

Indexing SAS® Data Sets
for WHERE Optimization 1:

Index Qualification and
Data Profiling

Transcript

Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling Transcript
was developed by Mark Stranieri. Additional contributions were made by David Ghan, Cynthia Johnson,
Mark Jordan, and Warren Repole. Editing and production support was provided by the Curriculum
Development and Support Department.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling
Transcript

Copyright © 2009 SAS Institute Inc. Cary, NC, USA. All rights reserved. Printed in the United States of
America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

Book code E1447, course code RLSPID1, prepared date 13Apr2009. RLSPID1_001

 ISBN 987-1-60764-122-3

 For Your Information iii

Table of Contents

Lecture Description ... iv

Prerequisites ... v

Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification
and Data Profiling .. 1

1. Using the CONTENTS Procedure to Retrieve Data Set Information 5

2. Considerations for Indexing .. 17

3. Distribution of Data Values ... 27

iv For Your Information

Lecture Description

This SAS e-Lecture shows how to use indexes to improve the performance of processing SQL WHERE
clauses.

To learn more…

For information on other courses in the curriculum, contact the SAS Education
Division at 1-800-333-7660, or send e-mail to training@sas.com. You can also
find this information on the Web at support.sas.com/training/ as well as in the
Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this
Course Notes, USA customers can contact our SAS Publishing Department at
1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside the
USA, please contact your local SAS office.

Also, see the Publications Catalog on the Web at support.sas.com/pubs for a
complete list of books and a convenient order form.

http://www.support/

 For Your Information v

Prerequisites

Before listening to this lecture, you should have completed the SAS® Programming 1: Essentials course
or have equivalent knowledge. Completion of the SAS® Programming 2: Manipulating Data with the
DATA Step course would be helpful.

vi For Your Information

Indexing SAS® Data Sets for WHERE
Optimization 1: Index Qualification
and Data Profiling

1. Using the CONTENTS Procedure to Retrieve Data Set Information 5

2. Considerations for Indexing ... 17

3. Distribution of Data Values ... 27

2 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 3

Indexing SAS® Data Sets for
WHERE Optimization 1:
Index Qualification and
Data Profiling

Welcome to this SAS e-Lecture, Indexing SAS® Data Sets for WHERE Optimization. My name is Mark,
and I am an instructor for SAS. Today we will be using indexes to improve the performance of processing
SQL WHERE clauses.

4 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

1. Using the CONTENTS Procedure to Retrieve
Data Set Information

2. Considerations for Indexing

3. Distribution of Data Values

2

Indexing SAS Data Sets for WHERE Optimization 1:
Index Qualification and Data Profiling

This e-lecture will cover three topics concerning indexing.

First, we will use the CONTENTS procedure, or PROC CONTENTS, to retrieve information about data
set size and indexes available.

Next, we’ll review factors to consider when creating an index.

And third, we’ll analyze data distributions and determine which ones work well with indexing.

Please note that the traditional SAS terms of data set, observation, and variable can be used
interchangeably with the SQL terms of table, row, and column, respectively.

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 5

1. Using the CONTENTS Procedure to Retrieve Data Set
Information

1. Using the CONTENTS Procedure to Retrieve
Data Set Information

2. Considerations for Indexing

3. Distribution of Data Values

3

Indexing SAS Data Sets for WHERE Optimization 1:
Index Qualification and Data Profiling

We will use PROC CONTENTS to retrieve data set information regarding space used by data sets and
indexes.

6 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Objectives

List the purposes and costs of indexes.

Use the CONTENTS procedure to retrieve information relevant
to index creation and processing.

4

In this section we’ll review the purposes and costs of indexes.

Our second objective is to use PROC CONTENTS to retrieve important information related to index
creation, use, and justification.

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 7

Purposes of Indexes

The primary purpose of indexes is to

improve data retrieval performance when using
a WHERE expression.

A WHERE expression appears in a WHERE clause, a WHERE
statement or a WHERE data set option

An index is associated with a single data set

SAS can rapidly search index values

An index does not guarantee that query performance will be
improved

5

The primary purpose of an index is to improve the performance of retrieving subsets of data when using a
WHERE expression within a WHERE clause, a WHERE statement, or a WHERE data set option.

An index is associated with a single data set, and is built using the sorted values from one or more
variables of that data set. SAS can rapidly search index values specified in a WHERE expression and then
directly access observations that contain those values in the data set. Without an index, SAS must search
sequentially through the observations in the data set.

However, simply creating an index does not guarantee that query performance will be improved. There
are times when it’s faster for SAS to retrieve data without using the index, in which case SAS will
sequentially access the observations in the data set, effectively bypassing the index.

8 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Purposes of Indexes

Other uses of indexes:

SQL joins

BY-group processing

KEY= option

SCL table lookup

Referential integrity constraints

6

This lecture addresses using indexes for WHERE optimization. However, it’s important to note that there
are many other uses for indexes that will not be covered here. Some of these uses include
• the SQL join optimization
• BY-group processing in the DATA step and procedures that require data to be pre-sorted
• the KEY= option in the SET and MODIFY statements
• SAS Component Language (SCL) table lookup
• referential integrity constraints.

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 9

Index Review

Indexes have the following costs:

additional disk space required to store an index

additional time needed to create an index

additional time required to modify data

increased time for each row retrieved

increased memory usage

7

Even when indexes do improve the performance of data retrieval, it’s important to be aware of the
possible costs of indexes.

For example, indexes take additional time to create, and they use additional disk space. So if a large data
set is being re-created periodically, an associated index will also need to be re-created and will use these
additional resources.

Further, whenever a data set is modified, any associated indexes must be maintained by SAS. So if an
observation is added, updated, or deleted from a data set that has an index, SAS must also add, update, or
delete data from the index.

There is also some overhead associated with using an index to retrieve data. This overhead makes
accessing an individual record slightly slower, but this is typically offset by the fact that only required
observations are being accessed. But this is something to consider when retrieving large subsets of data.

Because of the costs associated with indexes, it’s important to investigate your data to be sure that a data
set will show an increase in query performance if an index is created on that data set.

10 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Displaying Data Set Attributes

8

We’ll begin investigating our data sets by using PROC CONTENTS. The data set we’re interested in is
called OrderFact and is located in the Windows folder C:\MyDataWarehouse\Tables.

This SAS program establishes a SAS libref to the Windows folder and uses PROC CONTENTS to
display the descriptor portion of the SAS data set. The two ODS statements above and below PROC
CONTENTS are used to reformat the output into Rich Text Format (or RTF).

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 11

Displaying Data Set Attributes

9

PROC CONTENTS returns information about the attributes of the data set. Among other things, we can
see that this data set has 951,669 observations, 12 variables, and 0 indexes.

PROC CONTENTS also reports the size and number of pages used by the data set. A page is the amount
of data (or the number of observations) that can be buffered and transferred between memory and disk
space. (This is also known as an I/O request.)

For a small data set, retrieving rows sequentially may be faster than using an index. So a best practice is
to avoid creating indexes on data sets that use fewer than three pages.

As a final note, notice that PROC CONTENTS tells us if a data set has been sorted. In this example the
data is not sorted. If it had been, the procedure would display the names of the sort-by variables.

Index performance can be improved if the data is sorted on a variable prior to creating an index on that
variable. We’ll discuss this further in the next section.

12 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Displaying Data Set Attributes

Calculating the Size of a Table:

Page Size X Number of Pages = Disk Space Required

10

You can calculate the size of a table by multiplying the page size by the number of pages. In this case,

 8192 X 9423 = 77,193,216 bytes, or about 74 mb

In order to demonstrate that extra space is needed for indexes, let’s create a couple of indexes on this
table.

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 13

Displaying Data Set Attributes

11

Here we use the SQL procedure to create two indexes on the OrderFact table. The first one is a simple
index called Product_ID on the column named Product_ID. The second one is a composite index
called CustDate on the columns Customer_ID and Order_Date.

Note that the column name does not have to be specified in parentheses after the table name for simple
indexes.

After the indexes are created, we run the same PROC CONTENTS that was used in the previous
example.

14 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Displaying Data Set Attributes

12

Notice that the number of rows and columns hasn’t changed and that the page size and number of pages
for the data set are also unchanged. However, we can see that there are now two indexes, and they have a
page size of 4096 and are using 7092 pages. We can calculate the size of the indexes by again multiplying
page size by the number of pages:

 4096 X 7092 = 29,048,832 bytes, or about 28 mb

So now, in addition to the 74 mb being used by the data table, we are using another 28 mb by adding two
indexes.

If you find it necessary to estimate the size of an index before you create the index, SAS Technical
Support can provide a program that estimates index size.

 1. Using the CONTENTS Procedure to Retrieve Data Set Information 15

Displaying Data Set Attributes

13

This is a partial log of the PROC SQL statements that were submitted. The SQL STIMER option was
turned on, which causes timing statistics to display for each SQL statement within the procedure. As you
can see, creating indexes adds to the total time it takes to re-create a table. This additional time might be
an important consideration for large tables that are refreshed periodically.

16 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Displaying Data Set Attributes

14

PROC CONTENTS also shows us index names, the number of unique values, and the columns contained
in the index. We will use this information later to determine the size of the subset. For example, if we
request a report for a single Product_ID, the average number of rows that will be returned is the
number of unique values divided by the total number of rows, or 3151/951669, which is about 0.3% of
the rows.

You can also use the CENTILES option in PROC CONTENTS to display information about the internal
statistics maintained by indexes. This is discussed in a later section.

 2. Considerations for Indexing 17

2. Considerations for Indexing

1. Using the CONTENTS Procedure to Retrieve
Data Set Information

2. Considerations for Indexing

3. Distribution of Data Values

15

Indexing SAS Data Sets for WHERE Optimization 1:
Index Qualification and Data Profiling

In this section we’ll look at methods that can be used to justify adding an index to a data table.

18 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Objectives

List data set considerations.

List index use considerations.

List key variable considerations.

16

In this section you’ll learn about considerations relevant to data sets, index use, and key variables.

 2. Considerations for Indexing 19

Data Set Considerations

Size of data set

Data modifications

Size of subset

Sort order of data set

17

The size of the data set is important because performance gains using an index are directly proportional to
the size of the data set.

Loss of performance during data update operations might negate performance gains during data retrieval.

Performance gains using indexes are inversely proportional to the size of the subset requested.

Index performance can be improved if the data is sorted on a variable prior to creating an index on that
variable.

20 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Size of Data Set

18

10%

10%

The size of the data set is important because performance gains using an index are directly proportional to
the size of the data set.

The bigger the data set, the bigger the potential gains. For example, using an index to retrieve a 10%
subset of a data set with 100,000 observations means I could avoid reading as many as 90,000 rows. If the
data set contains 10,000,000 observations, I can avoid reading up to 9,000,000 rows!

 2. Considerations for Indexing 21

Data Modifications

Maintenance tasks and index results

19

Loss of performance during data update operations might negate performance gains during data retrieval.

So if a data set is used for transaction processing and is being updated several times every hour (or every
minute), an index would slow down every update and should not be considered. However, if you have a
data warehouse table that is refreshed only once a day (or once a week), then an index should be
considered.

This table describes the overhead tasks that are performed by SAS when modifications are performed on a
data set. Effectively, any time you perform a modification to a data set that has been indexed, SAS must
perform a similar operation on all indexes associated with that data set.

22 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Size of Subset

20

10%

40%

Performance gains using indexes is inversely proportional to the size of the subset requested. This is due
to the added overhead necessary to retrieve each observation using an index. So if I request a report on
every male employee, that might be close to half of the entire data set, which would make it faster for
SAS to process sequentially without using the index.

 2. Considerations for Indexing 23

Sort Order of Data Set

21

Prod_ID

0004

0001

0008

Page 1

OrderFact Data Set (unsorted)

where Prod_ID = "0001";

OrderFact Data Set (sorted)

Three I/O Requests One I/O Request

Prod_ID

0007

0015

0001

Prod_ID

0001

0012

0004

Page 2 Page 3

Prod_ID

0001

0001

0001

Page 1

Prod_ID

0004

0004

0007

Prod_ID

0008

0012

0015

Page 2 Page 3

Index performance can be improved if the data is sorted on a variable prior to creating an index on that
variable. Sorting the data can reduce I/O requests by physically moving rows together that would be
requested together. If rows are located on a single page, SAS doesn’t have to make another I/O request,
which speeds processing.

In this simplified illustration, the WHERE statement causes the index to make three I/O requests in order
to retrieve the "0001" Prod_ID from the unsorted data set because the observations are located on three
different pages. Only one I/O request is needed for the sorted data set because all the "0001" observations
are together on a single page.

24 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Index Use Considerations

The number of indexes

The frequency of index usage

Simple versus composite indexes

22

The number of indexes is an important consideration because each index that you create adds to the total
costs. This is because each index takes time to create, takes up space, and must be maintained during data
modifications. So the more indexes that you have on a single table, the more resources you will use to
create and maintain the indexes.

Also, consider how often your applications will use an index. An index must be used often in order to
make up for the resources that are used in creating and maintaining it. In other words, don’t rely solely on
resource savings from processing a WHERE expression. Take into consideration the resources it takes to
create and maintain the index.

Now, based on what I just told you, it might be tempting to try to create one composite index that will
satisfy all possible WHERE expressions. However, this will probably not work because a WHERE
expression that references only one variable will only use an index if that variable is used in a simple
index or is the first key variable in a composite index.

 2. Considerations for Indexing 25

Key Variable Candidates

Variables that are commonly used for subsetting

Variables that are discriminating

23

In most cases, multiple variables are used to query a data file. However, it probably would be a mistake to
index all variables in a data file, as certain variables are better candidates than others.

The variables to be indexed should be variables that are used in queries. That is, your application should
require selecting small subsets from a large file, and the most common selection variables should be
considered as candidate key variables.

A variable is a good candidate for indexing when the variable can be used to precisely identify the
observations that satisfy a WHERE expression. That is, the variable should be discriminating, which
means that the index should select the fewest possible observations. For example, the variable Gender is
not discriminating because it’s possible for a large number of observations to have the same value for
Gender. However, a variable such as Employee_ID is discriminating because only a small number of
observations will have the same Employee_ID value.

26 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Key Variable Candidates

24

EmpID Gender JobID

5280 F M1

1760 M V1

4356 F D1

4840 M D2

… … …

EmpDim Data Set

where Gender = "F"

Large subsetSmall subset

where EmpID = "5280"

For example, consider a data file with variables EmpID and Gender.

If many queries against the data file include EmpID, then indexing EmpID could be beneficial because
the values are usually discriminating. That is, a single EmpID value would return few observations.

However, Gender is not a good candidate to be indexed, even though many queries will also include the
Gender variable. This is because a WHERE expression using the Gender variable could result in a
large subset of the observations to be returned.

 3. Distribution of Data Values 27

3. Distribution of Data Values

1. Using the CONTENTS Procedure to Retrieve
Data Set Information

2. Considerations for Indexing

3. Distribution of Data Values

25

Indexing SAS Data Sets for WHERE Optimization 1:
Index Qualification and Data Profiling

In this section we’ll look at the factors that SAS uses in determining when to use an index and which
index to use.

28 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Objectives

List steps that SAS uses to determine index usage.

Describe internal index statistics.

26

In this section you’ll learn the steps that SAS goes through to determine whether or not to use an index.

You’ll then learn about the statistics that are automatically tracked within an index.

 3. Distribution of Data Values 29

Processing Rules for Indexes

27

WHERE processing conditionally selects observations when you issue a WHERE expression. Using an
index to process a WHERE improves performance and is referred to as optimizing the WHERE
expression.

When the WHERE is processed, SAS decides either to use an index or read the observations in the data
file sequentially.

Processing rules for indexed variables dictate that when a WHERE expression returns less than 3 percent
of the data, an index will always be used.

If a WHERE expression returns between 3 and 33 percent of the data, an index will probably be used.

And if a WHERE returns over 33 percent of the data, an index might be used depending on whether the
data set is sorted by the indexed variable.

If a WHERE returns all the observations, SAS will not use an index.

So what are the steps SAS goes through to accurately determine the size of the subset and make this
decision?

30 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Steps SAS Uses to Determine Index Usage

1. Identifies an available index or indexes

2. Estimates the number of observations that would be selected

3. Compares resource usage to decide whether it is more efficient to
satisfy the WHERE expression by using the index or by reading all
the observations sequentially

28

To make this decision, SAS carries out three steps.

First, SAS identifies all the available indexes on the data set being queried.

Second, SAS estimates the number of observations that would be selected. If more than one index is
available, SAS selects the index that returns the smallest subset of observations.

Third, SAS compares resource usage to decide whether it is more efficient to satisfy the WHERE
expression by using the index or by reading all the observations sequentially.

Because SAS considers several factors when deciding whether to use an index, to get the best possible
performance you should experiment using different WHERE expressions with and without an index and
compare the results.

There are several options that allow you to control index usage, including the IDXWHERE= and
IDXNAME= data set options.

 3. Distribution of Data Values 31

Identify an Available Index or Indexes

WHERE conditions that can be optimized:

29

Conditions Valid for
Index Optimization

Valid for
Compound

Optimization

Examples

Comparison operators,
which include the EQ
operator, directional
comparisons such as
< or >, and the IN
operator

yes where empnum =
3374;
where empnum <
200;
where state in
('NC','TX');

Comparison operators
with NOT

yes where empnum ^=
3374;
where x not in (5,10);

Comparison operators
with the colon modifier

yes where lastname =:
'Sm';

continued...

The first step for SAS in deciding whether to use an index to process a WHERE expression is to
determine if variables in the WHERE expression are indexed variables.

Even if a WHERE expression consists of multiple conditions with different variables, SAS will use only
one index to process the WHERE expression. SAS will select the index that satisfies the most conditions
and returns the fewest observations.

Note that the variable in the condition can either have a simple index or be the first variable in a
composite index.

You can take advantage of multiple variables in a composite index by writing a WHERE expression that
uses some or all of those variables. Note that in order to use all, or only some of the composite index
variables, you’re required to use them in order beginning with the first. For example, if a composite index
called SCZ includes the variables State, City, and Zip (in that order), your WHERE expression can
include all three variables, or can include just State or just State and City. But a WHERE
expression that includes only City and Zip or only State and Zip could not use the SCZ composite
index.

This table can help you write WHERE statements that can be optimized. The first column shows
conditions that can be optimized using an index. The second column indicates if these conditions can also
be used for compound optimization.

32 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Compound optimization is the process of optimizing multiple WHERE conditions using a single
composite index.

Note that you can replace the mnemonic operator with symbols, so for the equals operator you can use
either EQ or the equals symbol (=).

 3. Distribution of Data Values 33

Identify an Available Index or Indexes

Conditions Valid for
Index Optimization

Valid for
Compound

Optimization

Examples

CONTAINS operator no where lastname
contains 'Sm';

Ranges with upper
and lower limits
including BETWEEN–
AND operator

yes where 1<X<10;
where x between
1 and 10;

LIKE and NOT LIKE
operators

no where lastname like
'Sm%';

IS NULL or IS
MISSING operators

no where name is null;
where idnum is
missing

30

continued...

WHERE conditions that can be optimized:

This is a continuation of the previous table and shows operators that are unique to WHERE expressions.

34 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Identify an Available Index or Indexes

Conditions Valid for
Index Optimization

Valid for
Compound

Optimization

Examples

TRIM function no where
trim(state)='Texas';

SUBSTR function in
the form of:

SUBSTR(var, pos,
len)='str'

When the following is
true:
1) pos =1,
2) len <= the length of

str

no where
substr(name,1,2)=
'Mc';

31

WHERE conditions that can be optimized:

This is also a continuation of the previous tables and shows the SAS functions that are valid for index
optimization.

Notice that only the SUBSTR and TRIM functions can be used in a WHERE expression that will be
optimized with an index. All other functions will require SAS to process the data set sequentially.

In addition, conditions with the following will not be optimized with an index:
• arithmetic operators
• variable-to-variable comparisons
• the sounds-like operator
• conditions using the OR logical operator

 3. Distribution of Data Values 35

Estimate the Number of Observations Selected

32

After SAS identifies the indexes that can satisfy the WHERE expression, the next step is to estimate the
number of observations that will be returned by an available index. If multiple indexes exist, SAS will
select the one that produces the fewest observations.

SAS estimates the number of observations that will be qualified by using stored statistics called
cumulative percentiles (or centiles for short). Centiles information represents the distribution of values in
an index so that SAS does not have to assume a uniform distribution.

To print centiles information for an indexed data set, we have included the CENTILES option in PROC
CONTENTS.

36 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Estimate the Number of Observations Selected

33

This slide displays a partial output of the report produced by the previous PROC CONTENTS.

The information provided by centiles represents the distribution of values in an index. Twenty-one
centiles are kept: 0, 5, 10,…, 95, 100 percentiles, where 0 percentile is the minimum value of the data, the
50th percentile is the median value, and the 100th percentile is the maximum value.

By default, centile information is updated after 5% of the data set has changed.

These internal statistics enable SAS to make an accurate estimate of how much data will be returned with
a given WHERE condition, regardless of the distribution of the values. This means that you don’t need to
think about the distribution of the data. So all variables can be considered for indexes whether they have
values with a uniform, normal, or skewed distribution.

 3. Distribution of Data Values 37

Compare Resource Usage

1. SAS predicts the number of I/O requests it will take to satisfy
the WHERE expression using the index.

2. SAS calculates the I/O cost of a sequential pass of the entire
data file.

3. SAS compares the two resource costs.

34

To compare resource usage, first, SAS predicts the number of I/O requests it will take to satisfy the
WHERE expression using the index.

Next, SAS calculates the I/O cost of a sequential pass of the entire data file.

Last, SAS compares the two resource costs and chooses the one that is most efficient.

Factors that affect the comparison include the size of the subset, the sort order of the data set, the page
size of the data set, the number of allocated buffers, and the cost to uncompress or compress a compressed
data file.

Note that if comparing resource costs results in a tie, SAS will choose the index.

38 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Summary

The primary purpose of SAS indexes is to improve the efficiency
of WHERE expressions.

Indexes have costs that make it necessary to investigate data before
creating indexes.

PROC CONTENTS can be used to investigate data and index
attributes.

Several factors determine whether an index will be used, including
the size of the data, the size of the subset, and data sort order.

SAS uses three steps to decide whether to use an index or process
the data sequentially.

SAS keeps track of centiles to estimate subset size.

35

In summary:
• The primary purpose of SAS indexes is to improve the efficiency of WHERE expressions.
• Indexes have costs that make it necessary to improve the efficiency of WHERE expressions.
• To investigate data and index attributes, you can use the CONTENTS procedure.
• Several factors determine whether an index will be used, including the size of the data, the size of the

subset, and data sort order.
• SAS uses three steps to determine whether to use an index or to process the data sequentially.
• SAS keeps track of centiles to estimate subset size.

 3. Distribution of Data Values 39

Credits

Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification
and Data Profiling was developed by Mark Stranieri with additional
contributions by David Ghan, Cynthia Johnson, Mark Jordan, and
Warren Repole.

36

This e-lecture was developed by Mark Stranieri with additional contributions from David Ghan, Cynthia
Johnson, Mark Jordan, and Warren Repole. This concludes the first lecture on Indexing SAS® Data Sets
for WHERE Optimization 1: Index Qualification and Data Profiling. I hope you find the material to be
helpful for your work.

40 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

Comments?

We would like to hear what you think.

Do you have any comments about this lecture?

Did you find the information in this lecture useful?

What other e-lectures would you like SAS to develop in the future?

Please e-mail your comments to

EDULectures@sas.com

Or you can fill out the short evaluation form at the end of this lecture.

37

If you have any comments about this lecture or e-lectures in general, we would appreciate receiving your
input. You can use the e-mail address listed here to provide that feedback, or you can complete the short
evaluation form available at the end of this lecture.

 3. Distribution of Data Values 41

Copyright

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.

® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

Copyright © 2009 by SAS Institute Inc., Cary, NC 27513, USA.
All rights reserved.

38

Thank you for your time.

42 Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling

	Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling
	Chapter 1 - Indexing SAS® Data Sets for WHERE Optimization 1: Index Qualification and Data Profiling
	 1.1 Using the CONTENTS Procedure to Retrieve Data Set Information
	 1.2 Considerations for Indexing
	 1.3 Distribution of Data Values

