use @@ to hold the input
record across multiple iterations of the DATA
step, you must execute an INPUT or INPUT @
statement to release the current record.

Grouping Variables and Informats
You may group variables and informats to
reduce the size of the INPUT statement. This
technique, illustrated by Program 3 at the end of
this paper, is particularly useful when you are
reading into arrays or numbered variables. SAS
recycles the informat list until the variable list is
exhausted.

Comparison of Methods
We prefer to use formatted input with column
and line pointer controls. Some types of data
(e.g. packed decimal, signed numeric,
hexadecimal, and dates) can be read only with
formatted input. Data errors do not cascade
beyond the element being read. Confusion
related to default processing is avoided. Finally,
the code helps document the data structure.

INFILE STATEMENT OPTIONS
The INFILE statement has many options, some
specific to the host operating system and some
generic to any SAS application. In this section,
we will explore the more commonly used SAS
options.

END=variable sets variable to 1 (true) when the
current record is the last record in the file. This
option is frequently used for efficiency purposes.
Imbedding the INPUT statement in a DO loop
reduces DATA step overhead.

DATA stuff;
 INFILE injunk END=nomore;
 DO UNTIL(nomore);
 INPUT ... ;
 OUTPUT;
 END;
RUN;

EOF=label defines a label to which the program
will automatically branch when an INPUT
statement tries to read past the end of the file.
In this example, if INJUNK has 16 records, the
17th read of the file would cause the branching
to REPORT.

DATA stuff;
 INFILE injunk EOF=report;

Beginning Tutorials

 INPUT amount;
 totamt + amount;
 OUTPUT;
RETURN;

REPORT:
 PUT ’*** TOTAL READ: ’ TOTAMT;
RETURN;

FIRSTOBS=number specifies the first record to
be read. The default value is 1.

OBS=record-number is the number of the last
record to read. The default value is MAX. To
define a range of records to read, use
FIRSTOBS and OBS together. This INFILE will
read 100 records starting at record 100.

INFILE injunk FIRSTOBS=100 OBS=199;

End of Record Processing
The following mutually exclusive options define
what action SAS will take when the program
attempts to move the column pointer beyond the
end of a record.

FLOWOVER tells SAS to continue reading
succeeding records until all variables in the
INPUT statement have been read.

MISSOVER tells SAS to set remaining
variables in the INPUT statement to missing.

STOPOVER tells SAS to immediately execute
a STOP statement, which will stop the DATA
step with _ERROR_ equal to 1.

TRUNCOVER tells SAS to salvage whatever it
can from short records without going to the
next record.

LENGTH=variable defines a variable that is set
to the length of the current record. Even though
the LENGTH= variable is defined by the INFILE,
its value is controlled by the execution of the
INPUT statement.

FILENAME presinfo
’c:\nesug95\presinfo.dat’;
DATA bigcheez;
 INFILE presinfo length=inlength
 missover;
 INPUT @1 inaugdte yymmdd8.

 @9 termdate yymmdd8. @;
 namelen = inlength - 16;
 INPUT
 @17 presname $varying50. namelen;
RUN;

N=n tells SAS how many lines to make available
to the INPUT statement. Set this value if there is
more than 1 record to be read at a time. The
default is 1. The line pointer controls / and #

would be used. Program 5 illustrates the use of
N=.

DELIMITER= identifies one or more delimiters to
be used with list input. Either a variable name or
a quoted constant may be specified. The default
delimiter is a blank.

DSD enables you to read delimited files correctly
when consecutive delimiters are present due to
missing values. It also enables you to read
quoted text, a common occurence when reading
files created on desktop systems.

SPECIFIC APPLICATIONS

Program 1: Reading a Basic Fixed Format
File

FILENAME intools ’c:\sugi24\input1.dat’;
DATA tools;
 INFILE intools;
 INPUT
 @1 item $char10.
 @11 quantity 5.
 @16 saledate mmddyy8.
 @24 clerk $char5.
 @24 clrkgrp 2.
 @26 initials $char3. ;
RUN;

The INPUT statement uses column pointer
controls to indicate the beginning of each data
item. Formatted input is used to control the
translation of the data into SAS variables. The
variables CLERK, CLRKGRP, and INITIALS
illustrate the technique of re-reading the data to
generate different variables. Without the re-
reading capabilities, two additional statements
would be required to create variables INITIALS
and CLRKGRP.

Program 2: Reading a Multi-Format File

This program illustrates the use of the line hold
specifier @. The input data has a date record,
then several detail records, and a final control
record. The first character of each record
identifies the record type.

Filename intools ’c:\sugi24\input2.dat’;
DATA tools;
 INFILE intools missover;
 INPUT @1 rectype $1. @;
 SELECT (rectype);
 WHEN (’0’) LINK daterec;
 WHEN (’1’) LINK detail;
 WHEN (’9’) LINK control;
 OTHERWISE LINK invalid;
 END;
RETURN;

DATEREC: /* read rest of date record */
 INPUT
 @2 created mmddyy8.
 @10 asofdate mmddyy8. ;
 /* more sas code */

Beginning Tutorials

RETURN;

DETAIL: /* read rest of detail record */
 INPUT
 @2 item $char9.
 @11 quantity 5.
 @16 saledate mmddyy8.
 @24 clerk $char5.
 @24 clrkgrp 2.
 @26 initials $char3. ;
 /* more sas code */
RETURN;

CONTROL: /* read rest of control rec */
 INPUT @2 reccount 6.;
 /* more sas code */
 RETURN;

INVALID: /* this is a bad record */
 /* more sas code */
RETURN;

RUN;

The technique used is to INPUT the record type
first and "hold" the record using the trailing @. A
SELECT statement is used to LINK to separate
sections to INPUT and process each record
type. For example, control totals could be
maintained for comparison to the control record
in the section CONTROL.

PROGRAM 3: Repeating Field Patterns

Program 3 demonstrates how to read a file with
repeated fields. Each record has an ACCOUNT
followed by 4 occurrences of a set of repeated
fields pertaining to cash flow into the policy. All
fields are separated by blanks.

FILENAME insales ’c:\sugi24\input3.dat’;
DATA sales;
 INFILE insales;
 INPUT
 @1 policy $char8.
 @10 (fund1-fund3) ($char3. +14)
 @14 (date1-date3) (yymmdd6. +11)
 @21 (amount1-amount3) (5.2 +12);
RUN;

The INPUT statement reads the data into the
remaining variables by using grouped format
lists. Grouped format lists are a very compact
way to read in repeating fields because the
format lists are recycled until all of the variables
are exhausted. Grouped format lists consist of 2
lists, each enclosed by parentheses: the first is
the list of variables and the second is the format
list to be recycled. The format lists can also
include column pointer controls, vital in this case
due to the intermixing of the data.

In Program 3, consider the fund information.
FUND1 is read using the $CHAR3. informat and
then the +14 moves the pointer past DATE1,
AMOUNT1, and the intervening blanks. The
pointer is now positioned at the data for FUND2.

Looking at the variable list, SAS then reads
FUND2 using the recycled format list, which
leaves the pointer at the data for FUND3. This
recycling continues until the variable list is
exhausted. The column pointer control is
ignored when the variable list is exhausted. SAS
then processes the next part of the input, which
reads the date and amount fields in similar
fashion.

Program 4: Repeating Field Patterns

This program shows how to explode a file with
repeating fields into a SAS data set with one
observation for each group of fields. The data
elements are separated by blanks.

FILENAME insales ’c:\sugi24\input3.dat’;
DATA sales;
 INFILE insales missover;
 FORMAT date yymmdd6.;
 INPUT @1 account $char8. @;
 DO i = 1 to 3;
 INPUT
 +1 fund $char3.
 +1 date yymmdd6.
 +1 amount 5.2
 @ ;
 OUTPUT;
 END;
RUN;

The first INPUT statement reads the variable
ACCOUNT, which will be a common identifier for
all observations created from this record. This
INPUT statement uses an @ to hold the record
for the next INPUT statement.

The DO loop executes 3 times. The INPUT
statement uses the +1 column pointer control to
move the column pointer to the beginning of
each field before reading the actual field. The @
line-hold specifier holds the line for the next
execution of the loop. When the data step ends,
SAS automatically releases the record, allowing
the next iteration of the DATA step to read a new
record.

Program 5: Using Array Variables

Array variables may be references directly or by
index, as this example illustrates.

DATA sales invalid;
 array fund {8} $3;
 array actdate {8} 8;
 array amount {8} 8;

 drop i;
 input policy $char5.
 accounts 3. @ ;

 if 0 le accounts le dim(fund) then
 do;
 do i = 1 to accounts;
 input fund (i) $3.
 actdate (i) mmddyy8.
 amount (i) 5.2 @;

Beginning Tutorials

 end;
 output sales;
 end;
 else
 do;
 output invalid;
 end;

cards;
12345001xxx0101199912345
12345002yyy0202199954321zzz0303199967890
run;

Program 6: Multiple Records Per Observation

This program code reads a policy information file
that spans multiple physical records.

INFILE multirec n=4;
INPUT
 #1 @7 policy $8.
 @28 issuedte yymmdd8.
 #2 @33 agent $40.
 #4 @65 state $3.
 ;

The #1, #2, and #4 line pointer controls moves
the pointer to those lines before the next part of
the INPUT statement is executed. Line 3 is read
from the physical file but is not used.

Program 7: Comma Delimited, Quoted Text
File

This data format is frequently called CSV
(comma separated values) files. Although this
example uses a comma as the delimiter, any
other set of delimiters may be used to separate
the data values. Note that consecutive delimiters
in the file are needed when a value is missing,
as is SHOES in the second record.

DATA sugi24;
 INFILE datalines dlm=’,’ dsd;
 INPUT
 name $
 count
 footwear $
 method $
 ;
DATALINES;
"JOHN",123,"SHOES",CAR
"JOE",,"SANDALS","TRAIN"
;

Program 8: Variable Length Data

Reading variable length data requires the use of
the $VARYING informat and a variable that has
the actual length of data to be read. In this
example, the record contains the length of the
variable to be read immediately before the data.

DATA names;
INFILE datalines;
INPUT
 len 2.
 first $varying15. len

 len 2.
 last $varying15. len
 ;
DATALINES;
04JOHN10HUNGERFORD
;

CONCLUSION

It is hoped that this paper has provided a good
overview of the more commonly used SAS
features for reading external files. Please obtain
and read the SAS Institute publications
appropriate for your system. NESUG and SUGI
papers, and the SAS-L Internet distribution list
are also good sources of SAS programming tips.

Please remember that there are often multiple
ways to solve any particular programming
problem. Take the time to experiment with
different techniques to improve your skills.

The author may be reached via e-mail at
clinton.rickards@pharma.com.

SAS® is a registered trademark of
SAS Institute Inc., Cary, NC, USA

REFERENCES

SAS Language: Reference, Version 6.06, First
Edition, SAS Institute, Inc., Cary, NC

SAS Technical Report P-222, Changes and
Enhancements to Base SAS Software. Release
6.07, SAS Institute, Inc., Cary, NC

SAS Technical Report P-242, SAS Software:
Changes and Enhancements. Release 6.08,
SAS Institute, Inc., Cary, NC

Beginning Tutorials

	Main TOC
	Section Contents

