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Preface

What Is Data Science?
This is a book about doing data science with Python, which immediately begs the
question: what is data science? It’s a surprisingly hard definition to nail down, espe‐
cially given how ubiquitous the term has become. Vocal critics have variously dis‐
missed the term as a superfluous label (after all, what science doesn’t involve data?) or
a simple buzzword that only exists to salt résumés and catch the eye of overzealous
tech recruiters.

In my mind, these critiques miss something important. Data science, despite its hype-
laden veneer, is perhaps the best label we have for the cross-disciplinary set of skills
that are becoming increasingly important in many applications across industry and
academia. This cross-disciplinary piece is key: in my mind, the best existing defini‐
tion of data science is illustrated by Drew Conway’s Data Science Venn Diagram, first
published on his blog in September 2010 (see Figure P-1).

Figure P-1. Drew Conway’s Data Science Venn Diagram
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While some of the intersection labels are a bit tongue-in-cheek, this diagram captures
the essence of what I think people mean when they say “data science”: it is fundamen‐
tally an interdisciplinary subject. Data science comprises three distinct and overlap‐
ping areas: the skills of a statistician who knows how to model and summarize
datasets (which are growing ever larger); the skills of a computer scientist who can
design and use algorithms to efficiently store, process, and visualize this data; and the
domain expertise—what we might think of as “classical” training in a subject—neces‐
sary both to formulate the right questions and to put their answers in context.

With this in mind, I would encourage you to think of data science not as a new
domain of knowledge to learn, but as a new set of skills that you can apply within
your current area of expertise. Whether you are reporting election results, forecasting
stock returns, optimizing online ad clicks, identifying microorganisms in microscope
photos, seeking new classes of astronomical objects, or working with data in any
other field, the goal of this book is to give you the ability to ask and answer new ques‐
tions about your chosen subject area.

Who Is This Book For?
In my teaching both at the University of Washington and at various tech-focused
conferences and meetups, one of the most common questions I have heard is this:
“how should I learn Python?” The people asking are generally technically minded
students, developers, or researchers, often with an already strong background in writ‐
ing code and using computational and numerical tools. Most of these folks don’t want
to learn Python per se, but want to learn the language with the aim of using it as a
tool for data-intensive and computational science. While a large patchwork of videos,
blog posts, and tutorials for this audience is available online, I’ve long been frustrated
by the lack of a single good answer to this question; that is what inspired this book.

The book is not meant to be an introduction to Python or to programming in gen‐
eral; I assume the reader has familiarity with the Python language, including defining
functions, assigning variables, calling methods of objects, controlling the flow of a
program, and other basic tasks. Instead, it is meant to help Python users learn to use
Python’s data science stack—libraries such as IPython, NumPy, Pandas, Matplotlib,
Scikit-Learn, and related tools—to effectively store, manipulate, and gain insight
from data.

Why Python?
Python has emerged over the last couple decades as a first-class tool for scientific
computing tasks, including the analysis and visualization of large datasets. This may
have come as a surprise to early proponents of the Python language: the language
itself was not specifically designed with data analysis or scientific computing in mind.
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The usefulness of Python for data science stems primarily from the large and active
ecosystem of third-party packages: NumPy for manipulation of homogeneous array-
based data, Pandas for manipulation of heterogeneous and labeled data, SciPy for
common scientific computing tasks, Matplotlib for publication-quality visualizations,
IPython for interactive execution and sharing of code, Scikit-Learn for machine
learning, and many more tools that will be mentioned in the following pages.

If you are looking for a guide to the Python language itself, I would suggest the sister
project to this book, A Whirlwind Tour of the Python Language. This short report pro‐
vides a tour of the essential features of the Python language, aimed at data scientists
who already are familiar with one or more other programming languages.

Python 2 Versus Python 3
This book uses the syntax of Python 3, which contains language enhancements that
are not compatible with the 2.x series of Python. Though Python 3.0 was first released
in 2008, adoption has been relatively slow, particularly in the scientific and web devel‐
opment communities. This is primarily because it took some time for many of the
essential third-party packages and toolkits to be made compatible with the new lan‐
guage internals. Since early 2014, however, stable releases of the most important tools
in the data science ecosystem have been fully compatible with both Python 2 and 3,
and so this book will use the newer Python 3 syntax. However, the vast majority of
code snippets in this book will also work without modification in Python 2: in cases
where a Py2-incompatible syntax is used, I will make every effort to note it explicitly.

Outline of This Book
Each chapter of this book focuses on a particular package or tool that contributes a
fundamental piece of the Python data science story.

IPython and Jupyter (Chapter 1)
These packages provide the computational environment in which many Python-
using data scientists work.

NumPy (Chapter 2)
This library provides the ndarray object for efficient storage and manipulation of
dense data arrays in Python.

Pandas (Chapter 3)
This library provides the DataFrame object for efficient storage and manipulation
of labeled/columnar data in Python.

Matplotlib (Chapter 4)
This library provides capabilities for a flexible range of data visualizations in
Python.
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Scikit-Learn (Chapter 5)
This library provides efficient and clean Python implementations of the most
important and established machine learning algorithms.

The PyData world is certainly much larger than these five packages, and is growing
every day. With this in mind, I make every attempt through these pages to provide
references to other interesting efforts, projects, and packages that are pushing the
boundaries of what can be done in Python. Nevertheless, these five are currently fun‐
damental to much of the work being done in the Python data science space, and I
expect they will remain important even as the ecosystem continues growing around
them.

Using Code Examples
Supplemental material (code examples, figures, etc.) is available for download at
https://github.com/jakevdp/PythonDataScienceHandbook. This book is here to help
you get your job done. In general, if example code is offered with this book, you may
use it in your programs and documentation. You do not need to contact us for per‐
mission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example, “Python Data Science Handbook by
Jake VanderPlas (O’Reilly). Copyright 2017 Jake VanderPlas, 978-1-491-91205-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Installation Considerations
Installing Python and the suite of libraries that enable scientific computing is
straightforward. This section will outline some of the considerations to keep in mind
when setting up your computer.

Though there are various ways to install Python, the one I would suggest for use in
data science is the Anaconda distribution, which works similarly whether you use
Windows, Linux, or Mac OS X. The Anaconda distribution comes in two flavors:

• Miniconda gives you the Python interpreter itself, along with a command-line
tool called conda that operates as a cross-platform package manager geared
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toward Python packages, similar in spirit to the apt or yum tools that Linux users
might be familiar with.

• Anaconda includes both Python and conda, and additionally bundles a suite of
other preinstalled packages geared toward scientific computing. Because of the
size of this bundle, expect the installation to consume several gigabytes of disk
space.

Any of the packages included with Anaconda can also be installed manually on top of
Miniconda; for this reason I suggest starting with Miniconda.

To get started, download and install the Miniconda package (make sure to choose a
version with Python 3), and then install the core packages used in this book:

[~]$ conda install numpy pandas scikit-learn matplotlib seaborn ipython-notebook

Throughout the text, we will also make use of other, more specialized tools in
Python’s scientific ecosystem; installation is usually as easy as typing conda install
packagename. For more information on conda, including information about creating
and using conda environments (which I would highly recommend), refer to conda’s
online documentation.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.
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Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/python-data-sci-handbook.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

IPython: Beyond Normal Python

There are many options for development environments for Python, and I’m often
asked which one I use in my own work. My answer sometimes surprises people: my
preferred environment is IPython plus a text editor (in my case, Emacs or Atom
depending on my mood). IPython (short for Interactive Python) was started in 2001
by Fernando Perez as an enhanced Python interpreter, and has since grown into a
project aiming to provide, in Perez’s words, “Tools for the entire lifecycle of research
computing.” If Python is the engine of our data science task, you might think of IPy‐
thon as the interactive control panel.

As well as being a useful interactive interface to Python, IPython also provides a
number of useful syntactic additions to the language; we’ll cover the most useful of
these additions here. In addition, IPython is closely tied with the Jupyter project,
which provides a browser-based notebook that is useful for development, collabora‐
tion, sharing, and even publication of data science results. The IPython notebook is
actually a special case of the broader Jupyter notebook structure, which encompasses
notebooks for Julia, R, and other programming languages. As an example of the use‐
fulness of the notebook format, look no further than the page you are reading: the
entire manuscript for this book was composed as a set of IPython notebooks.

IPython is about using Python effectively for interactive scientific and data-intensive
computing. This chapter will start by stepping through some of the IPython features
that are useful to the practice of data science, focusing especially on the syntax it
offers beyond the standard features of Python. Next, we will go into a bit more depth
on some of the more useful “magic commands” that can speed up common tasks in
creating and using data science code. Finally, we will touch on some of the features of
the notebook that make it useful in understanding data and sharing results.
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Shell or Notebook?
There are two primary means of using IPython that we’ll discuss in this chapter: the
IPython shell and the IPython notebook. The bulk of the material in this chapter is
relevant to both, and the examples will switch between them depending on what is
most convenient. In the few sections that are relevant to just one or the other, I will
explicitly state that fact. Before we start, some words on how to launch the IPython
shell and IPython notebook.

Launching the IPython Shell
This chapter, like most of this book, is not designed to be absorbed passively. I recom‐
mend that as you read through it, you follow along and experiment with the tools and
syntax we cover: the muscle-memory you build through doing this will be far more
useful than the simple act of reading about it. Start by launching the IPython inter‐
preter by typing ipython on the command line; alternatively, if you’ve installed a dis‐
tribution like Anaconda or EPD, there may be a launcher specific to your system
(we’ll discuss this more fully in “Help and Documentation in IPython” on page 3).

Once you do this, you should see a prompt like the following:

IPython 4.0.1 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.
In [1]:

With that, you’re ready to follow along.

Launching the Jupyter Notebook
The Jupyter notebook is a browser-based graphical interface to the IPython shell, and
builds on it a rich set of dynamic display capabilities. As well as executing Python/
IPython statements, the notebook allows the user to include formatted text, static and
dynamic visualizations, mathematical equations, JavaScript widgets, and much more.
Furthermore, these documents can be saved in a way that lets other people open them
and execute the code on their own systems.

Though the IPython notebook is viewed and edited through your web browser win‐
dow, it must connect to a running Python process in order to execute code. To start
this process (known as a “kernel”), run the following command in your system shell:

$ jupyter notebook

This command will launch a local web server that will be visible to your browser. It
immediately spits out a log showing what it is doing; that log will look something like
this:
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$ jupyter notebook
[NotebookApp] Serving notebooks from local directory: /Users/jakevdp/...
[NotebookApp] 0 active kernels
[NotebookApp] The IPython Notebook is running at: http://localhost:8888/
[NotebookApp] Use Control-C to stop this server and shut down all kernels...

Upon issuing the command, your default browser should automatically open and
navigate to the listed local URL; the exact address will depend on your system. If the
browser does not open automatically, you can open a window and manually open this
address (http://localhost:8888/ in this example).

Help and Documentation in IPython
If you read no other section in this chapter, read this one: I find the tools discussed
here to be the most transformative contributions of IPython to my daily workflow.

When a technologically minded person is asked to help a friend, family member, or
colleague with a computer problem, most of the time it’s less a matter of knowing the
answer as much as knowing how to quickly find an unknown answer. In data science
it’s the same: searchable web resources such as online documentation, mailing-list
threads, and Stack Overflow answers contain a wealth of information, even (espe‐
cially?) if it is a topic you’ve found yourself searching before. Being an effective prac‐
titioner of data science is less about memorizing the tool or command you should use
for every possible situation, and more about learning to effectively find the informa‐
tion you don’t know, whether through a web search engine or another means.

One of the most useful functions of IPython/Jupyter is to shorten the gap between the
user and the type of documentation and search that will help them do their work
effectively. While web searches still play a role in answering complicated questions,
an amazing amount of information can be found through IPython alone. Some
examples of the questions IPython can help answer in a few keystrokes:

• How do I call this function? What arguments and options does it have?
• What does the source code of this Python object look like?
• What is in this package I imported? What attributes or methods does this object

have?

Here we’ll discuss IPython’s tools to quickly access this information, namely the ?
character to explore documentation, the ?? characters to explore source code, and the
Tab key for autocompletion.

Accessing Documentation with ?
The Python language and its data science ecosystem are built with the user in mind,
and one big part of that is access to documentation. Every Python object contains the
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reference to a string, known as a docstring, which in most cases will contain a concise
summary of the object and how to use it. Python has a built-in help() function that
can access this information and print the results. For example, to see the documenta‐
tion of the built-in len function, you can do the following:

In [1]: help(len)
Help on built-in function len in module builtins:

len(...)
    len(object) -> integer

    Return the number of items of a sequence or mapping.

Depending on your interpreter, this information may be displayed as inline text, or in
some separate pop-up window.

Because finding help on an object is so common and useful, IPython introduces the ?
character as a shorthand for accessing this documentation and other relevant
information:

In [2]: len?
Type:        builtin_function_or_method
String form: <built-in function len>
Namespace:   Python builtin
Docstring:
len(object) -> integer

Return the number of items of a sequence or mapping.

This notation works for just about anything, including object methods:

In [3]: L = [1, 2, 3]
In [4]: L.insert?
Type:        builtin_function_or_method
String form: <built-in method insert of list object at 0x1024b8ea8>
Docstring:   L.insert(index, object) -- insert object before index

or even objects themselves, with the documentation from their type:

In [5]: L?
Type:        list
String form: [1, 2, 3]
Length:      3
Docstring:
list() -> new empty list
list(iterable) -> new list initialized from iterable's items

Importantly, this will even work for functions or other objects you create yourself!
Here we’ll define a small function with a docstring:

In [6]: def square(a):
  ....:     """Return the square of a."""
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  ....:     return a ** 2
  ....:

Note that to create a docstring for our function, we simply placed a string literal in
the first line. Because docstrings are usually multiple lines, by convention we used
Python’s triple-quote notation for multiline strings.

Now we’ll use the ? mark to find this docstring:

In [7]: square?
Type:        function
String form: <function square at 0x103713cb0>
Definition:  square(a)
Docstring:   Return the square of a.

This quick access to documentation via docstrings is one reason you should get in the
habit of always adding such inline documentation to the code you write!

Accessing Source Code with ??
Because the Python language is so easily readable, you can usually gain another level
of insight by reading the source code of the object you’re curious about. IPython pro‐
vides a shortcut to the source code with the double question mark (??):

In [8]: square??
Type:        function
String form: <function square at 0x103713cb0>
Definition:  square(a)
Source:
def square(a):
    "Return the square of a"
    return a ** 2

For simple functions like this, the double question mark can give quick insight into
the under-the-hood details.

If you play with this much, you’ll notice that sometimes the ?? suffix doesn’t display
any source code: this is generally because the object in question is not implemented in
Python, but in C or some other compiled extension language. If this is the case, the ??
suffix gives the same output as the ? suffix. You’ll find this particularly with many of
Python’s built-in objects and types, for example len from above:

In [9]: len??
Type:        builtin_function_or_method
String form: <built-in function len>
Namespace:   Python builtin
Docstring:
len(object) -> integer

Return the number of items of a sequence or mapping.
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Using ? and/or ?? gives a powerful and quick interface for finding information about
what any Python function or module does.

Exploring Modules with Tab Completion
IPython’s other useful interface is the use of the Tab key for autocompletion and
exploration of the contents of objects, modules, and namespaces. In the examples that
follow, we’ll use <TAB> to indicate when the Tab key should be pressed.

Tab completion of object contents
Every Python object has various attributes and methods associated with it. Like with
the help function discussed before, Python has a built-in dir function that returns a
list of these, but the tab-completion interface is much easier to use in practice. To see
a list of all available attributes of an object, you can type the name of the object fol‐
lowed by a period (.) character and the Tab key:

In [10]: L.<TAB>
L.append   L.copy     L.extend   L.insert   L.remove   L.sort
L.clear    L.count    L.index    L.pop      L.reverse

To narrow down the list, you can type the first character or several characters of the
name, and the Tab key will find the matching attributes and methods:

In [10]: L.c<TAB>
L.clear  L.copy   L.count

In [10]: L.co<TAB>
L.copy   L.count

If there is only a single option, pressing the Tab key will complete the line for you. For
example, the following will instantly be replaced with L.count:

In [10]: L.cou<TAB>

Though Python has no strictly enforced distinction between public/external
attributes and private/internal attributes, by convention a preceding underscore is
used to denote such methods. For clarity, these private methods and special methods
are omitted from the list by default, but it’s possible to list them by explicitly typing
the underscore:

In [10]: L._<TAB>
L.__add__           L.__gt__            L.__reduce__
L.__class__         L.__hash__          L.__reduce_ex__

For brevity, we’ve only shown the first couple lines of the output. Most of these are
Python’s special double-underscore methods (often nicknamed “dunder” methods).
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Tab completion when importing
Tab completion is also useful when importing objects from packages. Here we’ll use it
to find all possible imports in the itertools package that start with co:

In [10]: from itertools import co<TAB>
combinations                   compress
combinations_with_replacement  count

Similarly, you can use tab completion to see which imports are available on your sys‐
tem (this will change depending on which third-party scripts and modules are visible
to your Python session):

In [10]: import <TAB>
Display all 399 possibilities? (y or n)
Crypto              dis                 py_compile
Cython              distutils           pyclbr
...                 ...                 ...
difflib             pwd                 zmq

In [10]: import h<TAB>
hashlib             hmac                http
heapq               html                husl

(Note that for brevity, I did not print here all 399 importable packages and modules
on my system.)

Beyond tab completion: Wildcard matching
Tab completion is useful if you know the first few characters of the object or attribute
you’re looking for, but is little help if you’d like to match characters at the middle or
end of the word. For this use case, IPython provides a means of wildcard matching
for names using the * character.

For example, we can use this to list every object in the namespace that ends with
Warning:

In [10]: *Warning?
BytesWarning                  RuntimeWarning
DeprecationWarning            SyntaxWarning
FutureWarning                 UnicodeWarning
ImportWarning                 UserWarning
PendingDeprecationWarning     Warning
ResourceWarning

Notice that the * character matches any string, including the empty string.

Similarly, suppose we are looking for a string method that contains the word find
somewhere in its name. We can search for it this way:
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In [10]: str.*find*?
str.find
str.rfind

I find this type of flexible wildcard search can be very useful for finding a particular
command when I’m getting to know a new package or reacquainting myself with a
familiar one.

Keyboard Shortcuts in the IPython Shell
If you spend any amount of time on the computer, you’ve probably found a use for
keyboard shortcuts in your workflow. Most familiar perhaps are Cmd-C and Cmd-V
(or Ctrl-C and Ctrl-V) for copying and pasting in a wide variety of programs and sys‐
tems. Power users tend to go even further: popular text editors like Emacs, Vim, and
others provide users an incredible range of operations through intricate combina‐
tions of keystrokes.

The IPython shell doesn’t go this far, but does provide a number of keyboard short‐
cuts for fast navigation while you’re typing commands. These shortcuts are not in fact
provided by IPython itself, but through its dependency on the GNU Readline library:
thus, some of the following shortcuts may differ depending on your system configu‐
ration. Also, while some of these shortcuts do work in the browser-based notebook,
this section is primarily about shortcuts in the IPython shell.

Once you get accustomed to these, they can be very useful for quickly performing
certain commands without moving your hands from the “home” keyboard position.
If you’re an Emacs user or if you have experience with Linux-style shells, the follow‐
ing will be very familiar. We’ll group these shortcuts into a few categories: navigation
shortcuts, text entry shortcuts, command history shortcuts, and miscellaneous shortcuts.

Navigation Shortcuts
While the use of the left and right arrow keys to move backward and forward in the
line is quite obvious, there are other options that don’t require moving your hands
from the “home” keyboard position:

Keystroke Action
Ctrl-a Move cursor to the beginning of the line

Ctrl-e Move cursor to the end of the line

Ctrl-b (or the left arrow key) Move cursor back one character

Ctrl-f (or the right arrow key) Move cursor forward one character
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Text Entry Shortcuts
While everyone is familiar with using the Backspace key to delete the previous char‐
acter, reaching for the key often requires some minor finger gymnastics, and it only
deletes a single character at a time. In IPython there are several shortcuts for remov‐
ing some portion of the text you’re typing. The most immediately useful of these are
the commands to delete entire lines of text. You’ll know these have become second
nature if you find yourself using a combination of Ctrl-b and Ctrl-d instead of reach‐
ing for the Backspace key to delete the previous character!

Keystroke Action
Backspace key Delete previous character in line

Ctrl-d Delete next character in line

Ctrl-k Cut text from cursor to end of line

Ctrl-u Cut text from beginning fo line to cursor

Ctrl-y Yank (i.e., paste) text that was previously cut

Ctrl-t Transpose (i.e., switch) previous two characters

Command History Shortcuts
Perhaps the most impactful shortcuts discussed here are the ones IPython provides
for navigating the command history. This command history goes beyond your cur‐
rent IPython session: your entire command history is stored in a SQLite database in
your IPython profile directory. The most straightforward way to access these is with
the up and down arrow keys to step through the history, but other options exist as
well:

Keystroke Action
Ctrl-p (or the up arrow key) Access previous command in history

Ctrl-n (or the down arrow key) Access next command in history

Ctrl-r Reverse-search through command history

The reverse-search can be particularly useful. Recall that in the previous section we
defined a function called square. Let’s reverse-search our Python history from a new
IPython shell and find this definition again. When you press Ctrl-r in the IPython
terminal, you’ll see the following prompt:

In [1]:
(reverse-i-search)`':

If you start typing characters at this prompt, IPython will auto-fill the most recent
command, if any, that matches those characters:
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In [1]:
(reverse-i-search)`sqa': square??

At any point, you can add more characters to refine the search, or press Ctrl-r again
to search further for another command that matches the query. If you followed along
in the previous section, pressing Ctrl-r twice more gives:

In [1]:
(reverse-i-search)`sqa': def square(a):
    """Return the square of a"""
    return a ** 2

Once you have found the command you’re looking for, press Return and the search
will end. We can then use the retrieved command, and carry on with our session:

In [1]: def square(a):
    """Return the square of a"""
    return a ** 2

In [2]: square(2)
Out[2]: 4

Note that you can also use Ctrl-p/Ctrl-n or the up/down arrow keys to search
through history, but only by matching characters at the beginning of the line. That is,
if you type def and then press Ctrl-p, it would find the most recent command (if any)
in your history that begins with the characters def.

Miscellaneous Shortcuts
Finally, there are a few miscellaneous shortcuts that don’t fit into any of the preceding
categories, but are nevertheless useful to know:

Keystroke Action
Ctrl-l Clear terminal screen

Ctrl-c Interrupt current Python command

Ctrl-d Exit IPython session

The Ctrl-c shortcut in particular can be useful when you inadvertently start a very
long-running job.

While some of the shortcuts discussed here may seem a bit tedious at first, they
quickly become automatic with practice. Once you develop that muscle memory, I
suspect you will even find yourself wishing they were available in other contexts.

IPython Magic Commands
The previous two sections showed how IPython lets you use and explore Python effi‐
ciently and interactively. Here we’ll begin discussing some of the enhancements that
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IPython adds on top of the normal Python syntax. These are known in IPython as
magic commands, and are prefixed by the % character. These magic commands are
designed to succinctly solve various common problems in standard data analysis.
Magic commands come in two flavors: line magics, which are denoted by a single %
prefix and operate on a single line of input, and cell magics, which are denoted by a
double %% prefix and operate on multiple lines of input. We’ll demonstrate and dis‐
cuss a few brief examples here, and come back to more focused discussion of several
useful magic commands later in the chapter.

Pasting Code Blocks: %paste and %cpaste
When you’re working in the IPython interpreter, one common gotcha is that pasting
multiline code blocks can lead to unexpected errors, especially when indentation and
interpreter markers are involved. A common case is that you find some example code
on a website and want to paste it into your interpreter. Consider the following simple
function:

>>> def donothing(x):
...     return x

The code is formatted as it would appear in the Python interpreter, and if you copy
and paste this directly into IPython you get an error:

In [2]: >>> def donothing(x):
   ...:     ...     return x
   ...:
  File "<ipython-input-20-5a66c8964687>", line 2
    ...     return x
                 ^
SyntaxError: invalid syntax

In the direct paste, the interpreter is confused by the additional prompt characters.
But never fear—IPython’s %paste magic function is designed to handle this exact type
of multiline, marked-up input:

In [3]: %paste
>>> def donothing(x):
...     return x

## -- End pasted text --

The %paste command both enters and executes the code, so now the function is
ready to be used:

In [4]: donothing(10)
Out[4]: 10

A command with a similar intent is %cpaste, which opens up an interactive multiline
prompt in which you can paste one or more chunks of code to be executed in a batch:
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In [5]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:>>> def donothing(x):
:...     return x
:--

These magic commands, like others we’ll see, make available functionality that would
be difficult or impossible in a standard Python interpreter.

Running External Code: %run
As you begin developing more extensive code, you will likely find yourself working in
both IPython for interactive exploration, as well as a text editor to store code that you
want to reuse. Rather than running this code in a new window, it can be convenient
to run it within your IPython session. This can be done with the %run magic.

For example, imagine you’ve created a myscript.py file with the following contents:

#-------------------------------------
# file: myscript.py

def square(x):
    """square a number"""
    return x ** 2

for N in range(1, 4):
    print(N, "squared is", square(N))

You can execute this from your IPython session as follows:

In [6]: %run myscript.py
1 squared is 1
2 squared is 4
3 squared is 9

Note also that after you’ve run this script, any functions defined within it are available
for use in your IPython session:

In [7]: square(5)
Out[7]: 25

There are several options to fine-tune how your code is run; you can see the docu‐
mentation in the normal way, by typing %run? in the IPython interpreter.

Timing Code Execution: %timeit
Another example of a useful magic function is %timeit, which will automatically
determine the execution time of the single-line Python statement that follows it. For
example, we may want to check the performance of a list comprehension:

In [8]: %timeit L = [n ** 2 for n in range(1000)]
1000 loops, best of 3: 325 µs per loop
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The benefit of %timeit is that for short commands it will automatically perform mul‐
tiple runs in order to attain more robust results. For multiline statements, adding a
second % sign will turn this into a cell magic that can handle multiple lines of input.
For example, here’s the equivalent construction with a for loop:

In [9]: %%timeit
   ...: L = []
   ...: for n in range(1000):
   ...:     L.append(n ** 2)
   ...:
1000 loops, best of 3: 373 µs per loop

We can immediately see that list comprehensions are about 10% faster than the
equivalent for loop construction in this case. We’ll explore %timeit and other
approaches to timing and profiling code in “Profiling and Timing Code” on page 25.

Help on Magic Functions: ?, %magic, and %lsmagic
Like normal Python functions, IPython magic functions have docstrings, and this
useful documentation can be accessed in the standard manner. So, for example, to
read the documentation of the %timeit magic, simply type this:

In [10]: %timeit?

Documentation for other functions can be accessed similarly. To access a general
description of available magic functions, including some examples, you can type this:

In [11]: %magic

For a quick and simple list of all available magic functions, type this:

In [12]: %lsmagic

Finally, I’ll mention that it is quite straightforward to define your own magic func‐
tions if you wish. We won’t discuss it here, but if you are interested, see the references
listed in “More IPython Resources” on page 30.

Input and Output History
Previously we saw that the IPython shell allows you to access previous commands
with the up and down arrow keys, or equivalently the Ctrl-p/Ctrl-n shortcuts. Addi‐
tionally, in both the shell and the notebook, IPython exposes several ways to obtain
the output of previous commands, as well as string versions of the commands them‐
selves. We’ll explore those here.

IPython’s In and Out Objects
By now I imagine you’re quite familiar with the In[1]:/Out[1]: style prompts used
by IPython. But it turns out that these are not just pretty decoration: they give a clue
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as to how you can access previous inputs and outputs in your current session. Imag‐
ine you start a session that looks like this:

In [1]: import math

In [2]: math.sin(2)
Out[2]: 0.9092974268256817

In [3]: math.cos(2)
Out[3]: -0.4161468365471424

We’ve imported the built-in math package, then computed the sine and the cosine of
the number 2. These inputs and outputs are displayed in the shell with In/Out labels,
but there’s more—IPython actually creates some Python variables called In and Out
that are automatically updated to reflect this history:

In [4]: print(In)
['', 'import math', 'math.sin(2)', 'math.cos(2)', 'print(In)']

In [5]: Out
Out[5]: {2: 0.9092974268256817, 3: -0.4161468365471424}

The In object is a list, which keeps track of the commands in order (the first item in
the list is a placeholder so that In[1] can refer to the first command):

In [6]: print(In[1])
import math

The Out object is not a list but a dictionary mapping input numbers to their outputs
(if any):

In [7]: print(Out[2])
0.9092974268256817

Note that not all operations have outputs: for example, import statements and print
statements don’t affect the output. The latter may be surprising, but makes sense if
you consider that print is a function that returns None; for brevity, any command
that returns None is not added to Out.

Where this can be useful is if you want to interact with past results. For example, let’s
check the sum of sin(2) ** 2 and cos(2) ** 2 using the previously computed
results:

In [8]: Out[2] ** 2 + Out[3] ** 2
Out[8]: 1.0

The result is 1.0 as we’d expect from the well-known trigonometric identity. In this
case, using these previous results probably is not necessary, but it can become very
handy if you execute a very expensive computation and want to reuse the result!
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Underscore Shortcuts and Previous Outputs
The standard Python shell contains just one simple shortcut for accessing previous
output; the variable _ (i.e., a single underscore) is kept updated with the previous out‐
put; this works in IPython as well:

In [9]: print(_)
1.0

But IPython takes this a bit further—you can use a double underscore to access the
second-to-last output, and a triple underscore to access the third-to-last output (skip‐
ping any commands with no output):

In [10]: print(__)
-0.4161468365471424

In [11]: print(___)
0.9092974268256817

IPython stops there: more than three underscores starts to get a bit hard to count,
and at that point it’s easier to refer to the output by line number.

There is one more shortcut we should mention, however—a shorthand for Out[X] is
_X (i.e., a single underscore followed by the line number):

In [12]: Out[2]
Out[12]: 0.9092974268256817

In [13]: _2
Out[13]: 0.9092974268256817

Suppressing Output
Sometimes you might wish to suppress the output of a statement (this is perhaps
most common with the plotting commands that we’ll explore in Chapter 4). Or
maybe the command you’re executing produces a result that you’d prefer not to store
in your output history, perhaps so that it can be deallocated when other references are
removed. The easiest way to suppress the output of a command is to add a semicolon
to the end of the line:

In [14]: math.sin(2) + math.cos(2);

Note that the result is computed silently, and the output is neither displayed on the
screen or stored in the Out dictionary:

In [15]: 14 in Out
Out[15]: False
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Related Magic Commands
For accessing a batch of previous inputs at once, the %history magic command is
very helpful. Here is how you can print the first four inputs:

In [16]: %history -n 1-4
   1: import math
   2: math.sin(2)
   3: math.cos(2)
   4: print(In)

As usual, you can type %history? for more information and a description of options
available. Other similar magic commands are %rerun (which will re-execute some
portion of the command history) and %save (which saves some set of the command
history to a file). For more information, I suggest exploring these using the ? help
functionality discussed in “Help and Documentation in IPython” on page 3.

IPython and Shell Commands
When working interactively with the standard Python interpreter, one of the frustra‐
tions you’ll face is the need to switch between multiple windows to access Python
tools and system command-line tools. IPython bridges this gap, and gives you a syn‐
tax for executing shell commands directly from within the IPython terminal. The
magic happens with the exclamation point: anything appearing after ! on a line will
be executed not by the Python kernel, but by the system command line.

The following assumes you’re on a Unix-like system, such as Linux or Mac OS X.
Some of the examples that follow will fail on Windows, which uses a different type of
shell by default (though with the 2016 announcement of native Bash shells on Win‐
dows, soon this may no longer be an issue!). If you’re unfamiliar with shell com‐
mands, I’d suggest reviewing the Shell Tutorial put together by the always excellent
Software Carpentry Foundation.

Quick Introduction to the Shell
A full intro to using the shell/terminal/command line is well beyond the scope of this
chapter, but for the uninitiated we will offer a quick introduction here. The shell is a
way to interact textually with your computer. Ever since the mid-1980s, when Micro‐
soft and Apple introduced the first versions of their now ubiquitous graphical operat‐
ing systems, most computer users have interacted with their operating system
through familiar clicking of menus and drag-and-drop movements. But operating
systems existed long before these graphical user interfaces, and were primarily con‐
trolled through sequences of text input: at the prompt, the user would type a com‐
mand, and the computer would do what the user told it to. Those early prompt
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systems are the precursors of the shells and terminals that most active data scientists
still use today.

Someone unfamiliar with the shell might ask why you would bother with this, when
you can accomplish many results by simply clicking on icons and menus. A shell user
might reply with another question: why hunt icons and click menus when you can
accomplish things much more easily by typing? While it might sound like a typical
tech preference impasse, when moving beyond basic tasks it quickly becomes clear
that the shell offers much more control of advanced tasks, though admittedly the
learning curve can intimidate the average computer user.

As an example, here is a sample of a Linux/OS X shell session where a user explores,
creates, and modifies directories and files on their system (osx:~ $ is the prompt,
and everything after the $ sign is the typed command; text that is preceded by a # is
meant just as description, rather than something you would actually type in):

osx:~ $ echo "hello world"              # echo is like Python's print function
hello world

osx:~ $ pwd                             # pwd = print working directory
/home/jake                              # this is the "path" that we're in

osx:~ $ ls                              # ls = list working directory contents
notebooks  projects

osx:~ $ cd projects/                    # cd = change directory

osx:projects $ pwd
/home/jake/projects

osx:projects $ ls
datasci_book   mpld3   myproject.txt

osx:projects $ mkdir myproject          # mkdir = make new directory

osx:projects $ cd myproject/

osx:myproject $ mv ../myproject.txt ./  # mv = move file. Here we're moving the
                                        # file myproject.txt from one directory
                                        # up (../) to the current directory (./)
osx:myproject $ ls
myproject.txt

Notice that all of this is just a compact way to do familiar operations (navigating a
directory structure, creating a directory, moving a file, etc.) by typing commands
rather than clicking icons and menus. Note that with just a few commands (pwd, ls,
cd, mkdir, and cp) you can do many of the most common file operations. It’s when
you go beyond these basics that the shell approach becomes really powerful.
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Shell Commands in IPython
You can use any command that works at the command line in IPython by prefixing it
with the ! character. For example, the ls, pwd, and echo commands can be run as
follows:

In [1]: !ls
myproject.txt

In [2]: !pwd
/home/jake/projects/myproject

In [3]: !echo "printing from the shell"
printing from the shell

Passing Values to and from the Shell
Shell commands can not only be called from IPython, but can also be made to inter‐
act with the IPython namespace. For example, you can save the output of any shell
command to a Python list using the assignment operator:

In [4]: contents = !ls

In [5]: print(contents)
['myproject.txt']

In [6]: directory = !pwd

In [7]: print(directory)
['/Users/jakevdp/notebooks/tmp/myproject']

Note that these results are not returned as lists, but as a special shell return type
defined in IPython:

In [8]: type(directory)
IPython.utils.text.SList

This looks and acts a lot like a Python list, but has additional functionality, such as
the grep and fields methods and the s, n, and p properties that allow you to search,
filter, and display the results in convenient ways. For more information on these, you
can use IPython’s built-in help features.

Communication in the other direction—passing Python variables into the shell—is
possible through the {varname} syntax:

In [9]: message = "hello from Python"

In [10]: !echo {message}
hello from Python
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The curly braces contain the variable name, which is replaced by the variable’s con‐
tents in the shell command.

Shell-Related Magic Commands
If you play with IPython’s shell commands for a while, you might notice that you can‐
not use !cd to navigate the filesystem:

In [11]: !pwd
/home/jake/projects/myproject

In [12]: !cd ..

In [13]: !pwd
/home/jake/projects/myproject

The reason is that shell commands in the notebook are executed in a temporary sub‐
shell. If you’d like to change the working directory in a more enduring way, you can
use the %cd magic command:

In [14]: %cd ..
/home/jake/projects

In fact, by default you can even use this without the % sign:

In [15]: cd myproject
/home/jake/projects/myproject

This is known as an automagic function, and this behavior can be toggled with the
%automagic magic function.

Besides %cd, other available shell-like magic functions are %cat, %cp, %env, %ls, %man,
%mkdir, %more, %mv, %pwd, %rm, and %rmdir, any of which can be used without the %
sign if automagic is on. This makes it so that you can almost treat the IPython
prompt as if it’s a normal shell:

In [16]: mkdir tmp

In [17]: ls
myproject.txt  tmp/

In [18]: cp myproject.txt tmp/

In [19]: ls tmp
myproject.txt

In [20]: rm -r tmp

This access to the shell from within the same terminal window as your Python ses‐
sion means that there is a lot less switching back and forth between interpreter and
shell as you write your Python code.
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Errors and Debugging
Code development and data analysis always require a bit of trial and error, and
IPython contains tools to streamline this process. This section will briefly cover some
options for controlling Python’s exception reporting, followed by exploring tools for
debugging errors in code.

Controlling Exceptions: %xmode
Most of the time when a Python script fails, it will raise an exception. When the inter‐
preter hits one of these exceptions, information about the cause of the error can be
found in the traceback, which can be accessed from within Python. With the %xmode
magic function, IPython allows you to control the amount of information printed
when the exception is raised. Consider the following code:

In[1]: def func1(a, b):
           return a / b

       def func2(x):
           a = x
           b = x - 1
           return func1(a, b)

In[2]: func2(1)

---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)

<ipython-input-2-b2e110f6fc8f^gt; in <module>()
----> 1 func2(1)

<ipython-input-1-d849e34d61fb> in func2(x)
      5     a = x
      6     b = x - 1
----> 7     return func1(a, b)

<ipython-input-1-d849e34d61fb> in func1(a, b)
      1 def func1(a, b):
----> 2     return a / b
      3
      4 def func2(x):
      5     a = x

ZeroDivisionError: division by zero

Calling func2 results in an error, and reading the printed trace lets us see exactly what
happened. By default, this trace includes several lines showing the context of each
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step that led to the error. Using the %xmode magic function (short for exception mode),
we can change what information is printed.

%xmode takes a single argument, the mode, and there are three possibilities: Plain,
Context, and Verbose. The default is Context, and gives output like that just shown.
Plain is more compact and gives less information:

In[3]: %xmode Plain

Exception reporting mode: Plain

In[4]: func2(1)

------------------------------------------------------------
Traceback (most recent call last):

  File "<ipython-input-4-b2e110f6fc8f>", line 1, in <module>
    func2(1)

  File "<ipython-input-1-d849e34d61fb>", line 7, in func2
    return func1(a, b)

  File "<ipython-input-1-d849e34d61fb>", line 2, in func1
    return a / b

ZeroDivisionError: division by zero

The Verbose mode adds some extra information, including the arguments to any
functions that are called:

In[5]: %xmode Verbose

Exception reporting mode: Verbose

In[6]: func2(1)

---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)

<ipython-input-6-b2e110f6fc8f> in <module>()
----> 1 func2(1)
        global func2 = <function func2 at 0x103729320>

<ipython-input-1-d849e34d61fb> in func2(x=1)
      5     a = x
      6     b = x - 1
----> 7     return func1(a, b)
        global func1 = <function func1 at 0x1037294d0>
        a = 1
        b = 0
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<ipython-input-1-d849e34d61fb> in func1(a=1, b=0)
      1 def func1(a, b):
----> 2     return a / b
        a = 1
        b = 0
      3
      4 def func2(x):
      5     a = x

ZeroDivisionError: division by zero

This extra information can help you narrow in on why the exception is being raised.
So why not use the Verbose mode all the time? As code gets complicated, this kind of
traceback can get extremely long. Depending on the context, sometimes the brevity of
Default mode is easier to work with.

Debugging: When Reading Tracebacks Is Not Enough
The standard Python tool for interactive debugging is pdb, the Python debugger. This
debugger lets the user step through the code line by line in order to see what might be
causing a more difficult error. The IPython-enhanced version of this is ipdb, the
IPython debugger.

There are many ways to launch and use both these debuggers; we won’t cover them
fully here. Refer to the online documentation of these two utilities to learn more.

In IPython, perhaps the most convenient interface to debugging is the %debug magic
command. If you call it after hitting an exception, it will automatically open an inter‐
active debugging prompt at the point of the exception. The ipdb prompt lets you
explore the current state of the stack, explore the available variables, and even run
Python commands!

Let’s look at the most recent exception, then do some basic tasks—print the values of
a and b, and type quit to quit the debugging session:

In[7]: %debug

> <ipython-input-1-d849e34d61fb>(2)func1()
      1 def func1(a, b):
----> 2     return a / b
      3

ipdb> print(a)
1
ipdb> print(b)
0
ipdb> quit
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The interactive debugger allows much more than this, though—we can even step up
and down through the stack and explore the values of variables there:

In[8]: %debug

> <ipython-input-1-d849e34d61fb>(2)func1()
      1 def func1(a, b):
----> 2     return a / b
      3

ipdb> up
> <ipython-input-1-d849e34d61fb>(7)func2()
      5     a = x
      6     b = x - 1
----> 7     return func1(a, b)

ipdb> print(x)
1
ipdb> up
> <ipython-input-6-b2e110f6fc8f>(1)<module>()
----> 1 func2(1)

ipdb> down
> <ipython-input-1-d849e34d61fb>(7)func2()
      5     a = x
      6     b = x - 1
----> 7     return func1(a, b)

ipdb> quit

This allows you to quickly find out not only what caused the error, but also what
function calls led up to the error.

If you’d like the debugger to launch automatically whenever an exception is raised,
you can use the %pdb magic function to turn on this automatic behavior:

In[9]: %xmode Plain
       %pdb on
       func2(1)

Exception reporting mode: Plain
Automatic pdb calling has been turned ON

Traceback (most recent call last):

  File "<ipython-input-9-569a67d2d312>", line 3, in <module>
    func2(1)

  File "<ipython-input-1-d849e34d61fb>", line 7, in func2
    return func1(a, b)
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  File "<ipython-input-1-d849e34d61fb>", line 2, in func1
    return a / b

ZeroDivisionError: division by zero

> <ipython-input-1-d849e34d61fb>(2)func1()
      1 def func1(a, b):
----> 2     return a / b
      3

ipdb> print(b)
0
ipdb> quit

Finally, if you have a script that you’d like to run from the beginning in interactive
mode, you can run it with the command %run -d, and use the next command to step
through the lines of code interactively.

Partial list of debugging commands
There are many more available commands for interactive debugging than we’ve listed
here; the following table contains a description of some of the more common and
useful ones:

Command Description

list Show the current location in the file

h(elp) Show a list of commands, or find help on a specific command

q(uit) Quit the debugger and the program

c(ontinue) Quit the debugger; continue in the program

n(ext) Go to the next step of the program

<enter> Repeat the previous command

p(rint) Print variables

s(tep) Step into a subroutine

r(eturn) Return out of a subroutine

For more information, use the help command in the debugger, or take a look at
ipdb’s online documentation.
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Profiling and Timing Code
In the process of developing code and creating data processing pipelines, there are
often trade-offs you can make between various implementations. Early in developing
your algorithm, it can be counterproductive to worry about such things. As Donald
Knuth famously quipped, “We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.”

But once you have your code working, it can be useful to dig into its efficiency a bit.
Sometimes it’s useful to check the execution time of a given command or set of com‐
mands; other times it’s useful to dig into a multiline process and determine where the
bottleneck lies in some complicated series of operations. IPython provides access to a
wide array of functionality for this kind of timing and profiling of code. Here we’ll
discuss the following IPython magic commands:

%time

Time the execution of a single statement

%timeit

Time repeated execution of a single statement for more accuracy

%prun

Run code with the profiler

%lprun

Run code with the line-by-line profiler

%memit

Measure the memory use of a single statement

%mprun

Run code with the line-by-line memory profiler

The last four commands are not bundled with IPython—you’ll need to install the
line_profiler and memory_profiler extensions, which we will discuss in the fol‐
lowing sections.

Timing Code Snippets: %timeit and %time
We saw the %timeit line magic and %%timeit cell magic in the introduction to magic
functions in “IPython Magic Commands” on page 10; %%timeit can be used to time
the repeated execution of snippets of code:

In[1]: %timeit sum(range(100))

100000 loops, best of 3: 1.54 µs per loop
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Note that because this operation is so fast, %timeit automatically does a large number
of repetitions. For slower commands, %timeit will automatically adjust and perform
fewer repetitions:

In[2]: %%timeit
       total = 0
       for i in range(1000):
           for j in range(1000):
               total += i * (-1) ** j

1 loops, best of 3: 407 ms per loop

Sometimes repeating an operation is not the best option. For example, if we have a
list that we’d like to sort, we might be misled by a repeated operation. Sorting a pre-
sorted list is much faster than sorting an unsorted list, so the repetition will skew the
result:

In[3]: import random
       L = [random.random() for i in range(100000)]
       %timeit L.sort()

100 loops, best of 3: 1.9 ms per loop

For this, the %time magic function may be a better choice. It also is a good choice for
longer-running commands, when short, system-related delays are unlikely to affect
the result. Let’s time the sorting of an unsorted and a presorted list:

In[4]: import random
       L = [random.random() for i in range(100000)]
       print("sorting an unsorted list:")
       %time L.sort()

sorting an unsorted list:
CPU times: user 40.6 ms, sys: 896 µs, total: 41.5 ms
Wall time: 41.5 ms

In[5]: print("sorting an already sorted list:")
       %time L.sort()

sorting an already sorted list:
CPU times: user 8.18 ms, sys: 10 µs, total: 8.19 ms
Wall time: 8.24 ms

Notice how much faster the presorted list is to sort, but notice also how much longer
the timing takes with %time versus %timeit, even for the presorted list! This is a
result of the fact that %timeit does some clever things under the hood to prevent sys‐
tem calls from interfering with the timing. For example, it prevents cleanup of unused
Python objects (known as garbage collection) that might otherwise affect the timing.
For this reason, %timeit results are usually noticeably faster than %time results.

For %time as with %timeit, using the double-percent-sign cell-magic syntax allows
timing of multiline scripts:
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In[6]: %%time
       total = 0
       for i in range(1000):
           for j in range(1000):
               total += i * (-1) ** j

CPU times: user 504 ms, sys: 979 µs, total: 505 ms
Wall time: 505 ms

For more information on %time and %timeit, as well as their available options, use
the IPython help functionality (i.e., type %time? at the IPython prompt).

Profiling Full Scripts: %prun
A program is made of many single statements, and sometimes timing these state‐
ments in context is more important than timing them on their own. Python contains
a built-in code profiler (which you can read about in the Python documentation), but
IPython offers a much more convenient way to use this profiler, in the form of the
magic function %prun.

By way of example, we’ll define a simple function that does some calculations:

In[7]: def sum_of_lists(N):
           total = 0
           for i in range(5):
               L = [j ^ (j >> i) for j in range(N)]
               total += sum(L)
           return total

Now we can call %prun with a function call to see the profiled results:

In[8]: %prun sum_of_lists(1000000)

In the notebook, the output is printed to the pager, and looks something like this:

14 function calls in 0.714 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        5    0.599    0.120    0.599    0.120 <ipython-input-19>:4(<listcomp>)
        5    0.064    0.013    0.064    0.013 {built-in method sum}
        1    0.036    0.036    0.699    0.699 <ipython-input-19>:1(sum_of_lists)
        1    0.014    0.014    0.714    0.714 <string>:1(<module>)
        1    0.000    0.000    0.714    0.714 {built-in method exec}

The result is a table that indicates, in order of total time on each function call, where
the execution is spending the most time. In this case, the bulk of execution time is in
the list comprehension inside sum_of_lists. From here, we could start thinking
about what changes we might make to improve the performance in the algorithm.
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For more information on %prun, as well as its available options, use the IPython help
functionality (i.e., type %prun? at the IPython prompt).

Line-by-Line Profiling with %lprun
The function-by-function profiling of %prun is useful, but sometimes it’s more conve‐
nient to have a line-by-line profile report. This is not built into Python or IPython,
but there is a line_profiler package available for installation that can do this. Start
by using Python’s packaging tool, pip, to install the line_profiler package:

$ pip install line_profiler

Next, you can use IPython to load the line_profiler IPython extension, offered as
part of this package:

In[9]: %load_ext line_profiler

Now the %lprun command will do a line-by-line profiling of any function—in this
case, we need to tell it explicitly which functions we’re interested in profiling:

In[10]: %lprun -f sum_of_lists sum_of_lists(5000)

As before, the notebook sends the result to the pager, but it looks something like this:

Timer unit: 1e-06 s

Total time: 0.009382 s
File: <ipython-input-19-fa2be176cc3e>
Function: sum_of_lists at line 1

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     1                                           def sum_of_lists(N):
     2         1            2      2.0      0.0      total = 0
     3         6            8      1.3      0.1      for i in range(5):
     4         5         9001   1800.2     95.9          L = [j ^ (j >> i) ...
     5         5          371     74.2      4.0          total += sum(L)
     6         1            0      0.0      0.0      return total

The information at the top gives us the key to reading the results: the time is reported
in microseconds and we can see where the program is spending the most time. At this
point, we may be able to use this information to modify aspects of the script and
make it perform better for our desired use case.

For more information on %lprun, as well as its available options, use the IPython help
functionality (i.e., type %lprun? at the IPython prompt).
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Profiling Memory Use: %memit and %mprun
Another aspect of profiling is the amount of memory an operation uses. This can be
evaluated with another IPython extension, the memory_profiler. As with the
line_profiler, we start by pip-installing the extension:

$ pip install memory_profiler

Then we can use IPython to load the extension:

In[12]: %load_ext memory_profiler

The memory profiler extension contains two useful magic functions: the %memit
magic (which offers a memory-measuring equivalent of %timeit) and the %mprun
function (which offers a memory-measuring equivalent of %lprun). The %memit func‐
tion can be used rather simply:

In[13]: %memit sum_of_lists(1000000)

peak memory: 100.08 MiB, increment: 61.36 MiB

We see that this function uses about 100 MB of memory.

For a line-by-line description of memory use, we can use the %mprun magic. Unfortu‐
nately, this magic works only for functions defined in separate modules rather than
the notebook itself, so we’ll start by using the %%file magic to create a simple module
called mprun_demo.py, which contains our sum_of_lists function, with one addition
that will make our memory profiling results more clear:

In[14]: %%file mprun_demo.py
        def sum_of_lists(N):
            total = 0
            for i in range(5):
                L = [j ^ (j >> i) for j in range(N)]
                total += sum(L)
                del L # remove reference to L
            return total

Overwriting mprun_demo.py

We can now import the new version of this function and run the memory line
profiler:

In[15]: from mprun_demo import sum_of_lists
        %mprun -f sum_of_lists sum_of_lists(1000000)

The result, printed to the pager, gives us a summary of the memory use of the func‐
tion, and looks something like this:
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Filename: ./mprun_demo.py

Line #    Mem usage    Increment   Line Contents
================================================
     4     71.9 MiB      0.0 MiB           L = [j ^ (j >> i) for j in range(N)]

Filename: ./mprun_demo.py

Line #    Mem usage    Increment   Line Contents
================================================
     1     39.0 MiB      0.0 MiB   def sum_of_lists(N):
     2     39.0 MiB      0.0 MiB       total = 0
     3     46.5 MiB      7.5 MiB       for i in range(5):
     4     71.9 MiB     25.4 MiB           L = [j ^ (j >> i) for j in range(N)]
     5     71.9 MiB      0.0 MiB           total += sum(L)
     6     46.5 MiB    -25.4 MiB           del L # remove reference to L
     7     39.1 MiB     -7.4 MiB       return total

Here the Increment column tells us how much each line affects the total memory
budget: observe that when we create and delete the list L, we are adding about 25 MB
of memory usage. This is on top of the background memory usage from the Python
interpreter itself.

For more information on %memit and %mprun, as well as their available options, use
the IPython help functionality (i.e., type %memit? at the IPython prompt).

More IPython Resources
In this chapter, we’ve just scratched the surface of using IPython to enable data sci‐
ence tasks. Much more information is available both in print and on the Web, and
here we’ll list some other resources that you may find helpful.

Web Resources
The IPython website

The IPython website links to documentation, examples, tutorials, and a variety of
other resources.

The nbviewer website
This site shows static renderings of any IPython notebook available on the Inter‐
net. The front page features some example notebooks that you can browse to see
what other folks are using IPython for!
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A Gallery of Interesting IPython Notebooks
This ever-growing list of notebooks, powered by nbviewer, shows the depth and
breadth of numerical analysis you can do with IPython. It includes everything
from short examples and tutorials to full-blown courses and books composed in
the notebook format!

Video tutorials
Searching the Internet, you will find many video-recorded tutorials on IPython.
I’d especially recommend seeking tutorials from the PyCon, SciPy, and PyData
conferences by Fernando Perez and Brian Granger, two of the primary creators
and maintainers of IPython and Jupyter.

Books
Python for Data Analysis

Wes McKinney’s book includes a chapter that covers using IPython as a data sci‐
entist. Although much of the material overlaps what we’ve discussed here,
another perspective is always helpful.

Learning IPython for Interactive Computing and Data Visualization
This short book by Cyrille Rossant offers a good introduction to using IPython
for data analysis.

IPython Interactive Computing and Visualization Cookbook
Also by Cyrille Rossant, this book is a longer and more advanced treatment of
using IPython for data science. Despite its name, it’s not just about IPython—it
also goes into some depth on a broad range of data science topics.

Finally, a reminder that you can find help on your own: IPython’s ?-based help func‐
tionality (discussed in “Help and Documentation in IPython” on page 3) can be very
useful if you use it well and use it often. As you go through the examples here and
elsewhere, you can use it to familiarize yourself with all the tools that IPython has to
offer.
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CHAPTER 2

Introduction to NumPy

This chapter, along with Chapter 3, outlines techniques for effectively loading, stor‐
ing, and manipulating in-memory data in Python. The topic is very broad: datasets
can come from a wide range of sources and a wide range of formats, including collec‐
tions of documents, collections of images, collections of sound clips, collections of
numerical measurements, or nearly anything else. Despite this apparent heterogene‐
ity, it will help us to think of all data fundamentally as arrays of numbers.

For example, images—particularly digital images—can be thought of as simply two-
dimensional arrays of numbers representing pixel brightness across the area. Sound
clips can be thought of as one-dimensional arrays of intensity versus time. Text can be
converted in various ways into numerical representations, perhaps binary digits rep‐
resenting the frequency of certain words or pairs of words. No matter what the data
are, the first step in making them analyzable will be to transform them into arrays of
numbers. (We will discuss some specific examples of this process later in “Feature
Engineering” on page 375.)

For this reason, efficient storage and manipulation of numerical arrays is absolutely
fundamental to the process of doing data science. We’ll now take a look at the special‐
ized tools that Python has for handling such numerical arrays: the NumPy package
and the Pandas package (discussed in Chapter 3.)

This chapter will cover NumPy in detail. NumPy (short for Numerical Python) pro‐
vides an efficient interface to store and operate on dense data buffers. In some ways,
NumPy arrays are like Python’s built-in list type, but NumPy arrays provide much
more efficient storage and data operations as the arrays grow larger in size. NumPy
arrays form the core of nearly the entire ecosystem of data science tools in Python, so
time spent learning to use NumPy effectively will be valuable no matter what aspect
of data science interests you.
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If you followed the advice outlined in the preface and installed the Anaconda stack,
you already have NumPy installed and ready to go. If you’re more the do-it-yourself
type, you can go to the NumPy website and follow the installation instructions found
there. Once you do, you can import NumPy and double-check the version:

In[1]: import numpy
       numpy.__version__

Out[1]: '1.11.1'

For the pieces of the package discussed here, I’d recommend NumPy version 1.8 or
later. By convention, you’ll find that most people in the SciPy/PyData world will
import NumPy using np as an alias:

In[2]: import numpy as np

Throughout this chapter, and indeed the rest of the book, you’ll find that this is the
way we will import and use NumPy.

Reminder About Built-In Documentation
As you read through this chapter, don’t forget that IPython gives you the ability to
quickly explore the contents of a package (by using the tab-completion feature) as
well as the documentation of various functions (using the ? character). Refer back to
“Help and Documentation in IPython” on page 3 if you need a refresher on this.

For example, to display all the contents of the numpy namespace, you can type this:

In [3]: np.<TAB>

And to display NumPy’s built-in documentation, you can use this:

In [4]: np?

More detailed documentation, along with tutorials and other resources, can be found
at http://www.numpy.org.

Understanding Data Types in Python
Effective data-driven science and computation requires understanding how data is
stored and manipulated. This section outlines and contrasts how arrays of data are
handled in the Python language itself, and how NumPy improves on this. Under‐
standing this difference is fundamental to understanding much of the material
throughout the rest of the book.

Users of Python are often drawn in by its ease of use, one piece of which is dynamic
typing. While a statically typed language like C or Java requires each variable to be
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explicitly declared, a dynamically typed language like Python skips this specification.
For example, in C you might specify a particular operation as follows:

/* C code */
int result = 0;
for(int i=0; i<100; i++){
    result += i;
}

While in Python the equivalent operation could be written this way:

# Python code
result = 0
for i in range(100):
    result += i

Notice the main difference: in C, the data types of each variable are explicitly
declared, while in Python the types are dynamically inferred. This means, for exam‐
ple, that we can assign any kind of data to any variable:

# Python code
x = 4
x = "four"

Here we’ve switched the contents of x from an integer to a string. The same thing in C
would lead (depending on compiler settings) to a compilation error or other uninten‐
ded consequences:

/* C code */
int x = 4;
x = "four";  // FAILS

This sort of flexibility is one piece that makes Python and other dynamically typed
languages convenient and easy to use. Understanding how this works is an important
piece of learning to analyze data efficiently and effectively with Python. But what this
type flexibility also points to is the fact that Python variables are more than just their
value; they also contain extra information about the type of the value. We’ll explore
this more in the sections that follow.

A Python Integer Is More Than Just an Integer
The standard Python implementation is written in C. This means that every Python
object is simply a cleverly disguised C structure, which contains not only its value, but
other information as well. For example, when we define an integer in Python, such as
x = 10000, x is not just a “raw” integer. It’s actually a pointer to a compound C struc‐
ture, which contains several values. Looking through the Python 3.4 source code, we
find that the integer (long) type definition effectively looks like this (once the C mac‐
ros are expanded):
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struct _longobject {
    long ob_refcnt;
    PyTypeObject *ob_type;
    size_t ob_size;
    long ob_digit[1];
};

A single integer in Python 3.4 actually contains four pieces:

• ob_refcnt, a reference count that helps Python silently handle memory alloca‐
tion and deallocation

• ob_type, which encodes the type of the variable
• ob_size, which specifies the size of the following data members
• ob_digit, which contains the actual integer value that we expect the Python vari‐

able to represent

This means that there is some overhead in storing an integer in Python as compared
to an integer in a compiled language like C, as illustrated in Figure 2-1.

Figure 2-1. The difference between C and Python integers

Here PyObject_HEAD is the part of the structure containing the reference count, type
code, and other pieces mentioned before.

Notice the difference here: a C integer is essentially a label for a position in memory
whose bytes encode an integer value. A Python integer is a pointer to a position in
memory containing all the Python object information, including the bytes that con‐
tain the integer value. This extra information in the Python integer structure is what
allows Python to be coded so freely and dynamically. All this additional information
in Python types comes at a cost, however, which becomes especially apparent in
structures that combine many of these objects.
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A Python List Is More Than Just a List
Let’s consider now what happens when we use a Python data structure that holds
many Python objects. The standard mutable multielement container in Python is the
list. We can create a list of integers as follows:

In[1]: L = list(range(10))
       L

Out[1]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In[2]: type(L[0])

Out[2]: int

Or, similarly, a list of strings:

In[3]: L2 = [str(c) for c in L]
       L2

Out[3]: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

In[4]: type(L2[0])

Out[4]: str

Because of Python’s dynamic typing, we can even create heterogeneous lists:

In[5]: L3 = [True, "2", 3.0, 4]
       [type(item) for item in L3]

Out[5]: [bool, str, float, int]

But this flexibility comes at a cost: to allow these flexible types, each item in the list
must contain its own type info, reference count, and other information—that is, each
item is a complete Python object. In the special case that all variables are of the same
type, much of this information is redundant: it can be much more efficient to store
data in a fixed-type array. The difference between a dynamic-type list and a fixed-type
(NumPy-style) array is illustrated in Figure 2-2.

At the implementation level, the array essentially contains a single pointer to one con‐
tiguous block of data. The Python list, on the other hand, contains a pointer to a
block of pointers, each of which in turn points to a full Python object like the Python
integer we saw earlier. Again, the advantage of the list is flexibility: because each list
element is a full structure containing both data and type information, the list can be
filled with data of any desired type. Fixed-type NumPy-style arrays lack this flexibil‐
ity, but are much more efficient for storing and manipulating data.
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Figure 2-2. The difference between C and Python lists

Fixed-Type Arrays in Python
Python offers several different options for storing data in efficient, fixed-type data
buffers. The built-in array module (available since Python 3.3) can be used to create
dense arrays of a uniform type:

In[6]: import array
       L = list(range(10))
       A = array.array('i', L)
       A

Out[6]: array('i', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Here 'i' is a type code indicating the contents are integers.

Much more useful, however, is the ndarray object of the NumPy package. While
Python’s array object provides efficient storage of array-based data, NumPy adds to
this efficient operations on that data. We will explore these operations in later sec‐
tions; here we’ll demonstrate several ways of creating a NumPy array.

We’ll start with the standard NumPy import, under the alias np:

In[7]: import numpy as np
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Creating Arrays from Python Lists
First, we can use np.array to create arrays from Python lists:

In[8]: # integer array:
       np.array([1, 4, 2, 5, 3])

Out[8]: array([1, 4, 2, 5, 3])

Remember that unlike Python lists, NumPy is constrained to arrays that all contain
the same type. If types do not match, NumPy will upcast if possible (here, integers are
upcast to floating point):

In[9]: np.array([3.14, 4, 2, 3])

Out[9]: array([ 3.14,  4.  ,  2.  ,  3.  ])

If we want to explicitly set the data type of the resulting array, we can use the dtype
keyword:

In[10]: np.array([1, 2, 3, 4], dtype='float32')

Out[10]: array([ 1.,  2.,  3.,  4.], dtype=float32)

Finally, unlike Python lists, NumPy arrays can explicitly be multidimensional; here’s
one way of initializing a multidimensional array using a list of lists:

In[11]: # nested lists result in multidimensional arrays
        np.array([range(i, i + 3) for i in [2, 4, 6]])

Out[11]: array([[2, 3, 4],
                [4, 5, 6],
                [6, 7, 8]])

The inner lists are treated as rows of the resulting two-dimensional array.

Creating Arrays from Scratch
Especially for larger arrays, it is more efficient to create arrays from scratch using rou‐
tines built into NumPy. Here are several examples:

In[12]: # Create a length-10 integer array filled with zeros
        np.zeros(10, dtype=int)

Out[12]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

In[13]: # Create a 3x5 floating-point array filled with 1s
        np.ones((3, 5), dtype=float)

Out[13]: array([[ 1.,  1.,  1.,  1.,  1.],
                [ 1.,  1.,  1.,  1.,  1.],
                [ 1.,  1.,  1.,  1.,  1.]])

In[14]: # Create a 3x5 array filled with 3.14
        np.full((3, 5), 3.14)
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Out[14]: array([[ 3.14,  3.14,  3.14,  3.14,  3.14],
                [ 3.14,  3.14,  3.14,  3.14,  3.14],
                [ 3.14,  3.14,  3.14,  3.14,  3.14]])

In[15]: # Create an array filled with a linear sequence
        # Starting at 0, ending at 20, stepping by 2
        # (this is similar to the built-in range() function)
        np.arange(0, 20, 2)

Out[15]: array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18])

In[16]: # Create an array of five values evenly spaced between 0 and 1
        np.linspace(0, 1, 5)

Out[16]: array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])

In[17]: # Create a 3x3 array of uniformly distributed
        # random values between 0 and 1
        np.random.random((3, 3))

Out[17]: array([[ 0.99844933,  0.52183819,  0.22421193],
                [ 0.08007488,  0.45429293,  0.20941444],
                [ 0.14360941,  0.96910973,  0.946117  ]])

In[18]: # Create a 3x3 array of normally distributed random values
        # with mean 0 and standard deviation 1
        np.random.normal(0, 1, (3, 3))

Out[18]: array([[ 1.51772646,  0.39614948, -0.10634696],
                [ 0.25671348,  0.00732722,  0.37783601],
                [ 0.68446945,  0.15926039, -0.70744073]])

In[19]: # Create a 3x3 array of random integers in the interval [0, 10)
        np.random.randint(0, 10, (3, 3))

Out[19]: array([[2, 3, 4],
                [5, 7, 8],
                [0, 5, 0]])

In[20]: # Create a 3x3 identity matrix
        np.eye(3)

Out[20]: array([[ 1.,  0.,  0.],
                [ 0.,  1.,  0.],
                [ 0.,  0.,  1.]])

In[21]: # Create an uninitialized array of three integers
        # The values will be whatever happens to already exist at that
        # memory location
        np.empty(3)

Out[21]: array([ 1.,  1.,  1.])
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NumPy Standard Data Types
NumPy arrays contain values of a single type, so it is important to have detailed
knowledge of those types and their limitations. Because NumPy is built in C, the
types will be familiar to users of C, Fortran, and other related languages.

The standard NumPy data types are listed in Table 2-1. Note that when constructing
an array, you can specify them using a string:

np.zeros(10, dtype='int16')

Or using the associated NumPy object:

np.zeros(10, dtype=np.int16)

Table 2-1. Standard NumPy data types

Data type Description

bool_ Boolean (True or False) stored as a byte

int_ Default integer type (same as C long; normally either int64 or int32)

intc Identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)

int8 Byte (–128 to 127)

int16 Integer (–32768 to 32767)

int32 Integer (–2147483648 to 2147483647)

int64 Integer (–9223372036854775808 to 9223372036854775807)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 4294967295)

uint64 Unsigned integer (0 to 18446744073709551615)

float_ Shorthand for float64

float16 Half-precision float: sign bit, 5 bits exponent, 10 bits mantissa

float32 Single-precision float: sign bit, 8 bits exponent, 23 bits mantissa

float64 Double-precision float: sign bit, 11 bits exponent, 52 bits mantissa

complex_ Shorthand for complex128

complex64 Complex number, represented by two 32-bit floats

complex128 Complex number, represented by two 64-bit floats

More advanced type specification is possible, such as specifying big or little endian
numbers; for more information, refer to the NumPy documentation. NumPy also
supports compound data types, which will be covered in “Structured Data: NumPy’s
Structured Arrays” on page 92.
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The Basics of NumPy Arrays
Data manipulation in Python is nearly synonymous with NumPy array manipulation:
even newer tools like Pandas (Chapter 3) are built around the NumPy array. This sec‐
tion will present several examples using NumPy array manipulation to access data
and subarrays, and to split, reshape, and join the arrays. While the types of operations
shown here may seem a bit dry and pedantic, they comprise the building blocks of
many other examples used throughout the book. Get to know them well!

We’ll cover a few categories of basic array manipulations here:

Attributes of arrays
Determining the size, shape, memory consumption, and data types of arrays

Indexing of arrays
Getting and setting the value of individual array elements

Slicing of arrays
Getting and setting smaller subarrays within a larger array

Reshaping of arrays
Changing the shape of a given array

Joining and splitting of arrays
Combining multiple arrays into one, and splitting one array into many

NumPy Array Attributes
First let’s discuss some useful array attributes. We’ll start by defining three random
arrays: a one-dimensional, two-dimensional, and three-dimensional array. We’ll use
NumPy’s random number generator, which we will seed with a set value in order to
ensure that the same random arrays are generated each time this code is run:

In[1]: import numpy as np
       np.random.seed(0)  # seed for reproducibility

       x1 = np.random.randint(10, size=6)  # One-dimensional array
       x2 = np.random.randint(10, size=(3, 4))  # Two-dimensional array
       x3 = np.random.randint(10, size=(3, 4, 5))  # Three-dimensional array

Each array has attributes ndim (the number of dimensions), shape (the size of each
dimension), and size (the total size of the array):

In[2]: print("x3 ndim: ", x3.ndim)
       print("x3 shape:", x3.shape)
       print("x3 size: ", x3.size)

x3 ndim:  3
x3 shape: (3, 4, 5)
x3 size:  60
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Another useful attribute is the dtype, the data type of the array (which we discussed
previously in “Understanding Data Types in Python” on page 34):

In[3]: print("dtype:", x3.dtype)

dtype: int64

Other attributes include itemsize, which lists the size (in bytes) of each array ele‐
ment, and nbytes, which lists the total size (in bytes) of the array:

In[4]: print("itemsize:", x3.itemsize, "bytes")
       print("nbytes:", x3.nbytes, "bytes")

itemsize: 8 bytes
nbytes: 480 bytes

In general, we expect that nbytes is equal to itemsize times size.

Array Indexing: Accessing Single Elements
If you are familiar with Python’s standard list indexing, indexing in NumPy will feel
quite familiar. In a one-dimensional array, you can access the ith value (counting from
zero) by specifying the desired index in square brackets, just as with Python lists:

In[5]: x1

Out[5]: array([5, 0, 3, 3, 7, 9])

In[6]: x1[0]

Out[6]: 5

In[7]: x1[4]

Out[7]: 7

To index from the end of the array, you can use negative indices:

In[8]: x1[-1]

Out[8]: 9

In[9]: x1[-2]

Out[9]: 7

In a multidimensional array, you access items using a comma-separated tuple of
indices:

In[10]: x2

Out[10]: array([[3, 5, 2, 4],
                [7, 6, 8, 8],
                [1, 6, 7, 7]])

In[11]: x2[0, 0]

Out[11]: 3
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In[12]: x2[2, 0]

Out[12]: 1

In[13]: x2[2, -1]

Out[13]: 7

You can also modify values using any of the above index notation:

In[14]: x2[0, 0] = 12
        x2

Out[14]: array([[12,  5,  2,  4],
                [ 7,  6,  8,  8],
                [ 1,  6,  7,  7]])

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type. This means,
for example, that if you attempt to insert a floating-point value to an integer array, the
value will be silently truncated. Don’t be caught unaware by this behavior!

In[15]: x1[0] = 3.14159  # this will be truncated!
        x1

Out[15]: array([3, 0, 3, 3, 7, 9])

Array Slicing: Accessing Subarrays
Just as we can use square brackets to access individual array elements, we can also use
them to access subarrays with the slice notation, marked by the colon (:) character.
The NumPy slicing syntax follows that of the standard Python list; to access a slice of
an array x, use this:

x[start:stop:step]

If any of these are unspecified, they default to the values start=0, stop=size of
dimension, step=1. We’ll take a look at accessing subarrays in one dimension and in
multiple dimensions.

One-dimensional subarrays
In[16]: x = np.arange(10)
        x

Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In[17]: x[:5]  # first five elements

Out[17]: array([0, 1, 2, 3, 4])

In[18]: x[5:]  # elements after index 5

Out[18]: array([5, 6, 7, 8, 9])

In[19]: x[4:7]  # middle subarray

Out[19]: array([4, 5, 6])
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In[20]: x[::2]  # every other element

Out[20]: array([0, 2, 4, 6, 8])

In[21]: x[1::2]  # every other element, starting at index 1

Out[21]: array([1, 3, 5, 7, 9])

A potentially confusing case is when the step value is negative. In this case, the
defaults for start and stop are swapped. This becomes a convenient way to reverse
an array:

In[22]: x[::-1]  # all elements, reversed

Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

In[23]: x[5::-2]  # reversed every other from index 5

Out[23]: array([5, 3, 1])

Multidimensional subarrays
Multidimensional slices work in the same way, with multiple slices separated by com‐
mas. For example:

In[24]: x2

Out[24]: array([[12,  5,  2,  4],
                [ 7,  6,  8,  8],
                [ 1,  6,  7,  7]])

In[25]: x2[:2, :3]  # two rows, three columns

Out[25]: array([[12,  5,  2],
                [ 7,  6,  8]])

In[26]: x2[:3, ::2]  # all rows, every other column

Out[26]: array([[12,  2],
                [ 7,  8],
                [ 1,  7]])

Finally, subarray dimensions can even be reversed together:

In[27]: x2[::-1, ::-1]

Out[27]: array([[ 7,  7,  6,  1],
                [ 8,  8,  6,  7],
                [ 4,  2,  5, 12]])

Accessing array rows and columns.    One commonly needed routine is accessing single
rows or columns of an array. You can do this by combining indexing and slicing,
using an empty slice marked by a single colon (:):

In[28]: print(x2[:, 0])  # first column of x2

[12  7  1]
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In[29]: print(x2[0, :])  # first row of x2

[12  5  2  4]

In the case of row access, the empty slice can be omitted for a more compact syntax:

In[30]: print(x2[0])  # equivalent to x2[0, :]

[12  5  2  4]

Subarrays as no-copy views
One important—and extremely useful—thing to know about array slices is that they
return views rather than copies of the array data. This is one area in which NumPy
array slicing differs from Python list slicing: in lists, slices will be copies. Consider our
two-dimensional array from before:

In[31]: print(x2)

[[12  5  2  4]
 [ 7  6  8  8]
 [ 1  6  7  7]]

Let’s extract a 2×2 subarray from this:

In[32]: x2_sub = x2[:2, :2]
        print(x2_sub)

[[12  5]
 [ 7  6]]

Now if we modify this subarray, we’ll see that the original array is changed! Observe:

In[33]: x2_sub[0, 0] = 99
        print(x2_sub)

[[99  5]
 [ 7  6]]

In[34]: print(x2)

[[99  5  2  4]
 [ 7  6  8  8]
 [ 1  6  7  7]]

This default behavior is actually quite useful: it means that when we work with large
datasets, we can access and process pieces of these datasets without the need to copy
the underlying data buffer.

Creating copies of arrays
Despite the nice features of array views, it is sometimes useful to instead explicitly
copy the data within an array or a subarray. This can be most easily done with the
copy() method:
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In[35]: x2_sub_copy = x2[:2, :2].copy()
        print(x2_sub_copy)

[[99  5]
 [ 7  6]]

If we now modify this subarray, the original array is not touched:

In[36]: x2_sub_copy[0, 0] = 42
        print(x2_sub_copy)

[[42  5]
 [ 7  6]]

In[37]: print(x2)

[[99  5  2  4]
 [ 7  6  8  8]
 [ 1  6  7  7]]

Reshaping of Arrays
Another useful type of operation is reshaping of arrays. The most flexible way of
doing this is with the reshape() method. For example, if you want to put the num‐
bers 1 through 9 in a 3×3 grid, you can do the following:

In[38]: grid = np.arange(1, 10).reshape((3, 3))
        print(grid)

[[1 2 3]
 [4 5 6]
 [7 8 9]]

Note that for this to work, the size of the initial array must match the size of the
reshaped array. Where possible, the reshape method will use a no-copy view of the
initial array, but with noncontiguous memory buffers this is not always the case.

Another common reshaping pattern is the conversion of a one-dimensional array
into a two-dimensional row or column matrix. You can do this with the reshape
method, or more easily by making use of the newaxis keyword within a slice opera‐
tion:

In[39]: x = np.array([1, 2, 3])

        # row vector via reshape
        x.reshape((1, 3))

Out[39]: array([[1, 2, 3]])

In[40]: # row vector via newaxis
        x[np.newaxis, :]

Out[40]: array([[1, 2, 3]])
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In[41]: # column vector via reshape
        x.reshape((3, 1))

Out[41]: array([[1],
                [2],
                [3]])

In[42]: # column vector via newaxis
        x[:, np.newaxis]

Out[42]: array([[1],
                [2],
                [3]])

We will see this type of transformation often throughout the remainder of the book.

Array Concatenation and Splitting
All of the preceding routines worked on single arrays. It’s also possible to combine
multiple arrays into one, and to conversely split a single array into multiple arrays.
We’ll take a look at those operations here.

Concatenation of arrays
Concatenation, or joining of two arrays in NumPy, is primarily accomplished
through the routines np.concatenate, np.vstack, and np.hstack. np.concatenate
takes a tuple or list of arrays as its first argument, as we can see here:

In[43]: x = np.array([1, 2, 3])
        y = np.array([3, 2, 1])
        np.concatenate([x, y])

Out[43]: array([1, 2, 3, 3, 2, 1])

You can also concatenate more than two arrays at once:

In[44]: z = [99, 99, 99]
        print(np.concatenate([x, y, z]))

[ 1  2  3  3  2  1 99 99 99]

np.concatenate can also be used for two-dimensional arrays:

In[45]: grid = np.array([[1, 2, 3],
                         [4, 5, 6]])

In[46]: # concatenate along the first axis
        np.concatenate([grid, grid])

Out[46]: array([[1, 2, 3],
                [4, 5, 6],
                [1, 2, 3],
                [4, 5, 6]])

In[47]: # concatenate along the second axis (zero-indexed)
        np.concatenate([grid, grid], axis=1)
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Out[47]: array([[1, 2, 3, 1, 2, 3],
                [4, 5, 6, 4, 5, 6]])

For working with arrays of mixed dimensions, it can be clearer to use the np.vstack
(vertical stack) and np.hstack (horizontal stack) functions:

In[48]: x = np.array([1, 2, 3])
        grid = np.array([[9, 8, 7],
                         [6, 5, 4]])

        # vertically stack the arrays
        np.vstack([x, grid])

Out[48]: array([[1, 2, 3],
                [9, 8, 7],
                [6, 5, 4]])

In[49]: # horizontally stack the arrays
        y = np.array([[99],
                      [99]])
        np.hstack([grid, y])

Out[49]: array([[ 9,  8,  7, 99],
                [ 6,  5,  4, 99]])

Similarly, np.dstack will stack arrays along the third axis.

Splitting of arrays
The opposite of concatenation is splitting, which is implemented by the functions
np.split, np.hsplit, and np.vsplit. For each of these, we can pass a list of indices
giving the split points:

In[50]: x = [1, 2, 3, 99, 99, 3, 2, 1]
        x1, x2, x3 = np.split(x, [3, 5])
        print(x1, x2, x3)

[1 2 3] [99 99] [3 2 1]

Notice that N split points lead to N + 1 subarrays. The related functions np.hsplit
and np.vsplit are similar:

In[51]: grid = np.arange(16).reshape((4, 4))
        grid

Out[51]: array([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11],
                [12, 13, 14, 15]])

In[52]: upper, lower = np.vsplit(grid, [2])
        print(upper)
        print(lower)

[[0 1 2 3]
 [4 5 6 7]]
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[[ 8  9 10 11]
 [12 13 14 15]]

In[53]: left, right = np.hsplit(grid, [2])
        print(left)
        print(right)

[[ 0  1]
 [ 4  5]
 [ 8  9]
 [12 13]]
[[ 2  3]
 [ 6  7]
 [10 11]
 [14 15]]

Similarly, np.dsplit will split arrays along the third axis.

Computation on NumPy Arrays: Universal Functions
Up until now, we have been discussing some of the basic nuts and bolts of NumPy; in
the next few sections, we will dive into the reasons that NumPy is so important in the
Python data science world. Namely, it provides an easy and flexible interface to opti‐
mized computation with arrays of data.

Computation on NumPy arrays can be very fast, or it can be very slow. The key to
making it fast is to use vectorized operations, generally implemented through Num‐
Py’s universal functions (ufuncs). This section motivates the need for NumPy’s ufuncs,
which can be used to make repeated calculations on array elements much more effi‐
cient. It then introduces many of the most common and useful arithmetic ufuncs
available in the NumPy package.

The Slowness of Loops
Python’s default implementation (known as CPython) does some operations very
slowly. This is in part due to the dynamic, interpreted nature of the language: the fact
that types are flexible, so that sequences of operations cannot be compiled down to
efficient machine code as in languages like C and Fortran. Recently there have been
various attempts to address this weakness: well-known examples are the PyPy project,
a just-in-time compiled implementation of Python; the Cython project, which con‐
verts Python code to compilable C code; and the Numba project, which converts
snippets of Python code to fast LLVM bytecode. Each of these has its strengths and
weaknesses, but it is safe to say that none of the three approaches has yet surpassed
the reach and popularity of the standard CPython engine.

The relative sluggishness of Python generally manifests itself in situations where
many small operations are being repeated—for instance, looping over arrays to oper‐
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ate on each element. For example, imagine we have an array of values and we’d like to
compute the reciprocal of each. A straightforward approach might look like this:

In[1]: import numpy as np
       np.random.seed(0)

       def compute_reciprocals(values):
           output = np.empty(len(values))
           for i in range(len(values)):
               output[i] = 1.0 / values[i]
           return output

       values = np.random.randint(1, 10, size=5)
       compute_reciprocals(values)

Out[1]: array([ 0.16666667,  1.        ,  0.25      ,  0.25      ,  0.125     ])

This implementation probably feels fairly natural to someone from, say, a C or Java
background. But if we measure the execution time of this code for a large input, we
see that this operation is very slow, perhaps surprisingly so! We’ll benchmark this
with IPython’s %timeit magic (discussed in “Profiling and Timing Code” on page 25):

In[2]: big_array = np.random.randint(1, 100, size=1000000)
       %timeit compute_reciprocals(big_array)

1 loop, best of 3: 2.91 s per loop

It takes several seconds to compute these million operations and to store the result!
When even cell phones have processing speeds measured in Giga-FLOPS (i.e., bil‐
lions of numerical operations per second), this seems almost absurdly slow. It turns
out that the bottleneck here is not the operations themselves, but the type-checking
and function dispatches that CPython must do at each cycle of the loop. Each time
the reciprocal is computed, Python first examines the object’s type and does a
dynamic lookup of the correct function to use for that type. If we were working in
compiled code instead, this type specification would be known before the code exe‐
cutes and the result could be computed much more efficiently.

Introducing UFuncs
For many types of operations, NumPy provides a convenient interface into just this
kind of statically typed, compiled routine. This is known as a vectorized operation.
You can accomplish this by simply performing an operation on the array, which will
then be applied to each element. This vectorized approach is designed to push the
loop into the compiled layer that underlies NumPy, leading to much faster execution.

Compare the results of the following two:

In[3]: print(compute_reciprocals(values))
       print(1.0 / values)
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[ 0.16666667  1.          0.25        0.25        0.125     ]
[ 0.16666667  1.          0.25        0.25        0.125     ]

Looking at the execution time for our big array, we see that it completes orders of
magnitude faster than the Python loop:

In[4]: %timeit (1.0 / big_array)

100 loops, best of 3: 4.6 ms per loop

Vectorized operations in NumPy are implemented via ufuncs, whose main purpose is
to quickly execute repeated operations on values in NumPy arrays. Ufuncs are
extremely flexible—before we saw an operation between a scalar and an array, but we
can also operate between two arrays:

In[5]: np.arange(5) / np.arange(1, 6)

Out[5]: array([ 0.        ,  0.5       ,  0.66666667,  0.75      ,  0.8       ])

And ufunc operations are not limited to one-dimensional arrays—they can act on
multidimensional arrays as well:

In[6]: x = np.arange(9).reshape((3, 3))
       2 ** x

Out[6]: array([[  1,   2,   4],
               [  8,  16,  32],
               [ 64, 128, 256]])

Computations using vectorization through ufuncs are nearly always more efficient
than their counterpart implemented through Python loops, especially as the arrays
grow in size. Any time you see such a loop in a Python script, you should consider
whether it can be replaced with a vectorized expression.

Exploring NumPy’s UFuncs
Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary
ufuncs, which operate on two inputs. We’ll see examples of both these types of func‐
tions here.

Array arithmetic
NumPy’s ufuncs feel very natural to use because they make use of Python’s native
arithmetic operators. The standard addition, subtraction, multiplication, and division
can all be used:

In[7]: x = np.arange(4)
       print("x     =", x)
       print("x + 5 =", x + 5)
       print("x - 5 =", x - 5)
       print("x * 2 =", x * 2)
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       print("x / 2 =", x / 2)
       print("x // 2 =", x // 2)  # floor division

x     = [0 1 2 3]
x + 5 = [5 6 7 8]
x - 5 = [-5 -4 -3 -2]
x * 2 = [0 2 4 6]
x / 2 = [ 0.   0.5  1.   1.5]
x // 2 = [0 0 1 1]

There is also a unary ufunc for negation, a ** operator for exponentiation, and a %
operator for modulus:

In[8]: print("-x     = ", -x)
       print("x ** 2 = ", x ** 2)
       print("x % 2  = ", x % 2)

-x     =  [ 0 -1 -2 -3]
x ** 2 =  [0 1 4 9]
x % 2  =  [0 1 0 1]

In addition, these can be strung together however you wish, and the standard order
of operations is respected:

In[9]: -(0.5*x + 1) ** 2

Out[9]: array([-1.  , -2.25, -4.  , -6.25])

All of these arithmetic operations are simply convenient wrappers around specific
functions built into NumPy; for example, the + operator is a wrapper for the add
function:

In[10]: np.add(x, 2)

Out[10]: array([2, 3, 4, 5])

Table 2-2 lists the arithmetic operators implemented in NumPy.

Table 2-2. Arithmetic operators implemented in NumPy

Operator Equivalent ufunc Description

+ np.add Addition (e.g., 1 + 1 = 2)

- np.subtract Subtraction (e.g., 3 - 2 = 1)

- np.negative Unary negation (e.g., -2)

* np.multiply Multiplication (e.g., 2 * 3 = 6)

/ np.divide Division (e.g., 3 / 2 = 1.5)

// np.floor_divide Floor division (e.g., 3 // 2 = 1)

** np.power Exponentiation (e.g., 2 ** 3 = 8)

% np.mod Modulus/remainder (e.g., 9 % 4 = 1)
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Additionally there are Boolean/bitwise operators; we will explore these in “Compari‐
sons, Masks, and Boolean Logic” on page 70.

Absolute value
Just as NumPy understands Python’s built-in arithmetic operators, it also understands
Python’s built-in absolute value function:

In[11]: x = np.array([-2, -1, 0, 1, 2])
        abs(x)

Out[11]: array([2, 1, 0, 1, 2])

The corresponding NumPy ufunc is np.absolute, which is also available under the
alias np.abs:

In[12]: np.absolute(x)

Out[12]: array([2, 1, 0, 1, 2])

In[13]: np.abs(x)

Out[13]: array([2, 1, 0, 1, 2])

This ufunc can also handle complex data, in which the absolute value returns the
magnitude:

In[14]: x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
        np.abs(x)

Out[14]: array([ 5.,  5.,  2.,  1.])

Trigonometric functions
NumPy provides a large number of useful ufuncs, and some of the most useful for the
data scientist are the trigonometric functions. We’ll start by defining an array of
angles:

In[15]: theta = np.linspace(0, np.pi, 3)

Now we can compute some trigonometric functions on these values:

In[16]: print("theta      = ", theta)
        print("sin(theta) = ", np.sin(theta))
        print("cos(theta) = ", np.cos(theta))
        print("tan(theta) = ", np.tan(theta))

theta      =  [ 0.          1.57079633  3.14159265]
sin(theta) =  [  0.00000000e+00   1.00000000e+00   1.22464680e-16]
cos(theta) =  [  1.00000000e+00   6.12323400e-17  -1.00000000e+00]
tan(theta) =  [  0.00000000e+00   1.63312394e+16  -1.22464680e-16]

The values are computed to within machine precision, which is why values that
should be zero do not always hit exactly zero. Inverse trigonometric functions are also
available:
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In[17]: x = [-1, 0, 1]
        print("x         = ", x)
        print("arcsin(x) = ", np.arcsin(x))
        print("arccos(x) = ", np.arccos(x))
        print("arctan(x) = ", np.arctan(x))

x         =  [-1, 0, 1]
arcsin(x) =  [-1.57079633  0.          1.57079633]
arccos(x) =  [ 3.14159265  1.57079633  0.        ]
arctan(x) =  [-0.78539816  0.          0.78539816]

Exponents and logarithms
Another common type of operation available in a NumPy ufunc are the exponentials:

In[18]: x = [1, 2, 3]
        print("x     =", x)
        print("e^x   =", np.exp(x))
        print("2^x   =", np.exp2(x))
        print("3^x   =", np.power(3, x))

x     = [1, 2, 3]
e^x   = [  2.71828183   7.3890561   20.08553692]
2^x   = [ 2.  4.  8.]
3^x   = [ 3  9 27]

The inverse of the exponentials, the logarithms, are also available. The basic np.log
gives the natural logarithm; if you prefer to compute the base-2 logarithm or the
base-10 logarithm, these are available as well:

In[19]: x = [1, 2, 4, 10]
        print("x        =", x)
        print("ln(x)    =", np.log(x))
        print("log2(x)  =", np.log2(x))
        print("log10(x) =", np.log10(x))

x        = [1, 2, 4, 10]
ln(x)    = [ 0.          0.69314718  1.38629436  2.30258509]
log2(x)  = [ 0.          1.          2.          3.32192809]
log10(x) = [ 0.          0.30103     0.60205999  1.        ]

There are also some specialized versions that are useful for maintaining precision
with very small input:

In[20]: x = [0, 0.001, 0.01, 0.1]
        print("exp(x) - 1 =", np.expm1(x))
        print("log(1 + x) =", np.log1p(x))

exp(x) - 1 = [ 0.          0.0010005   0.01005017  0.10517092]
log(1 + x) = [ 0.          0.0009995   0.00995033  0.09531018]

When x is very small, these functions give more precise values than if the raw np.log
or np.exp were used.
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Specialized ufuncs
NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise
arithmetic, comparison operators, conversions from radians to degrees, rounding and
remainders, and much more. A look through the NumPy documentation reveals a lot
of interesting functionality.

Another excellent source for more specialized and obscure ufuncs is the submodule 
scipy.special. If you want to compute some obscure mathematical function on
your data, chances are it is implemented in scipy.special. There are far too many
functions to list them all, but the following snippet shows a couple that might come
up in a statistics context:

In[21]: from scipy import special

In[22]: # Gamma functions (generalized factorials) and related functions
        x = [1, 5, 10]
        print("gamma(x)     =", special.gamma(x))
        print("ln|gamma(x)| =", special.gammaln(x))
        print("beta(x, 2)   =", special.beta(x, 2))

gamma(x)     = [  1.00000000e+00   2.40000000e+01   3.62880000e+05]
ln|gamma(x)| = [  0.           3.17805383  12.80182748]
beta(x, 2)   = [ 0.5         0.03333333  0.00909091]

In[23]: # Error function (integral of Gaussian)
        # its complement, and its inverse
        x = np.array([0, 0.3, 0.7, 1.0])
        print("erf(x)  =", special.erf(x))
        print("erfc(x) =", special.erfc(x))
        print("erfinv(x) =", special.erfinv(x))

erf(x)  = [ 0.          0.32862676  0.67780119  0.84270079]
erfc(x) = [ 1.          0.67137324  0.32219881  0.15729921]
erfinv(x) = [ 0.          0.27246271  0.73286908         inf]

There are many, many more ufuncs available in both NumPy and scipy.special.
Because the documentation of these packages is available online, a web search along
the lines of “gamma function python” will generally find the relevant information.

Advanced Ufunc Features
Many NumPy users make use of ufuncs without ever learning their full set of features.
We’ll outline a few specialized features of ufuncs here.

Specifying output
For large calculations, it is sometimes useful to be able to specify the array where the
result of the calculation will be stored. Rather than creating a temporary array, you
can use this to write computation results directly to the memory location where you’d
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like them to be. For all ufuncs, you can do this using the out argument of the
function:

In[24]: x = np.arange(5)
        y = np.empty(5)
        np.multiply(x, 10, out=y)
        print(y)

[  0.  10.  20.  30.  40.]

This can even be used with array views. For example, we can write the results of a
computation to every other element of a specified array:

In[25]: y = np.zeros(10)
        np.power(2, x, out=y[::2])
        print(y)

[  1.   0.   2.   0.   4.   0.   8.   0.  16.   0.]

If we had instead written y[::2] = 2 ** x, this would have resulted in the creation
of a temporary array to hold the results of 2 ** x, followed by a second operation
copying those values into the y array. This doesn’t make much of a difference for such
a small computation, but for very large arrays the memory savings from careful use of
the out argument can be significant.

Aggregates
For binary ufuncs, there are some interesting aggregates that can be computed
directly from the object. For example, if we’d like to reduce an array with a particular
operation, we can use the reduce method of any ufunc. A reduce repeatedly applies a
given operation to the elements of an array until only a single result remains.

For example, calling reduce on the add ufunc returns the sum of all elements in the
array:

In[26]: x = np.arange(1, 6)
        np.add.reduce(x)

Out[26]: 15

Similarly, calling reduce on the multiply ufunc results in the product of all array
elements:

In[27]: np.multiply.reduce(x)

Out[27]: 120

If we’d like to store all the intermediate results of the computation, we can instead use
accumulate:

In[28]: np.add.accumulate(x)

Out[28]: array([ 1,  3,  6, 10, 15])
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In[29]: np.multiply.accumulate(x)

Out[29]: array([  1,   2,   6,  24, 120])

Note that for these particular cases, there are dedicated NumPy functions to compute
the results (np.sum, np.prod, np.cumsum, np.cumprod), which we’ll explore in “Aggre‐
gations: Min, Max, and Everything in Between” on page 58.

Outer products
Finally, any ufunc can compute the output of all pairs of two different inputs using
the outer method. This allows you, in one line, to do things like create a multiplica‐
tion table:

In[30]: x = np.arange(1, 6)
        np.multiply.outer(x, x)

Out[30]: array([[ 1,  2,  3,  4,  5],
                [ 2,  4,  6,  8, 10],
                [ 3,  6,  9, 12, 15],
                [ 4,  8, 12, 16, 20],
                [ 5, 10, 15, 20, 25]])

The ufunc.at and ufunc.reduceat methods, which we’ll explore in “Fancy Index‐
ing” on page 78, are very helpful as well.

Another extremely useful feature of ufuncs is the ability to operate between arrays of
different sizes and shapes, a set of operations known as broadcasting. This subject is
important enough that we will devote a whole section to it (see “Computation on
Arrays: Broadcasting” on page 63).

Ufuncs: Learning More
More information on universal functions (including the full list of available func‐
tions) can be found on the NumPy and SciPy documentation websites.

Recall that you can also access information directly from within IPython by import‐
ing the packages and using IPython’s tab-completion and help (?) functionality, as
described in “Help and Documentation in IPython” on page 3.

Aggregations: Min, Max, and Everything in Between
Often when you are faced with a large amount of data, a first step is to compute sum‐
mary statistics for the data in question. Perhaps the most common summary statistics
are the mean and standard deviation, which allow you to summarize the “typical” val‐
ues in a dataset, but other aggregates are useful as well (the sum, product, median,
minimum and maximum, quantiles, etc.).
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NumPy has fast built-in aggregation functions for working on arrays; we’ll discuss
and demonstrate some of them here.

Summing the Values in an Array
As a quick example, consider computing the sum of all values in an array. Python
itself can do this using the built-in sum function:

In[1]: import numpy as np

In[2]: L = np.random.random(100)
       sum(L)

Out[2]: 55.61209116604941

The syntax is quite similar to that of NumPy’s sum function, and the result is the same
in the simplest case:

In[3]: np.sum(L)

Out[3]: 55.612091166049424

However, because it executes the operation in compiled code, NumPy’s version of the
operation is computed much more quickly:

In[4]: big_array = np.random.rand(1000000)
       %timeit sum(big_array)
       %timeit np.sum(big_array)

10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 µs per loop

Be careful, though: the sum function and the np.sum function are not identical, which
can sometimes lead to confusion! In particular, their optional arguments have differ‐
ent meanings, and np.sum is aware of multiple array dimensions, as we will see in the
following section.

Minimum and Maximum
Similarly, Python has built-in min and max functions, used to find the minimum value
and maximum value of any given array:

In[5]: min(big_array), max(big_array)

Out[5]: (1.1717128136634614e-06, 0.9999976784968716)

NumPy’s corresponding functions have similar syntax, and again operate much more
quickly:

In[6]: np.min(big_array), np.max(big_array)

Out[6]: (1.1717128136634614e-06, 0.9999976784968716)
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In[7]: %timeit min(big_array)
       %timeit np.min(big_array)

10 loops, best of 3: 82.3 ms per loop
1000 loops, best of 3: 497 µs per loop

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use
methods of the array object itself:

In[8]: print(big_array.min(), big_array.max(), big_array.sum())

1.17171281366e-06 0.999997678497 499911.628197

Whenever possible, make sure that you are using the NumPy version of these aggre‐
gates when operating on NumPy arrays!

Multidimensional aggregates
One common type of aggregation operation is an aggregate along a row or column.
Say you have some data stored in a two-dimensional array:

In[9]: M = np.random.random((3, 4))
       print(M)

[[ 0.8967576   0.03783739  0.75952519  0.06682827]
 [ 0.8354065   0.99196818  0.19544769  0.43447084]
 [ 0.66859307  0.15038721  0.37911423  0.6687194 ]]

By default, each NumPy aggregation function will return the aggregate over the entire
array:

In[10]: M.sum()

Out[10]: 6.0850555667307118

Aggregation functions take an additional argument specifying the axis along which
the aggregate is computed. For example, we can find the minimum value within each
column by specifying axis=0:

In[11]: M.min(axis=0)

Out[11]: array([ 0.66859307,  0.03783739,  0.19544769,  0.06682827])

The function returns four values, corresponding to the four columns of numbers.

Similarly, we can find the maximum value within each row:

In[12]: M.max(axis=1)

Out[12]: array([ 0.8967576 ,  0.99196818,  0.6687194 ])

The way the axis is specified here can be confusing to users coming from other lan‐
guages. The axis keyword specifies the dimension of the array that will be collapsed,
rather than the dimension that will be returned. So specifying axis=0 means that the
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first axis will be collapsed: for two-dimensional arrays, this means that values within
each column will be aggregated.

Other aggregation functions
NumPy provides many other aggregation functions, but we won’t discuss them in
detail here. Additionally, most aggregates have a NaN-safe counterpart that computes
the result while ignoring missing values, which are marked by the special IEEE
floating-point NaN value (for a fuller discussion of missing data, see “Handling Miss‐
ing Data” on page 119). Some of these NaN-safe functions were not added until
NumPy 1.8, so they will not be available in older NumPy versions.

Table 2-3 provides a list of useful aggregation functions available in NumPy.

Table 2-3. Aggregation functions available in NumPy

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements

np.prod np.nanprod Compute product of elements

np.mean np.nanmean Compute median of elements

np.std np.nanstd Compute standard deviation

np.var np.nanvar Compute variance

np.min np.nanmin Find minimum value

np.max np.nanmax Find maximum value

np.argmin np.nanargmin Find index of minimum value

np.argmax np.nanargmax Find index of maximum value

np.median np.nanmedian Compute median of elements

np.percentile np.nanpercentile Compute rank-based statistics of elements

np.any N/A Evaluate whether any elements are true

np.all N/A Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

Example: What Is the Average Height of US Presidents?
Aggregates available in NumPy can be extremely useful for summarizing a set of val‐
ues. As a simple example, let’s consider the heights of all US presidents. This data is
available in the file president_heights.csv, which is a simple comma-separated list of
labels and values:

In[13]: !head -4 data/president_heights.csv

order,name,height(cm)
1,George Washington,189
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2,John Adams,170
3,Thomas Jefferson,189

We’ll use the Pandas package, which we’ll explore more fully in Chapter 3, to read the
file and extract this information (note that the heights are measured in centimeters):

In[14]: import pandas as pd
        data = pd.read_csv('data/president_heights.csv')
        heights = np.array(data['height(cm)'])
        print(heights)

[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173
 174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183
 177 185 188 188 182 185]

Now that we have this data array, we can compute a variety of summary statistics:

In[15]: print("Mean height:       ", heights.mean())
        print("Standard deviation:", heights.std())
        print("Minimum height:    ", heights.min())
        print("Maximum height:    ", heights.max())

Mean height:        179.738095238
Standard deviation: 6.93184344275
Minimum height:     163
Maximum height:     193

Note that in each case, the aggregation operation reduced the entire array to a single
summarizing value, which gives us information about the distribution of values. We
may also wish to compute quantiles:

In[16]: print("25th percentile:   ", np.percentile(heights, 25))
        print("Median:            ", np.median(heights))
        print("75th percentile:   ", np.percentile(heights, 75))

25th percentile:    174.25
Median:             182.0
75th percentile:    183.0

We see that the median height of US presidents is 182 cm, or just shy of six feet.

Of course, sometimes it’s more useful to see a visual representation of this data, which
we can accomplish using tools in Matplotlib (we’ll discuss Matplotlib more fully in
Chapter 4). For example, this code generates the chart shown in Figure 2-3:

In[17]: %matplotlib inline
        import matplotlib.pyplot as plt
        import seaborn; seaborn.set()  # set plot style

In[18]: plt.hist(heights)
        plt.title('Height Distribution of US Presidents')
        plt.xlabel('height (cm)')
        plt.ylabel('number');
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Figure 2-3. Histogram of presidential heights

These aggregates are some of the fundamental pieces of exploratory data analysis that
we’ll explore in more depth in later chapters of the book.

Computation on Arrays: Broadcasting
We saw in the previous section how NumPy’s universal functions can be used to vec‐
torize operations and thereby remove slow Python loops. Another means of vectoriz‐
ing operations is to use NumPy’s broadcasting functionality. Broadcasting is simply a
set of rules for applying binary ufuncs (addition, subtraction, multiplication, etc.) on
arrays of different sizes.

Introducing Broadcasting
Recall that for arrays of the same size, binary operations are performed on an
element-by-element basis:

In[1]: import numpy as np

In[2]: a = np.array([0, 1, 2])
       b = np.array([5, 5, 5])
       a + b

Out[2]: array([5, 6, 7])

Broadcasting allows these types of binary operations to be performed on arrays of dif‐
ferent sizes—for example, we can just as easily add a scalar (think of it as a zero-
dimensional array) to an array:
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In[3]: a + 5

Out[3]: array([5, 6, 7])

We can think of this as an operation that stretches or duplicates the value 5 into the
array [5, 5, 5], and adds the results. The advantage of NumPy’s broadcasting is that
this duplication of values does not actually take place, but it is a useful mental model
as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when
we add a one-dimensional array to a two-dimensional array:

In[4]: M = np.ones((3, 3))
       M

Out[4]: array([[ 1.,  1.,  1.],
               [ 1.,  1.,  1.],
               [ 1.,  1.,  1.]])

In[5]: M + a

Out[5]: array([[ 1.,  2.,  3.],
               [ 1.,  2.,  3.],
               [ 1.,  2.,  3.]])

Here the one-dimensional array a is stretched, or broadcast, across the second
dimension in order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can
involve broadcasting of both arrays. Consider the following example:

In[6]: a = np.arange(3)
       b = np.arange(3)[:, np.newaxis]

       print(a)
       print(b)

[0 1 2]
[[0]
 [1]
 [2]]

In[7]: a + b

Out[7]: array([[0, 1, 2],
               [1, 2, 3],
               [2, 3, 4]])
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1 Code to produce this plot can be found in the online appendix, and is adapted from source published in the
astroML documentation. Used with permission.

Just as before we stretched or broadcasted one value to match the shape of the other,
here we’ve stretched both a and b to match a common shape, and the result is a two-
dimensional array! The geometry of these examples is visualized in Figure 2-4.1

Figure 2-4. Visualization of NumPy broadcasting

The light boxes represent the broadcasted values: again, this extra memory is not
actually allocated in the course of the operation, but it can be useful conceptually to
imagine that it is.

Rules of Broadcasting
Broadcasting in NumPy follows a strict set of rules to determine the interaction
between the two arrays:

• Rule 1: If the two arrays differ in their number of dimensions, the shape of the
one with fewer dimensions is padded with ones on its leading (left) side.

• Rule 2: If the shape of the two arrays does not match in any dimension, the array
with shape equal to 1 in that dimension is stretched to match the other shape.

• Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is
raised.
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To make these rules clear, let’s consider a few examples in detail.

Broadcasting example 1
Let’s look at adding a two-dimensional array to a one-dimensional array:

In[8]: M = np.ones((2, 3))
       a = np.arange(3)

Let’s consider an operation on these two arrays. The shapes of the arrays are:

M.shape = (2, 3)

a.shape = (3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with
ones:

M.shape -> (2, 3)

a.shape -> (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension
to match:

M.shape -> (2, 3)

a.shape -> (2, 3)

The shapes match, and we see that the final shape will be (2, 3):

In[9]: M + a

Out[9]: array([[ 1.,  2.,  3.],
               [ 1.,  2.,  3.]])

Broadcasting example 2
Let’s take a look at an example where both arrays need to be broadcast:

In[10]: a = np.arange(3).reshape((3, 1))
        b = np.arange(3)

Again, we’ll start by writing out the shape of the arrays:

a.shape = (3, 1)

b.shape = (3,)
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Rule 1 says we must pad the shape of b with ones:

a.shape -> (3, 1)

b.shape -> (1, 3)

And rule 2 tells us that we upgrade each of these ones to match the corresponding
size of the other array:

a.shape -> (3, 3)

b.shape -> (3, 3)

Because the result matches, these shapes are compatible. We can see this here:

In[11]: a + b

Out[11]: array([[0, 1, 2],
                [1, 2, 3],
                [2, 3, 4]])

Broadcasting example 3
Now let’s take a look at an example in which the two arrays are not compatible:

In[12]: M = np.ones((3, 2))
        a = np.arange(3)

This is just a slightly different situation than in the first example: the matrix M is
transposed. How does this affect the calculation? The shapes of the arrays are:

M.shape = (3, 2)

a.shape = (3,)

Again, rule 1 tells us that we must pad the shape of a with ones:

M.shape -> (3, 2)

a.shape -> (1, 3)

By rule 2, the first dimension of a is stretched to match that of M:

M.shape -> (3, 2)

a.shape -> (3, 3)

Now we hit rule 3—the final shapes do not match, so these two arrays are incompati‐
ble, as we can observe by attempting this operation:
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In[13]: M + a

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-13-9e16e9f98da6> in <module>()
----> 1 M + a

ValueError: operands could not be broadcast together with shapes (3,2) (3,)

Note the potential confusion here: you could imagine making a and M compatible by,
say, padding a’s shape with ones on the right rather than the left. But this is not how
the broadcasting rules work! That sort of flexibility might be useful in some cases, but
it would lead to potential areas of ambiguity. If right-side padding is what you’d like,
you can do this explicitly by reshaping the array (we’ll use the np.newaxis keyword
introduced in “The Basics of NumPy Arrays” on page 42):

In[14]: a[:, np.newaxis].shape

Out[14]: (3, 1)

In[15]: M + a[:, np.newaxis]

Out[15]: array([[ 1.,  1.],
                [ 2.,  2.],
                [ 3.,  3.]])

Also note that while we’ve been focusing on the + operator here, these broadcasting
rules apply to any binary ufunc. For example, here is the logaddexp(a, b) function,
which computes log(exp(a) + exp(b)) with more precision than the naive
approach:

In[16]: np.logaddexp(M, a[:, np.newaxis])

Out[16]: array([[ 1.31326169,  1.31326169],
                [ 1.69314718,  1.69314718],
                [ 2.31326169,  2.31326169]])

For more information on the many available universal functions, refer to “Computa‐
tion on NumPy Arrays: Universal Functions” on page 50.

Broadcasting in Practice
Broadcasting operations form the core of many examples we’ll see throughout this
book. We’ll now take a look at a couple simple examples of where they can be useful.

Centering an array
In the previous section, we saw that ufuncs allow a NumPy user to remove the need
to explicitly write slow Python loops. Broadcasting extends this ability. One com‐
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monly seen example is centering an array of data. Imagine you have an array of 10
observations, each of which consists of 3 values. Using the standard convention (see
“Data Representation in Scikit-Learn” on page 343), we’ll store this in a 10×3 array:

In[17]: X = np.random.random((10, 3))

We can compute the mean of each feature using the mean aggregate across the first
dimension:

In[18]: Xmean = X.mean(0)
        Xmean

Out[18]: array([ 0.53514715,  0.66567217,  0.44385899])

And now we can center the X array by subtracting the mean (this is a broadcasting
operation):

In[19]: X_centered = X - Xmean

To double-check that we’ve done this correctly, we can check that the centered array
has near zero mean:

In[20]: X_centered.mean(0)

Out[20]: array([  2.22044605e-17,  -7.77156117e-17,  -1.66533454e-17])

To within-machine precision, the mean is now zero.

Plotting a two-dimensional function
One place that broadcasting is very useful is in displaying images based on two-
dimensional functions. If we want to define a function z = f(x, y), broadcasting can be
used to compute the function across the grid:

In[21]: # x and y have 50 steps from 0 to 5
        x = np.linspace(0, 5, 50)
        y = np.linspace(0, 5, 50)[:, np.newaxis]

        z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

We’ll use Matplotlib to plot this two-dimensional array (these tools will be discussed
in full in “Density and Contour Plots” on page 241):

In[22]: %matplotlib inline
       import matplotlib.pyplot as plt

In[23]: plt.imshow(z, origin='lower', extent=[0, 5, 0, 5],
                   cmap='viridis')
        plt.colorbar();

The result, shown in Figure 2-5, is a compelling visualization of the two-dimensional
function.
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Figure 2-5. Visualization of a 2D array

Comparisons, Masks, and Boolean Logic
This section covers the use of Boolean masks to examine and manipulate values
within NumPy arrays. Masking comes up when you want to extract, modify, count, or
otherwise manipulate values in an array based on some criterion: for example, you
might wish to count all values greater than a certain value, or perhaps remove all out‐
liers that are above some threshold. In NumPy, Boolean masking is often the most
efficient way to accomplish these types of tasks.

Example: Counting Rainy Days
Imagine you have a series of data that represents the amount of precipitation each day
for a year in a given city. For example, here we’ll load the daily rainfall statistics for
the city of Seattle in 2014, using Pandas (which is covered in more detail in Chap‐
ter 3):

In[1]: import numpy as np
       import pandas as pd

       # use Pandas to extract rainfall inches as a NumPy array
       rainfall = pd.read_csv('data/Seattle2014.csv')['PRCP'].values
       inches = rainfall / 254  # 1/10mm -> inches
       inches.shape

Out[1]: (365,)

The array contains 365 values, giving daily rainfall in inches from January 1 to
December 31, 2014.

As a first quick visualization, let’s look at the histogram of rainy days shown in
Figure 2-6, which was generated using Matplotlib (we will explore this tool more fully
in Chapter 4):
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In[2]: %matplotlib inline
       import matplotlib.pyplot as plt
       import seaborn; seaborn.set()  # set plot styles

In[3]: plt.hist(inches, 40);

Figure 2-6. Histogram of 2014 rainfall in Seattle

This histogram gives us a general idea of what the data looks like: despite its reputa‐
tion, the vast majority of days in Seattle saw near zero measured rainfall in 2014. But
this doesn’t do a good job of conveying some information we’d like to see: for exam‐
ple, how many rainy days were there in the year? What is the average precipitation on
those rainy days? How many days were there with more than half an inch of rain?

Digging into the data
One approach to this would be to answer these questions by hand: loop through the
data, incrementing a counter each time we see values in some desired range. For rea‐
sons discussed throughout this chapter, such an approach is very inefficient, both
from the standpoint of time writing code and time computing the result. We saw in
“Computation on NumPy Arrays: Universal Functions” on page 50 that NumPy’s
ufuncs can be used in place of loops to do fast element-wise arithmetic operations on
arrays; in the same way, we can use other ufuncs to do element-wise comparisons over
arrays, and we can then manipulate the results to answer the questions we have. We’ll
leave the data aside for right now, and discuss some general tools in NumPy to use
masking to quickly answer these types of questions.

Comparison Operators as ufuncs
In “Computation on NumPy Arrays: Universal Functions” on page 50 we introduced
ufuncs, and focused in particular on arithmetic operators. We saw that using +, -, *, /,
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and others on arrays leads to element-wise operations. NumPy also implements com‐
parison operators such as < (less than) and > (greater than) as element-wise ufuncs.
The result of these comparison operators is always an array with a Boolean data type.
All six of the standard comparison operations are available:

In[4]: x = np.array([1, 2, 3, 4, 5])

In[5]: x < 3  # less than

Out[5]: array([ True,  True, False, False, False], dtype=bool)

In[6]: x > 3  # greater than

Out[6]: array([False, False, False,  True,  True], dtype=bool)

In[7]: x <= 3  # less than or equal

Out[7]: array([ True,  True,  True, False, False], dtype=bool)

In[8]: x >= 3  # greater than or equal

Out[8]: array([False, False,  True,  True,  True], dtype=bool)

In[9]: x != 3  # not equal

Out[9]: array([ True,  True, False,  True,  True], dtype=bool)

In[10]: x == 3  # equal

Out[10]: array([False, False,  True, False, False], dtype=bool)

It is also possible to do an element-by-element comparison of two arrays, and to
include compound expressions:

In[11]: (2 * x) == (x ** 2)

Out[11]: array([False,  True, False, False, False], dtype=bool)

As in the case of arithmetic operators, the comparison operators are implemented as
ufuncs in NumPy; for example, when you write x < 3, internally NumPy uses
np.less(x, 3). A summary of the comparison operators and their equivalent ufunc
is shown here:

Operator Equivalent ufunc

== np.equal

!= np.not_equal

< np.less

<= np.less_equal

> np.greater

>= np.greater_equal

Just as in the case of arithmetic ufuncs, these will work on arrays of any size and
shape. Here is a two-dimensional example:
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In[12]: rng = np.random.RandomState(0)
        x = rng.randint(10, size=(3, 4))
        x

Out[12]: array([[5, 0, 3, 3],
                [7, 9, 3, 5],
                [2, 4, 7, 6]])

In[13]: x < 6

Out[13]: array([[ True,  True,  True,  True],
                [False, False,  True,  True],
                [ True,  True, False, False]], dtype=bool)

In each case, the result is a Boolean array, and NumPy provides a number of straight‐
forward patterns for working with these Boolean results.

Working with Boolean Arrays
Given a Boolean array, there are a host of useful operations you can do. We’ll work
with x, the two-dimensional array we created earlier:

In[14]: print(x)

[[5 0 3 3]
 [7 9 3 5]
 [2 4 7 6]]

Counting entries

To count the number of True entries in a Boolean array, np.count_nonzero is useful:

In[15]: # how many values less than 6?
        np.count_nonzero(x < 6)

Out[15]: 8

We see that there are eight array entries that are less than 6. Another way to get at this
information is to use np.sum; in this case, False is interpreted as 0, and True is inter‐
preted as 1:

In[16]: np.sum(x < 6)

Out[16]: 8

The benefit of sum() is that like with other NumPy aggregation functions, this sum‐
mation can be done along rows or columns as well:

In[17]: # how many values less than 6 in each row?
        np.sum(x < 6, axis=1)

Out[17]: array([4, 2, 2])

This counts the number of values less than 6 in each row of the matrix.
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If we’re interested in quickly checking whether any or all the values are true, we can
use (you guessed it) np.any() or np.all():

In[18]: # are there any values greater than 8?
        np.any(x > 8)

Out[18]: True

In[19]: # are there any values less than zero?
        np.any(x < 0)

Out[19]: False

In[20]: # are all values less than 10?
        np.all(x < 10)

Out[20]: True

In[21]: # are all values equal to 6?
        np.all(x == 6)

Out[21]: False

np.all() and np.any() can be used along particular axes as well. For example:

In[22]: # are all values in each row less than 8?
        np.all(x < 8, axis=1)

Out[22]: array([ True, False,  True], dtype=bool)

Here all the elements in the first and third rows are less than 8, while this is not the
case for the second row.

Finally, a quick warning: as mentioned in “Aggregations: Min, Max, and Everything
in Between” on page 58, Python has built-in sum(), any(), and all() functions.
These have a different syntax than the NumPy versions, and in particular will fail or
produce unintended results when used on multidimensional arrays. Be sure that you
are using np.sum(), np.any(), and np.all() for these examples!

Boolean operators
We’ve already seen how we might count, say, all days with rain less than four inches,
or all days with rain greater than two inches. But what if we want to know about all
days with rain less than four inches and greater than one inch? This is accomplished
through Python’s bitwise logic operators, &, |, ^, and ~. Like with the standard arith‐
metic operators, NumPy overloads these as ufuncs that work element-wise on (usu‐
ally Boolean) arrays.

For example, we can address this sort of compound question as follows:

In[23]: np.sum((inches > 0.5) & (inches < 1))

Out[23]: 29

So we see that there are 29 days with rainfall between 0.5 and 1.0 inches.
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Note that the parentheses here are important—because of operator precedence rules,
with parentheses removed this expression would be evaluated as follows, which
results in an error:

inches > (0.5 & inches) < 1

Using the equivalence of A AND B and NOT (A OR B) (which you may remember if
you’ve taken an introductory logic course), we can compute the same result in a dif‐
ferent manner:

In[24]: np.sum(~( (inches <= 0.5) | (inches >= 1) ))

Out[24]: 29

Combining comparison operators and Boolean operators on arrays can lead to a wide
range of efficient logical operations.

The following table summarizes the bitwise Boolean operators and their equivalent
ufuncs:

Operator Equivalent ufunc

& np.bitwise_and

| np.bitwise_or

^ np.bitwise_xor

~ np.bitwise_not

Using these tools, we might start to answer the types of questions we have about our
weather data. Here are some examples of results we can compute when combining
masking with aggregations:

In[25]: print("Number days without rain:      ", np.sum(inches == 0))
        print("Number days with rain:         ", np.sum(inches != 0))
        print("Days with more than 0.5 inches:", np.sum(inches > 0.5))
        print("Rainy days with < 0.1 inches  :", np.sum((inches > 0) &
                                                        (inches < 0.2)))

Number days without rain:       215
Number days with rain:          150
Days with more than 0.5 inches: 37
Rainy days with < 0.1 inches  : 75

Boolean Arrays as Masks
In the preceding section, we looked at aggregates computed directly on Boolean
arrays. A more powerful pattern is to use Boolean arrays as masks, to select particular
subsets of the data themselves. Returning to our x array from before, suppose we
want an array of all values in the array that are less than, say, 5:
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In[26]: x

Out[26]: array([[5, 0, 3, 3],
                [7, 9, 3, 5],
                [2, 4, 7, 6]])

We can obtain a Boolean array for this condition easily, as we’ve already seen:

In[27]: x < 5

Out[27]: array([[False,  True,  True,  True],
                [False, False,  True, False],
                [ True,  True, False, False]], dtype=bool)

Now to select these values from the array, we can simply index on this Boolean array;
this is known as a masking operation:

In[28]: x[x < 5]

Out[28]: array([0, 3, 3, 3, 2, 4])

What is returned is a one-dimensional array filled with all the values that meet this
condition; in other words, all the values in positions at which the mask array is True.

We are then free to operate on these values as we wish. For example, we can compute
some relevant statistics on our Seattle rain data:

In[29]:
# construct a mask of all rainy days
rainy = (inches > 0)

# construct a mask of all summer days (June 21st is the 172nd day)
summer = (np.arange(365) - 172 < 90) & (np.arange(365) - 172 > 0)

print("Median precip on rainy days in 2014 (inches):   ",
      np.median(inches[rainy]))
print("Median precip on summer days in 2014 (inches):  ",
      np.median(inches[summer]))
print("Maximum precip on summer days in 2014 (inches): ",
      np.max(inches[summer]))
print("Median precip on non-summer rainy days (inches):",
      np.median(inches[rainy & ~summer]))

Median precip on rainy days in 2014 (inches):    0.194881889764
Median precip on summer days in 2014 (inches):   0.0
Maximum precip on summer days in 2014 (inches):  0.850393700787
Median precip on non-summer rainy days (inches): 0.200787401575

By combining Boolean operations, masking operations, and aggregates, we can very
quickly answer these sorts of questions for our dataset.
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Using the Keywords and/or Versus the Operators &/|
One common point of confusion is the difference between the keywords and and or
on one hand, and the operators & and | on the other hand. When would you use one
versus the other?

The difference is this: and and or gauge the truth or falsehood of entire object, while &
and | refer to bits within each object.

When you use and or or, it’s equivalent to asking Python to treat the object as a single
Boolean entity. In Python, all nonzero integers will evaluate as True. Thus:

In[30]: bool(42), bool(0)

Out[30]: (True, False)

In[31]: bool(42 and 0)

Out[31]: False

In[32]: bool(42 or 0)

Out[32]: True

When you use & and | on integers, the expression operates on the bits of the element,
applying the and or the or to the individual bits making up the number:

In[33]: bin(42)

Out[33]: '0b101010'

In[34]: bin(59)

Out[34]: '0b111011'

In[35]: bin(42 & 59)

Out[35]: '0b101010'

In[36]: bin(42 | 59)

Out[36]: '0b111011'

Notice that the corresponding bits of the binary representation are compared in order
to yield the result.

When you have an array of Boolean values in NumPy, this can be thought of as a
string of bits where 1 = True and 0 = False, and the result of & and | operates in a
similar manner as before:

In[37]: A = np.array([1, 0, 1, 0, 1, 0], dtype=bool)
        B = np.array([1, 1, 1, 0, 1, 1], dtype=bool)
        A | B

Out[37]: array([ True,  True,  True, False,  True,  True], dtype=bool)
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Using or on these arrays will try to evaluate the truth or falsehood of the entire array
object, which is not a well-defined value:

In[38]: A or B

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-38-5d8e4f2e21c0> in <module>()
----> 1 A or B

ValueError: The truth value of an array with more than one element is...

Similarly, when doing a Boolean expression on a given array, you should use | or &
rather than or or and:

In[39]: x = np.arange(10)
        (x > 4) & (x < 8)

Out[39]: array([False, False, ...,  True,  True, False, False], dtype=bool)

Trying to evaluate the truth or falsehood of the entire array will give the same
ValueError we saw previously:

In[40]: (x > 4) and (x < 8)

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-40-3d24f1ffd63d> in <module>()
----> 1 (x > 4) and (x < 8)

ValueError: The truth value of an array with more than one element is...

So remember this: and and or perform a single Boolean evaluation on an entire
object, while & and | perform multiple Boolean evaluations on the content (the indi‐
vidual bits or bytes) of an object. For Boolean NumPy arrays, the latter is nearly
always the desired operation.

Fancy Indexing
In the previous sections, we saw how to access and modify portions of arrays using
simple indices (e.g., arr[0]), slices (e.g., arr[:5]), and Boolean masks (e.g., arr[arr
> 0]). In this section, we’ll look at another style of array indexing, known as fancy
indexing. Fancy indexing is like the simple indexing we’ve already seen, but we pass
arrays of indices in place of single scalars. This allows us to very quickly access and
modify complicated subsets of an array’s values.

78 | Chapter 2: Introduction to NumPy



Exploring Fancy Indexing
Fancy indexing is conceptually simple: it means passing an array of indices to access
multiple array elements at once. For example, consider the following array:

In[1]: import numpy as np
       rand = np.random.RandomState(42)

       x = rand.randint(100, size=10)
       print(x)

[51 92 14 71 60 20 82 86 74 74]

Suppose we want to access three different elements. We could do it like this:

In[2]: [x[3], x[7], x[2]]

Out[2]: [71, 86, 14]

Alternatively, we can pass a single list or array of indices to obtain the same result:

In[3]: ind = [3, 7, 4]
       x[ind]

Out[3]: array([71, 86, 60])

With fancy indexing, the shape of the result reflects the shape of the index arrays
rather than the shape of the array being indexed:

In[4]: ind = np.array([[3, 7],
                       [4, 5]])
       x[ind]

Out[4]: array([[71, 86],
               [60, 20]])

Fancy indexing also works in multiple dimensions. Consider the following array:

In[5]: X = np.arange(12).reshape((3, 4))
       X

Out[5]: array([[ 0,  1,  2,  3],
               [ 4,  5,  6,  7],
               [ 8,  9, 10, 11]])

Like with standard indexing, the first index refers to the row, and the second to the
column:

In[6]: row = np.array([0, 1, 2])
       col = np.array([2, 1, 3])
       X[row, col]

Out[6]: array([ 2,  5, 11])

Notice that the first value in the result is X[0, 2], the second is X[1, 1], and the
third is X[2, 3]. The pairing of indices in fancy indexing follows all the broadcasting
rules that were mentioned in “Computation on Arrays: Broadcasting” on page 63. So,
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for example, if we combine a column vector and a row vector within the indices, we
get a two-dimensional result:

In[7]: X[row[:, np.newaxis], col]

Out[7]: array([[ 2,  1,  3],
               [ 6,  5,  7],
               [10,  9, 11]])

Here, each row value is matched with each column vector, exactly as we saw in broad‐
casting of arithmetic operations. For example:

In[8]: row[:, np.newaxis] * col

Out[8]: array([[0, 0, 0],
               [2, 1, 3],
               [4, 2, 6]])

It is always important to remember with fancy indexing that the return value reflects
the broadcasted shape of the indices, rather than the shape of the array being indexed.

Combined Indexing
For even more powerful operations, fancy indexing can be combined with the other
indexing schemes we’ve seen:

In[9]: print(X)

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

We can combine fancy and simple indices:

In[10]: X[2, [2, 0, 1]]

Out[10]: array([10,  8,  9])

We can also combine fancy indexing with slicing:

In[11]: X[1:, [2, 0, 1]]

Out[11]: array([[ 6,  4,  5],
                [10,  8,  9]])

And we can combine fancy indexing with masking:

In[12]: mask = np.array([1, 0, 1, 0], dtype=bool)
        X[row[:, np.newaxis], mask]

Out[12]: array([[ 0,  2],
                [ 4,  6],
                [ 8, 10]])

All of these indexing options combined lead to a very flexible set of operations for
accessing and modifying array values.
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Example: Selecting Random Points
One common use of fancy indexing is the selection of subsets of rows from a matrix.
For example, we might have an N by D matrix representing N points in D dimen‐
sions, such as the following points drawn from a two-dimensional normal distribu‐
tion:

In[13]: mean = [0, 0]
        cov = [[1, 2],
               [2, 5]]
        X = rand.multivariate_normal(mean, cov, 100)
        X.shape

Out[13]: (100, 2)

Using the plotting tools we will discuss in Chapter 4, we can visualize these points as
a scatter plot (Figure 2-7):

In[14]: %matplotlib inline
        import matplotlib.pyplot as plt
        import seaborn; seaborn.set()  # for plot styling

        plt.scatter(X[:, 0], X[:, 1]);

Figure 2-7. Normally distributed points

Let’s use fancy indexing to select 20 random points. We’ll do this by first choosing 20
random indices with no repeats, and use these indices to select a portion of the origi‐
nal array:

In[15]: indices = np.random.choice(X.shape[0], 20, replace=False)
        indices

Out[15]: array([93, 45, 73, 81, 50, 10, 98, 94,  4, 64, 65, 89, 47, 84, 82,
                80, 25, 90, 63, 20])
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In[16]: selection = X[indices]  # fancy indexing here
        selection.shape

Out[16]: (20, 2)

Now to see which points were selected, let’s over-plot large circles at the locations of
the selected points (Figure 2-8):

In[17]: plt.scatter(X[:, 0], X[:, 1], alpha=0.3)
        plt.scatter(selection[:, 0], selection[:, 1],
                    facecolor='none', s=200);

Figure 2-8. Random selection among points

This sort of strategy is often used to quickly partition datasets, as is often needed in
train/test splitting for validation of statistical models (see “Hyperparameters and
Model Validation” on page 359), and in sampling approaches to answering statistical
questions.

Modifying Values with Fancy Indexing
Just as fancy indexing can be used to access parts of an array, it can also be used to
modify parts of an array. For example, imagine we have an array of indices and we’d
like to set the corresponding items in an array to some value:

In[18]: x = np.arange(10)
        i = np.array([2, 1, 8, 4])
        x[i] = 99
        print(x)

[ 0 99 99  3 99  5  6  7 99  9]

We can use any assignment-type operator for this. For example:
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In[19]: x[i] -= 10
        print(x)

[ 0 89 89  3 89  5  6  7 89  9]

Notice, though, that repeated indices with these operations can cause some poten‐
tially unexpected results. Consider the following:

In[20]: x = np.zeros(10)
        x[[0, 0]] = [4, 6]
        print(x)

[ 6.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

Where did the 4 go? The result of this operation is to first assign x[0] = 4, followed
by x[0] = 6. The result, of course, is that x[0] contains the value 6.

Fair enough, but consider this operation:

In[21]: i = [2, 3, 3, 4, 4, 4]
        x[i] += 1
        x

Out[21]: array([ 6.,  0.,  1.,  1.,  1.,  0.,  0.,  0.,  0.,  0.])

You might expect that x[3] would contain the value 2, and x[4] would contain the
value 3, as this is how many times each index is repeated. Why is this not the case?
Conceptually, this is because x[i] += 1 is meant as a shorthand of x[i] = x[i] + 1.
x[i] + 1 is evaluated, and then the result is assigned to the indices in x. With this in
mind, it is not the augmentation that happens multiple times, but the assignment,
which leads to the rather nonintuitive results.

So what if you want the other behavior where the operation is repeated? For this, you
can use the at() method of ufuncs (available since NumPy 1.8), and do the following:

In[22]: x = np.zeros(10)
        np.add.at(x, i, 1)
        print(x)

[ 0.  0.  1.  2.  3.  0.  0.  0.  0.  0.]

The at() method does an in-place application of the given operator at the specified
indices (here, i) with the specified value (here, 1). Another method that is similar in
spirit is the reduceat() method of ufuncs, which you can read about in the NumPy
documentation.

Example: Binning Data
You can use these ideas to efficiently bin data to create a histogram by hand. For
example, imagine we have 1,000 values and would like to quickly find where they fall
within an array of bins. We could compute it using ufunc.at like this:
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In[23]: np.random.seed(42)
        x = np.random.randn(100)

        # compute a histogram by hand
        bins = np.linspace(-5, 5, 20)
        counts = np.zeros_like(bins)

        # find the appropriate bin for each x
        i = np.searchsorted(bins, x)

        # add 1 to each of these bins
        np.add.at(counts, i, 1)

The counts now reflect the number of points within each bin—in other words, a his‐
togram (Figure 2-9):

In[24]: # plot the results
        plt.plot(bins, counts, linestyle='steps');

Figure 2-9. A histogram computed by hand

Of course, it would be silly to have to do this each time you want to plot a histogram.
This is why Matplotlib provides the plt.hist() routine, which does the same in a
single line:

plt.hist(x, bins, histtype='step');

This function will create a nearly identical plot to the one seen here. To compute the
binning, Matplotlib uses the np.histogram function, which does a very similar com‐
putation to what we did before. Let’s compare the two here:

In[25]: print("NumPy routine:")
        %timeit counts, edges = np.histogram(x, bins)
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        print("Custom routine:")
        %timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
10000 loops, best of 3: 97.6 µs per loop
Custom routine:
10000 loops, best of 3: 19.5 µs per loop

Our own one-line algorithm is several times faster than the optimized algorithm in
NumPy! How can this be? If you dig into the np.histogram source code (you can do
this in IPython by typing np.histogram??), you’ll see that it’s quite a bit more
involved than the simple search-and-count that we’ve done; this is because NumPy’s
algorithm is more flexible, and particularly is designed for better performance when
the number of data points becomes large:

In[26]: x = np.random.randn(1000000)
        print("NumPy routine:")
        %timeit counts, edges = np.histogram(x, bins)

        print("Custom routine:")
        %timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
10 loops, best of 3: 68.7 ms per loop
Custom routine:
10 loops, best of 3: 135 ms per loop

What this comparison shows is that algorithmic efficiency is almost never a simple
question. An algorithm efficient for large datasets will not always be the best choice
for small datasets, and vice versa (see “Big-O Notation” on page 92). But the advan‐
tage of coding this algorithm yourself is that with an understanding of these basic
methods, you could use these building blocks to extend this to do some very interest‐
ing custom behaviors. The key to efficiently using Python in data-intensive applica‐
tions is knowing about general convenience routines like np.histogram and when
they’re appropriate, but also knowing how to make use of lower-level functionality
when you need more pointed behavior.

Sorting Arrays
Up to this point we have been concerned mainly with tools to access and operate on
array data with NumPy. This section covers algorithms related to sorting values in
NumPy arrays. These algorithms are a favorite topic in introductory computer sci‐
ence courses: if you’ve ever taken one, you probably have had dreams (or, depending
on your temperament, nightmares) about insertion sorts, selection sorts, merge sorts,
quick sorts, bubble sorts, and many, many more. All are means of accomplishing a
similar task: sorting the values in a list or array.

Sorting Arrays | 85



For example, a simple selection sort repeatedly finds the minimum value from a list,
and makes swaps until the list is sorted. We can code this in just a few lines of Python:

In[1]: import numpy as np

       def selection_sort(x):
           for i in range(len(x)):
               swap = i + np.argmin(x[i:])
               (x[i], x[swap]) = (x[swap], x[i])
           return x

In[2]: x = np.array([2, 1, 4, 3, 5])
       selection_sort(x)

Out[2]: array([1, 2, 3, 4, 5])

As any first-year computer science major will tell you, the selection sort is useful for
its simplicity, but is much too slow to be useful for larger arrays. For a list of N values,
it requires N loops, each of which does on the order of ~ N comparisons to find the
swap value. In terms of the “big-O” notation often used to characterize these algo‐
rithms (see “Big-O Notation” on page 92), selection sort averages � N2 : if you dou‐
ble the number of items in the list, the execution time will go up by about a factor of
four.

Even selection sort, though, is much better than my all-time favorite sorting algo‐
rithms, the bogosort:

In[3]: def bogosort(x):
           while np.any(x[:-1] > x[1:]):
               np.random.shuffle(x)
           return x

In[4]: x = np.array([2, 1, 4, 3, 5])
       bogosort(x)

Out[4]: array([1, 2, 3, 4, 5])

This silly sorting method relies on pure chance: it repeatedly applies a random shuf‐
fling of the array until the result happens to be sorted. With an average scaling of
� N × N !  (that’s N times N factorial), this should—quite obviously—never be used
for any real computation.

Fortunately, Python contains built-in sorting algorithms that are much more efficient
than either of the simplistic algorithms just shown. We’ll start by looking at the
Python built-ins, and then take a look at the routines included in NumPy and opti‐
mized for NumPy arrays.

Fast Sorting in NumPy: np.sort and np.argsort
Although Python has built-in sort and sorted functions to work with lists, we won’t
discuss them here because NumPy’s np.sort function turns out to be much more
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efficient and useful for our purposes. By default np.sort uses an � N log N , quick‐
sort algorithm, though mergesort and heapsort are also available. For most applica‐
tions, the default quicksort is more than sufficient.

To return a sorted version of the array without modifying the input, you can use
np.sort:

In[5]: x = np.array([2, 1, 4, 3, 5])
       np.sort(x)

Out[5]: array([1, 2, 3, 4, 5])

If you prefer to sort the array in-place, you can instead use the sort method of arrays:

In[6]: x.sort()
       print(x)

[1 2 3 4 5]

A related function is argsort, which instead returns the indices of the sorted
elements:

In[7]: x = np.array([2, 1, 4, 3, 5])
       i = np.argsort(x)
       print(i)

[1 0 3 2 4]

The first element of this result gives the index of the smallest element, the second
value gives the index of the second smallest, and so on. These indices can then be
used (via fancy indexing) to construct the sorted array if desired:

In[8]: x[i]

Out[8]: array([1, 2, 3, 4, 5])

Sorting along rows or columns
A useful feature of NumPy’s sorting algorithms is the ability to sort along specific
rows or columns of a multidimensional array using the axis argument. For example:

In[9]: rand = np.random.RandomState(42)
       X = rand.randint(0, 10, (4, 6))
       print(X)

[[6 3 7 4 6 9]
 [2 6 7 4 3 7]
 [7 2 5 4 1 7]
 [5 1 4 0 9 5]]

In[10]: # sort each column of X
        np.sort(X, axis=0)

Out[10]: array([[2, 1, 4, 0, 1, 5],
                [5, 2, 5, 4, 3, 7],
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                [6, 3, 7, 4, 6, 7],
                [7, 6, 7, 4, 9, 9]])

In[11]: # sort each row of X
        np.sort(X, axis=1)

Out[11]: array([[3, 4, 6, 6, 7, 9],
                [2, 3, 4, 6, 7, 7],
                [1, 2, 4, 5, 7, 7],
                [0, 1, 4, 5, 5, 9]])

Keep in mind that this treats each row or column as an independent array, and any
relationships between the row or column values will be lost!

Partial Sorts: Partitioning
Sometimes we’re not interested in sorting the entire array, but simply want to find the
K smallest values in the array. NumPy provides this in the np.partition function.
np.partition takes an array and a number K; the result is a new array with the small‐
est K values to the left of the partition, and the remaining values to the right, in arbi‐
trary order:

In[12]: x = np.array([7, 2, 3, 1, 6, 5, 4])
        np.partition(x, 3)

Out[12]: array([2, 1, 3, 4, 6, 5, 7])

Note that the first three values in the resulting array are the three smallest in the
array, and the remaining array positions contain the remaining values. Within the
two partitions, the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional
array:

In[13]: np.partition(X, 2, axis=1)

Out[13]: array([[3, 4, 6, 7, 6, 9],
                [2, 3, 4, 7, 6, 7],
                [1, 2, 4, 5, 7, 7],
                [0, 1, 4, 5, 9, 5]])

The result is an array where the first two slots in each row contain the smallest values
from that row, with the remaining values filling the remaining slots.

Finally, just as there is a np.argsort that computes indices of the sort, there is a
np.argpartition that computes indices of the partition. We’ll see this in action in the
following section.

Example: k-Nearest Neighbors
Let’s quickly see how we might use this argsort function along multiple axes to find
the nearest neighbors of each point in a set. We’ll start by creating a random set of 10
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points on a two-dimensional plane. Using the standard convention, we’ll arrange
these in a 10×2 array:

In[14]: X = rand.rand(10, 2)

To get an idea of how these points look, let’s quickly scatter plot them (Figure 2-10):

In[15]: %matplotlib inline
        import matplotlib.pyplot as plt
        import seaborn; seaborn.set() # Plot styling
        plt.scatter(X[:, 0], X[:, 1], s=100);

Figure 2-10. Visualization of points in the k-neighbors example

Now we’ll compute the distance between each pair of points. Recall that the squared-
distance between two points is the sum of the squared differences in each dimension;
using the efficient broadcasting (“Computation on Arrays: Broadcasting” on page 63)
and aggregation (“Aggregations: Min, Max, and Everything in Between” on page 58)
routines provided by NumPy, we can compute the matrix of square distances in a sin‐
gle line of code:

In[16]: dist_sq = np.sum((X[:,np.newaxis,:] - X[np.newaxis,:,:]) ** 2, axis=-1)

This operation has a lot packed into it, and it might be a bit confusing if you’re unfa‐
miliar with NumPy’s broadcasting rules. When you come across code like this, it can
be useful to break it down into its component steps:

In[17]: # for each pair of points, compute differences in their coordinates
        differences = X[:, np.newaxis, :] - X[np.newaxis, :, :]
        differences.shape

Out[17]: (10, 10, 2)
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In[18]: # square the coordinate differences
        sq_differences = differences ** 2
        sq_differences.shape

Out[18]: (10, 10, 2)

In[19]: # sum the coordinate differences to get the squared distance
        dist_sq = sq_differences.sum(-1)
        dist_sq.shape

Out[19]: (10, 10)

Just to double-check what we are doing, we should see that the diagonal of this matrix
(i.e., the set of distances between each point and itself) is all zero:

In[20]: dist_sq.diagonal()

Out[20]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

It checks out! With the pairwise square-distances converted, we can now use np.arg
sort to sort along each row. The leftmost columns will then give the indices of the
nearest neighbors:

In[21]: nearest = np.argsort(dist_sq, axis=1)
        print(nearest)

[[0 3 9 7 1 4 2 5 6 8]
 [1 4 7 9 3 6 8 5 0 2]
 [2 1 4 6 3 0 8 9 7 5]
 [3 9 7 0 1 4 5 8 6 2]
 [4 1 8 5 6 7 9 3 0 2]
 [5 8 6 4 1 7 9 3 2 0]
 [6 8 5 4 1 7 9 3 2 0]
 [7 9 3 1 4 0 5 8 6 2]
 [8 5 6 4 1 7 9 3 2 0]
 [9 7 3 0 1 4 5 8 6 2]]

Notice that the first column gives the numbers 0 through 9 in order: this is due to the
fact that each point’s closest neighbor is itself, as we would expect.

By using a full sort here, we’ve actually done more work than we need to in this case.
If we’re simply interested in the nearest k neighbors, all we need is to partition each
row so that the smallest k + 1 squared distances come first, with larger distances fill‐
ing the remaining positions of the array. We can do this with the np.argpartition
function:

In[22]: K = 2
        nearest_partition = np.argpartition(dist_sq, K + 1, axis=1)

In order to visualize this network of neighbors, let’s quickly plot the points along with
lines representing the connections from each point to its two nearest neighbors
(Figure 2-11):

90 | Chapter 2: Introduction to NumPy



In[23]: plt.scatter(X[:, 0], X[:, 1], s=100)

        # draw lines from each point to its two nearest neighbors
        K = 2

        for i in range(X.shape[0]):
            for j in nearest_partition[i, :K+1]:
                # plot a line from X[i] to X[j]
                # use some zip magic to make it happen:
                plt.plot(*zip(X[j], X[i]), color='black')

Figure 2-11. Visualization of the neighbors of each point

Each point in the plot has lines drawn to its two nearest neighbors. At first glance, it
might seem strange that some of the points have more than two lines coming out of
them: this is due to the fact that if point A is one of the two nearest neighbors of point
B, this does not necessarily imply that point B is one of the two nearest neighbors of
point A.

Although the broadcasting and row-wise sorting of this approach might seem less
straightforward than writing a loop, it turns out to be a very efficient way of operating
on this data in Python. You might be tempted to do the same type of operation by
manually looping through the data and sorting each set of neighbors individually, but
this would almost certainly lead to a slower algorithm than the vectorized version we
used. The beauty of this approach is that it’s written in a way that’s agnostic to the size
of the input data: we could just as easily compute the neighbors among 100 or
1,000,000 points in any number of dimensions, and the code would look the same.

Finally, I’ll note that when doing very large nearest-neighbor searches, there are tree-
based and/or approximate algorithms that can scale as � N log N  or better rather
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than the � N2  of the brute-force algorithm. One example of this is the KD-Tree,
implemented in Scikit-Learn.

Big-O Notation
Big-O notation is a means of describing how the number of operations required for
an algorithm scales as the input grows in size. To use it correctly is to dive deeply into
the realm of computer science theory, and to carefully distinguish it from the related
small-o notation, big-θ notation, big-Ω notation, and probably many mutant hybrids
thereof. While these distinctions add precision to statements about algorithmic scal‐
ing, outside computer science theory exams and the remarks of pedantic blog com‐
menters, you’ll rarely see such distinctions made in practice. Far more common in the
data science world is a less rigid use of big-O notation: as a general (if imprecise)
description of the scaling of an algorithm. With apologies to theorists and pedants,
this is the interpretation we’ll use throughout this book.

Big-O notation, in this loose sense, tells you how much time your algorithm will take
as you increase the amount of data. If you have an � N  (read “order N”) algorithm
that takes 1 second to operate on a list of length N=1,000, then you should expect it to
take roughly 5 seconds for a list of length N=5,000. If you have an � N2  (read “order
N squared”) algorithm that takes 1 second for N=1,000, then you should expect it to
take about 25 seconds for N=5,000.

For our purposes, the N will usually indicate some aspect of the size of the dataset (the
number of points, the number of dimensions, etc.). When trying to analyze billions or
trillions of samples, the difference between � N  and � N2  can be far from trivial!

Notice that the big-O notation by itself tells you nothing about the actual wall-clock
time of a computation, but only about its scaling as you change N. Generally, for
example, an � N  algorithm is considered to have better scaling than an � N2  algo‐
rithm, and for good reason. But for small datasets in particular, the algorithm with
better scaling might not be faster. For example, in a given problem an � N2  algo‐
rithm might take 0.01 seconds, while a “better” � N  algorithm might take 1 second.
Scale up N by a factor of 1,000, though, and the � N  algorithm will win out.

Even this loose version of Big-O notation can be very useful for comparing the per‐
formance of algorithms, and we’ll use this notation throughout the book when talking
about how algorithms scale.

Structured Data: NumPy’s Structured Arrays
While often our data can be well represented by a homogeneous array of values,
sometimes this is not the case. This section demonstrates the use of NumPy’s struc‐
tured arrays and record arrays, which provide efficient storage for compound, hetero‐
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geneous data. While the patterns shown here are useful for simple operations,
scenarios like this often lend themselves to the use of Pandas DataFrames, which we’ll
explore in Chapter 3.

Imagine that we have several categories of data on a number of people (say, name,
age, and weight), and we’d like to store these values for use in a Python program. It
would be possible to store these in three separate arrays:

In[2]: name = ['Alice', 'Bob', 'Cathy', 'Doug']
       age = [25, 45, 37, 19]
       weight = [55.0, 85.5, 68.0, 61.5]

But this is a bit clumsy. There’s nothing here that tells us that the three arrays are
related; it would be more natural if we could use a single structure to store all of this
data. NumPy can handle this through structured arrays, which are arrays with com‐
pound data types.

Recall that previously we created a simple array using an expression like this:

In[3]: x = np.zeros(4, dtype=int)

We can similarly create a structured array using a compound data type specification:

In[4]: # Use a compound data type for structured arrays
       data = np.zeros(4, dtype={'names':('name', 'age', 'weight'),
                                 'formats':('U10', 'i4', 'f8')})
       print(data.dtype)

[('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]

Here 'U10' translates to “Unicode string of maximum length 10,” 'i4' translates to
“4-byte (i.e., 32 bit) integer,” and 'f8' translates to “8-byte (i.e., 64 bit) float.” We’ll
discuss other options for these type codes in the following section.

Now that we’ve created an empty container array, we can fill the array with our lists of
values:

In[5]: data['name'] = name
       data['age'] = age
       data['weight'] = weight
       print(data)

[('Alice', 25, 55.0) ('Bob', 45, 85.5) ('Cathy', 37, 68.0)
 ('Doug', 19, 61.5)]

As we had hoped, the data is now arranged together in one convenient block of
memory.

The handy thing with structured arrays is that you can now refer to values either by
index or by name:

In[6]: # Get all names
       data['name']
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Out[6]: array(['Alice', 'Bob', 'Cathy', 'Doug'],
              dtype='<U10')

In[7]: # Get first row of data
       data[0]

Out[7]: ('Alice', 25, 55.0)

In[8]: # Get the name from the last row
       data[-1]['name']

Out[8]: 'Doug'

Using Boolean masking, this even allows you to do some more sophisticated opera‐
tions such as filtering on age:

In[9]: # Get names where age is under 30
       data[data['age'] < 30]['name']

Out[9]: array(['Alice', 'Doug'],
              dtype='<U10')

Note that if you’d like to do any operations that are any more complicated than these,
you should probably consider the Pandas package, covered in the next chapter. As
we’ll see, Pandas provides a DataFrame object, which is a structure built on NumPy
arrays that offers a variety of useful data manipulation functionality similar to what
we’ve shown here, as well as much, much more.

Creating Structured Arrays
Structured array data types can be specified in a number of ways. Earlier, we saw the
dictionary method:

In[10]: np.dtype({'names':('name', 'age', 'weight'),
                  'formats':('U10', 'i4', 'f8')})

Out[10]: dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')])

For clarity, numerical types can be specified with Python types or NumPy dtypes
instead:

In[11]: np.dtype({'names':('name', 'age', 'weight'),
                  'formats':((np.str_, 10), int, np.float32)})

Out[11]: dtype([('name', '<U10'), ('age', '<i8'), ('weight', '<f4')])

A compound type can also be specified as a list of tuples:

In[12]: np.dtype([('name', 'S10'), ('age', 'i4'), ('weight', 'f8')])

Out[12]: dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')])

If the names of the types do not matter to you, you can specify the types alone in a
comma-separated string:

In[13]: np.dtype('S10,i4,f8')
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Out[13]: dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')])

The shortened string format codes may seem confusing, but they are built on simple
principles. The first (optional) character is < or >, which means “little endian” or “big
endian,” respectively, and specifies the ordering convention for significant bits. The
next character specifies the type of data: characters, bytes, ints, floating points, and so
on (see Table 2-4). The last character or characters represents the size of the object in
bytes.

Table 2-4. NumPy data types

Character Description Example

'b' Byte np.dtype('b')

'i' Signed integer np.dtype('i4') == np.int32

'u' Unsigned integer np.dtype('u1') == np.uint8

'f' Floating point np.dtype('f8') == np.int64

'c' Complex floating point np.dtype('c16') == np.complex128

'S', 'a' string np.dtype('S5')

'U' Unicode string np.dtype('U') == np.str_

'V' Raw data (void) np.dtype('V') == np.void

More Advanced Compound Types
It is possible to define even more advanced compound types. For example, you can
create a type where each element contains an array or matrix of values. Here, we’ll
create a data type with a mat component consisting of a 3×3 floating-point matrix:

In[14]: tp = np.dtype([('id', 'i8'), ('mat', 'f8', (3, 3))])
        X = np.zeros(1, dtype=tp)
        print(X[0])
        print(X['mat'][0])

(0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
[[ 0.  0.  0.]
 [ 0.  0.  0.]
 [ 0.  0.  0.]]

Now each element in the X array consists of an id and a 3×3 matrix. Why would you
use this rather than a simple multidimensional array, or perhaps a Python dictionary?
The reason is that this NumPy dtype directly maps onto a C structure definition, so
the buffer containing the array content can be accessed directly within an appropri‐
ately written C program. If you find yourself writing a Python interface to a legacy C
or Fortran library that manipulates structured data, you’ll probably find structured
arrays quite useful!
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RecordArrays: Structured Arrays with a Twist
NumPy also provides the np.recarray class, which is almost identical to the struc‐
tured arrays just described, but with one additional feature: fields can be accessed as
attributes rather than as dictionary keys. Recall that we previously accessed the ages
by writing:

In[15]: data['age']

Out[15]: array([25, 45, 37, 19], dtype=int32)

If we view our data as a record array instead, we can access this with slightly fewer
keystrokes:

In[16]: data_rec = data.view(np.recarray)
        data_rec.age

Out[16]: array([25, 45, 37, 19], dtype=int32)

The downside is that for record arrays, there is some extra overhead involved in
accessing the fields, even when using the same syntax. We can see this here:

In[17]: %timeit data['age']
        %timeit data_rec['age']
        %timeit data_rec.age

1000000 loops, best of 3: 241 ns per loop
100000 loops, best of 3: 4.61 µs per loop
100000 loops, best of 3: 7.27 µs per loop

Whether the more convenient notation is worth the additional overhead will depend
on your own application.

On to Pandas
This section on structured and record arrays is purposely at the end of this chapter,
because it leads so well into the next package we will cover: Pandas. Structured arrays
like the ones discussed here are good to know about for certain situations, especially
in case you’re using NumPy arrays to map onto binary data formats in C, Fortran, or
another language. For day-to-day use of structured data, the Pandas package is a
much better choice, and we’ll dive into a full discussion of it in the next chapter.

96 | Chapter 2: Introduction to NumPy



CHAPTER 3

Data Manipulation with Pandas

In the previous chapter, we dove into detail on NumPy and its ndarray object, which
provides efficient storage and manipulation of dense typed arrays in Python. Here
we’ll build on this knowledge by looking in detail at the data structures provided by
the Pandas library. Pandas is a newer package built on top of NumPy, and provides an
efficient implementation of a DataFrame. DataFrames are essentially multidimen‐
sional arrays with attached row and column labels, and often with heterogeneous
types and/or missing data. As well as offering a convenient storage interface for
labeled data, Pandas implements a number of powerful data operations familiar to
users of both database frameworks and spreadsheet programs.

As we saw, NumPy’s ndarray data structure provides essential features for the type of
clean, well-organized data typically seen in numerical computing tasks. While it
serves this purpose very well, its limitations become clear when we need more flexi‐
bility (attaching labels to data, working with missing data, etc.) and when attempting
operations that do not map well to element-wise broadcasting (groupings, pivots,
etc.), each of which is an important piece of analyzing the less structured data avail‐
able in many forms in the world around us. Pandas, and in particular its Series and
DataFrame objects, builds on the NumPy array structure and provides efficient access
to these sorts of “data munging” tasks that occupy much of a data scientist’s time.

In this chapter, we will focus on the mechanics of using Series, DataFrame, and
related structures effectively. We will use examples drawn from real datasets where
appropriate, but these examples are not necessarily the focus.

Installing and Using Pandas
Installing Pandas on your system requires NumPy to be installed, and if you’re build‐
ing the library from source, requires the appropriate tools to compile the C and
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Cython sources on which Pandas is built. Details on this installation can be found in
the Pandas documentation. If you followed the advice outlined in the preface and
used the Anaconda stack, you already have Pandas installed.

Once Pandas is installed, you can import it and check the version:

In[1]: import pandas
       pandas.__version__

Out[1]: '0.18.1'

Just as we generally import NumPy under the alias np, we will import Pandas under
the alias pd:

In[2]: import pandas as pd

This import convention will be used throughout the remainder of this book.

Reminder About Built-In Documentation
As you read through this chapter, don’t forget that IPython gives you the ability to
quickly explore the contents of a package (by using the tab-completion feature) as
well as the documentation of various functions (using the ? character). (Refer back to
“Help and Documentation in IPython” on page 3 if you need a refresher on this.)

For example, to display all the contents of the pandas namespace, you can type this:

In [3]: pd.<TAB>

And to display the built-in Pandas documentation, you can use this:

In [4]: pd?

More detailed documentation, along with tutorials and other resources, can be found
at http://pandas.pydata.org/.

Introducing Pandas Objects
At the very basic level, Pandas objects can be thought of as enhanced versions of
NumPy structured arrays in which the rows and columns are identified with labels
rather than simple integer indices. As we will see during the course of this chapter,
Pandas provides a host of useful tools, methods, and functionality on top of the basic
data structures, but nearly everything that follows will require an understanding of
what these structures are. Thus, before we go any further, let’s introduce these three
fundamental Pandas data structures: the Series, DataFrame, and Index.

We will start our code sessions with the standard NumPy and Pandas imports:

In[1]: import numpy as np
       import pandas as pd
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The Pandas Series Object
A Pandas Series is a one-dimensional array of indexed data. It can be created from a
list or array as follows:

In[2]: data = pd.Series([0.25, 0.5, 0.75, 1.0])
       data

Out[2]: 0    0.25
        1    0.50
        2    0.75
        3    1.00
        dtype: float64

As we see in the preceding output, the Series wraps both a sequence of values and a
sequence of indices, which we can access with the values and index attributes. The
values are simply a familiar NumPy array:

In[3]: data.values

Out[3]: array([ 0.25,  0.5 ,  0.75,  1.  ])

The index is an array-like object of type pd.Index, which we’ll discuss in more detail
momentarily:

In[4]: data.index

Out[4]: RangeIndex(start=0, stop=4, step=1)

Like with a NumPy array, data can be accessed by the associated index via the familiar
Python square-bracket notation:

In[5]: data[1]

Out[5]: 0.5

In[6]: data[1:3]

Out[6]: 1    0.50
        2    0.75
        dtype: float64

As we will see, though, the Pandas Series is much more general and flexible than the
one-dimensional NumPy array that it emulates.

Series as generalized NumPy array

From what we’ve seen so far, it may look like the Series object is basically inter‐
changeable with a one-dimensional NumPy array. The essential difference is the pres‐
ence of the index: while the NumPy array has an implicitly defined integer index used
to access the values, the Pandas Series has an explicitly defined index associated with
the values.
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This explicit index definition gives the Series object additional capabilities. For
example, the index need not be an integer, but can consist of values of any desired
type. For example, if we wish, we can use strings as an index:

In[7]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
                        index=['a', 'b', 'c', 'd'])
       data

Out[7]: a    0.25
        b    0.50
        c    0.75
        d    1.00
        dtype: float64

And the item access works as expected:

In[8]: data['b']

Out[8]: 0.5

We can even use noncontiguous or nonsequential indices:

In[9]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
                        index=[2, 5, 3, 7])
       data

Out[9]: 2    0.25
        5    0.50
        3    0.75
        7    1.00
        dtype: float64

In[10]: data[5]

Out[10]: 0.5

Series as specialized dictionary

In this way, you can think of a Pandas Series a bit like a specialization of a Python
dictionary. A dictionary is a structure that maps arbitrary keys to a set of arbitrary
values, and a Series is a structure that maps typed keys to a set of typed values. This
typing is important: just as the type-specific compiled code behind a NumPy array
makes it more efficient than a Python list for certain operations, the type information
of a Pandas Series makes it much more efficient than Python dictionaries for certain
operations.

We can make the Series-as-dictionary analogy even more clear by constructing a
Series object directly from a Python dictionary:
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In[11]: population_dict = {'California': 38332521,
                           'Texas': 26448193,
                           'New York': 19651127,
                           'Florida': 19552860,
                           'Illinois': 12882135}
        population = pd.Series(population_dict)
        population

Out[11]: California    38332521
         Florida       19552860
         Illinois      12882135
         New York      19651127
         Texas         26448193
         dtype: int64

By default, a Series will be created where the index is drawn from the sorted keys.
From here, typical dictionary-style item access can be performed:

In[12]: population['California']

Out[12]: 38332521

Unlike a dictionary, though, the Series also supports array-style operations such as
slicing:

In[13]: population['California':'Illinois']

Out[13]: California    38332521
         Florida       19552860
         Illinois      12882135
         dtype: int64

We’ll discuss some of the quirks of Pandas indexing and slicing in “Data Indexing and
Selection” on page 107.

Constructing Series objects

We’ve already seen a few ways of constructing a Pandas Series from scratch; all of
them are some version of the following:

>>> pd.Series(data, index=index)

where index is an optional argument, and data can be one of many entities.

For example, data can be a list or NumPy array, in which case index defaults to an
integer sequence:

In[14]: pd.Series([2, 4, 6])

Out[14]: 0    2
         1    4
         2    6
         dtype: int64
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data can be a scalar, which is repeated to fill the specified index:

In[15]: pd.Series(5, index=[100, 200, 300])

Out[15]: 100    5
         200    5
         300    5
         dtype: int64

data can be a dictionary, in which index defaults to the sorted dictionary keys:

In[16]: pd.Series({2:'a', 1:'b', 3:'c'})

Out[16]: 1    b
         2    a
         3    c
         dtype: object

In each case, the index can be explicitly set if a different result is preferred:

In[17]: pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2])

Out[17]: 3    c
         2    a
         dtype: object

Notice that in this case, the Series is populated only with the explicitly identified
keys.

The Pandas DataFrame Object
The next fundamental structure in Pandas is the DataFrame. Like the Series object
discussed in the previous section, the DataFrame can be thought of either as a gener‐
alization of a NumPy array, or as a specialization of a Python dictionary. We’ll now
take a look at each of these perspectives.

DataFrame as a generalized NumPy array

If a Series is an analog of a one-dimensional array with flexible indices, a DataFrame
is an analog of a two-dimensional array with both flexible row indices and flexible
column names. Just as you might think of a two-dimensional array as an ordered
sequence of aligned one-dimensional columns, you can think of a DataFrame as a
sequence of aligned Series objects. Here, by “aligned” we mean that they share the
same index.

To demonstrate this, let’s first construct a new Series listing the area of each of the
five states discussed in the previous section:

In[18]:
area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,
             'Florida': 170312, 'Illinois': 149995}
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area = pd.Series(area_dict)
area

Out[18]: California    423967
         Florida       170312
         Illinois      149995
         New York      141297
         Texas         695662
         dtype: int64

Now that we have this along with the population Series from before, we can use a
dictionary to construct a single two-dimensional object containing this information:

In[19]: states = pd.DataFrame({'population': population,
                               'area': area})
        states

Out[19]:             area      population
         California  423967    38332521
         Florida     170312    19552860
         Illinois    149995    12882135
         New York    141297    19651127
         Texas       695662    26448193

Like the Series object, the DataFrame has an index attribute that gives access to the
index labels:

In[20]: states.index

Out[20]:
Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object')

Additionally, the DataFrame has a columns attribute, which is an Index object holding
the column labels:

In[21]: states.columns

Out[21]: Index(['area', 'population'], dtype='object')

Thus the DataFrame can be thought of as a generalization of a two-dimensional
NumPy array, where both the rows and columns have a generalized index for access‐
ing the data.

DataFrame as specialized dictionary

Similarly, we can also think of a DataFrame as a specialization of a dictionary. Where
a dictionary maps a key to a value, a DataFrame maps a column name to a Series of
column data. For example, asking for the 'area' attribute returns the Series object
containing the areas we saw earlier:

In[22]: states['area']

Out[22]: California    423967
         Florida       170312
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         Illinois      149995
         New York      141297
         Texas         695662
         Name: area, dtype: int64

Notice the potential point of confusion here: in a two-dimensional NumPy array,
data[0] will return the first row. For a DataFrame, data['col0'] will return the first
column. Because of this, it is probably better to think about DataFrames as generalized
dictionaries rather than generalized arrays, though both ways of looking at the situa‐
tion can be useful. We’ll explore more flexible means of indexing DataFrames in “Data
Indexing and Selection” on page 107.

Constructing DataFrame objects

A Pandas DataFrame can be constructed in a variety of ways. Here we’ll give several
examples.

From a single Series object.    A DataFrame is a collection of Series objects, and a single-
column DataFrame can be constructed from a single Series:

In[23]: pd.DataFrame(population, columns=['population'])

Out[23]:               population
         California    38332521
         Florida       19552860
         Illinois      12882135
         New York      19651127
         Texas         26448193

From a list of dicts.    Any list of dictionaries can be made into a DataFrame. We’ll use a
simple list comprehension to create some data:

In[24]: data = [{'a': i, 'b': 2 * i}
                for i in range(3)]
        pd.DataFrame(data)

Out[24]:    a  b
         0  0  0
         1  1  2
         2  2  4

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN (i.e.,
“not a number”) values:

In[25]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])

Out[25]:    a    b  c
         0  1.0  2  NaN
         1  NaN  3  4.0
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From a dictionary of Series objects.    As we saw before, a DataFrame can be constructed
from a dictionary of Series objects as well:

In[26]: pd.DataFrame({'population': population,
                      'area': area})

Out[26]:             area      population
         California  423967    38332521
         Florida     170312    19552860
         Illinois    149995    12882135
         New York    141297    19651127
         Texas       695662    26448193

From a two-dimensional NumPy array.    Given a two-dimensional array of data, we can
create a DataFrame with any specified column and index names. If omitted, an integer
index will be used for each:

In[27]: pd.DataFrame(np.random.rand(3, 2),
                     columns=['foo', 'bar'],
                     index=['a', 'b', 'c'])

Out[27]:    foo       bar
         a  0.865257  0.213169
         b  0.442759  0.108267
         c  0.047110  0.905718

From a NumPy structured array.    We covered structured arrays in “Structured Data:
NumPy’s Structured Arrays” on page 92. A Pandas DataFrame operates much like a
structured array, and can be created directly from one:

In[28]: A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')])
        A

Out[28]: array([(0, 0.0), (0, 0.0), (0, 0.0)],
               dtype=[('A', '<i8'), ('B', '<f8')])

In[29]: pd.DataFrame(A)

Out[29]:    A  B
         0  0  0.0
         1  0  0.0
         2  0  0.0

The Pandas Index Object
We have seen here that both the Series and DataFrame objects contain an explicit
index that lets you reference and modify data. This Index object is an interesting
structure in itself, and it can be thought of either as an immutable array or as an
ordered set (technically a multiset, as Index objects may contain repeated values).
Those views have some interesting consequences in the operations available on Index
objects. As a simple example, let’s construct an Index from a list of integers:
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In[30]: ind = pd.Index([2, 3, 5, 7, 11])
        ind

Out[30]: Int64Index([2, 3, 5, 7, 11], dtype='int64')

Index as immutable array

The Index object in many ways operates like an array. For example, we can use stan‐
dard Python indexing notation to retrieve values or slices:

In[31]: ind[1]

Out[31]: 3

In[32]: ind[::2]

Out[32]: Int64Index([2, 5, 11], dtype='int64')

Index objects also have many of the attributes familiar from NumPy arrays:

In[33]: print(ind.size, ind.shape, ind.ndim, ind.dtype)

5 (5,) 1 int64

One difference between Index objects and NumPy arrays is that indices are immuta‐
ble—that is, they cannot be modified via the normal means:

In[34]: ind[1] = 0

---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-34-40e631c82e8a> in <module>()
----> 1 ind[1] = 0

/Users/jakevdp/anaconda/lib/python3.5/site-packages/pandas/indexes/base.py ...
   1243
   1244     def __setitem__(self, key, value):
-> 1245         raise TypeError("Index does not support mutable operations")
   1246
   1247     def __getitem__(self, key):

TypeError: Index does not support mutable operations

This immutability makes it safer to share indices between multiple DataFrames and
arrays, without the potential for side effects from inadvertent index modification.

Index as ordered set
Pandas objects are designed to facilitate operations such as joins across datasets,
which depend on many aspects of set arithmetic. The Index object follows many of
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the conventions used by Python’s built-in set data structure, so that unions, intersec‐
tions, differences, and other combinations can be computed in a familiar way:

In[35]: indA = pd.Index([1, 3, 5, 7, 9])
        indB = pd.Index([2, 3, 5, 7, 11])

In[36]: indA & indB  # intersection

Out[36]: Int64Index([3, 5, 7], dtype='int64')

In[37]: indA | indB  # union

Out[37]: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64')

In[38]: indA ^ indB  # symmetric difference

Out[38]: Int64Index([1, 2, 9, 11], dtype='int64')

These operations may also be accessed via object methods—for example, indA.inter
section(indB).

Data Indexing and Selection
In Chapter 2, we looked in detail at methods and tools to access, set, and modify val‐
ues in NumPy arrays. These included indexing (e.g., arr[2, 1]), slicing (e.g., arr[:,
1:5]), masking (e.g., arr[arr > 0]), fancy indexing (e.g., arr[0, [1, 5]]), and
combinations thereof (e.g., arr[:, [1, 5]]). Here we’ll look at similar means of
accessing and modifying values in Pandas Series and DataFrame objects. If you have
used the NumPy patterns, the corresponding patterns in Pandas will feel very famil‐
iar, though there are a few quirks to be aware of.

We’ll start with the simple case of the one-dimensional Series object, and then move
on to the more complicated two-dimensional DataFrame object.

Data Selection in Series
As we saw in the previous section, a Series object acts in many ways like a one-
dimensional NumPy array, and in many ways like a standard Python dictionary. If we
keep these two overlapping analogies in mind, it will help us to understand the pat‐
terns of data indexing and selection in these arrays.

Series as dictionary

Like a dictionary, the Series object provides a mapping from a collection of keys to a
collection of values:

In[1]: import pandas as pd
       data = pd.Series([0.25, 0.5, 0.75, 1.0],
                        index=['a', 'b', 'c', 'd'])
       data
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Out[1]: a    0.25
        b    0.50
        c    0.75
        d    1.00
        dtype: float64

In[2]: data['b']

Out[2]: 0.5

We can also use dictionary-like Python expressions and methods to examine the
keys/indices and values:

In[3]: 'a' in data

Out[3]: True

In[4]: data.keys()

Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object')

In[5]: list(data.items())

Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]

Series objects can even be modified with a dictionary-like syntax. Just as you can
extend a dictionary by assigning to a new key, you can extend a Series by assigning
to a new index value:

In[6]: data['e'] = 1.25
       data

Out[6]: a    0.25
        b    0.50
        c    0.75
        d    1.00
        e    1.25
        dtype: float64

This easy mutability of the objects is a convenient feature: under the hood, Pandas is
making decisions about memory layout and data copying that might need to take
place; the user generally does not need to worry about these issues.

Series as one-dimensional array

A Series builds on this dictionary-like interface and provides array-style item selec‐
tion via the same basic mechanisms as NumPy arrays—that is, slices, masking, and
fancy indexing. Examples of these are as follows:

In[7]: # slicing by explicit index
       data['a':'c']

Out[7]: a    0.25
        b    0.50
        c    0.75
        dtype: float64
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In[8]: # slicing by implicit integer index
       data[0:2]

Out[8]: a    0.25
        b    0.50
        dtype: float64

In[9]: # masking
       data[(data > 0.3) & (data < 0.8)]

Out[9]: b    0.50
        c    0.75
        dtype: float64

In[10]: # fancy indexing
        data[['a', 'e']]

Out[10]: a    0.25
         e    1.25
         dtype: float64

Among these, slicing may be the source of the most confusion. Notice that when you
are slicing with an explicit index (i.e., data['a':'c']), the final index is included in
the slice, while when you’re slicing with an implicit index (i.e., data[0:2]), the final
index is excluded from the slice.

Indexers: loc, iloc, and ix
These slicing and indexing conventions can be a source of confusion. For example, if
your Series has an explicit integer index, an indexing operation such as data[1] will
use the explicit indices, while a slicing operation like data[1:3] will use the implicit
Python-style index.

In[11]: data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
        data

Out[11]: 1    a
         3    b
         5    c
         dtype: object

In[12]: # explicit index when indexing
        data[1]

Out[12]: 'a'

In[13]: # implicit index when slicing
        data[1:3]

Out[13]: 3    b
         5    c
         dtype: object

Because of this potential confusion in the case of integer indexes, Pandas provides
some special indexer attributes that explicitly expose certain indexing schemes. These
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are not functional methods, but attributes that expose a particular slicing interface to
the data in the Series.

First, the loc attribute allows indexing and slicing that always references the explicit
index:

In[14]: data.loc[1]

Out[14]: 'a'

In[15]: data.loc[1:3]

Out[15]: 1    a
         3    b
         dtype: object

The iloc attribute allows indexing and slicing that always references the implicit
Python-style index:

In[16]: data.iloc[1]

Out[16]: 'b'

In[17]: data.iloc[1:3]

Out[17]: 3    b
         5    c
         dtype: object

A third indexing attribute, ix, is a hybrid of the two, and for Series objects is equiva‐
lent to standard []-based indexing. The purpose of the ix indexer will become more
apparent in the context of DataFrame objects, which we will discuss in a moment.

One guiding principle of Python code is that “explicit is better than implicit.” The
explicit nature of loc and iloc make them very useful in maintaining clean and read‐
able code; especially in the case of integer indexes, I recommend using these both to
make code easier to read and understand, and to prevent subtle bugs due to the
mixed indexing/slicing convention.

Data Selection in DataFrame
Recall that a DataFrame acts in many ways like a two-dimensional or structured array,
and in other ways like a dictionary of Series structures sharing the same index.
These analogies can be helpful to keep in mind as we explore data selection within
this structure.

DataFrame as a dictionary

The first analogy we will consider is the DataFrame as a dictionary of related Series
objects. Let’s return to our example of areas and populations of states:
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In[18]: area = pd.Series({'California': 423967, 'Texas': 695662,
                          'New York': 141297, 'Florida': 170312,
                          'Illinois': 149995})
        pop = pd.Series({'California': 38332521, 'Texas': 26448193,
                         'New York': 19651127, 'Florida': 19552860,
                         'Illinois': 12882135})
        data = pd.DataFrame({'area':area, 'pop':pop})
        data

Out[18]:             area    pop
         California  423967  38332521
         Florida     170312  19552860
         Illinois    149995  12882135
         New York    141297  19651127
         Texas       695662  26448193

The individual Series that make up the columns of the DataFrame can be accessed
via dictionary-style indexing of the column name:

In[19]: data['area']

Out[19]: California    423967
         Florida       170312
         Illinois      149995
         New York      141297
         Texas         695662
         Name: area, dtype: int64

Equivalently, we can use attribute-style access with column names that are strings:

In[20]: data.area

Out[20]: California    423967
         Florida       170312
         Illinois      149995
         New York      141297
         Texas         695662
         Name: area, dtype: int64

This attribute-style column access actually accesses the exact same object as the
dictionary-style access:

In[21]: data.area is data['area']

Out[21]: True

Though this is a useful shorthand, keep in mind that it does not work for all cases!
For example, if the column names are not strings, or if the column names conflict
with methods of the DataFrame, this attribute-style access is not possible. For exam‐
ple, the DataFrame has a pop() method, so data.pop will point to this rather than the
"pop" column:

In[22]: data.pop is data['pop']

Out[22]: False
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In particular, you should avoid the temptation to try column assignment via attribute
(i.e., use data['pop'] = z rather than data.pop = z).

Like with the Series objects discussed earlier, this dictionary-style syntax can also be
used to modify the object, in this case to add a new column:

In[23]: data['density'] = data['pop'] / data['area']
        data

Out[23]:             area    pop       density
         California  423967  38332521   90.413926
         Florida     170312  19552860  114.806121
         Illinois    149995  12882135   85.883763
         New York    141297  19651127  139.076746
         Texas       695662  26448193   38.018740

This shows a preview of the straightforward syntax of element-by-element arithmetic
between Series objects; we’ll dig into this further in “Operating on Data in Pandas”
on page 115.

DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced two-
dimensional array. We can examine the raw underlying data array using the values
attribute:

In[24]: data.values

Out[24]: array([[  4.23967000e+05,   3.83325210e+07,   9.04139261e+01],
                [  1.70312000e+05,   1.95528600e+07,   1.14806121e+02],
                [  1.49995000e+05,   1.28821350e+07,   8.58837628e+01],
                [  1.41297000e+05,   1.96511270e+07,   1.39076746e+02],
                [  6.95662000e+05,   2.64481930e+07,   3.80187404e+01]])

With this picture in mind, we can do many familiar array-like observations on the
DataFrame itself. For example, we can transpose the full DataFrame to swap rows and
columns:

In[25]: data.T

Out[25]:
         California    Florida       Illinois      New York      Texas
area     4.239670e+05  1.703120e+05  1.499950e+05  1.412970e+05  6.956620e+05
pop      3.833252e+07  1.955286e+07  1.288214e+07  1.965113e+07  2.644819e+07
density  9.041393e+01  1.148061e+02  8.588376e+01  1.390767e+02  3.801874e+01

When it comes to indexing of DataFrame objects, however, it is clear that the
dictionary-style indexing of columns precludes our ability to simply treat it as a
NumPy array. In particular, passing a single index to an array accesses a row:

In[26]: data.values[0]

Out[26]: array([  4.23967000e+05,   3.83325210e+07,   9.04139261e+01])
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and passing a single “index” to a DataFrame accesses a column:

In[27]: data['area']

Out[27]: California    423967
         Florida       170312
         Illinois      149995
         New York      141297
         Texas         695662
         Name: area, dtype: int64

Thus for array-style indexing, we need another convention. Here Pandas again uses
the loc, iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can
index the underlying array as if it is a simple NumPy array (using the implicit
Python-style index), but the DataFrame index and column labels are maintained in
the result:

In[28]: data.iloc[:3, :2]

Out[28]:             area    pop
         California  423967  38332521
         Florida     170312  19552860
         Illinois    149995  12882135

In[29]: data.loc[:'Illinois', :'pop']

Out[29]:             area    pop
         California  423967  38332521
         Florida     170312  19552860
         Illinois    149995  12882135

The ix indexer allows a hybrid of these two approaches:

In[30]: data.ix[:3, :'pop']

Out[30]:             area    pop
         California  423967  38332521
         Florida     170312  19552860
         Illinois    149995  12882135

Keep in mind that for integer indices, the ix indexer is subject to the same potential
sources of confusion as discussed for integer-indexed Series objects.

Any of the familiar NumPy-style data access patterns can be used within these index‐
ers. For example, in the loc indexer we can combine masking and fancy indexing as
in the following:

In[31]: data.loc[data.density > 100, ['pop', 'density']]

Out[31]:           pop       density
         Florida   19552860  114.806121
         New York  19651127  139.076746
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Any of these indexing conventions may also be used to set or modify values; this is
done in the standard way that you might be accustomed to from working with
NumPy:

In[32]: data.iloc[0, 2] = 90
        data

Out[32]:             area    pop       density
         California  423967  38332521   90.000000
         Florida     170312  19552860  114.806121
         Illinois    149995  12882135   85.883763
         New York    141297  19651127  139.076746
         Texas       695662  26448193   38.018740

To build up your fluency in Pandas data manipulation, I suggest spending some time
with a simple DataFrame and exploring the types of indexing, slicing, masking, and
fancy indexing that are allowed by these various indexing approaches.

Additional indexing conventions
There are a couple extra indexing conventions that might seem at odds with the pre‐
ceding discussion, but nevertheless can be very useful in practice. First, while index‐
ing refers to columns, slicing refers to rows:

In[33]: data['Florida':'Illinois']

Out[33]:           area    pop       density
         Florida   170312  19552860  114.806121
         Illinois  149995  12882135   85.883763

Such slices can also refer to rows by number rather than by index:

In[34]: data[1:3]

Out[34]:           area    pop       density
         Florida   170312  19552860  114.806121
         Illinois  149995  12882135   85.883763

Similarly, direct masking operations are also interpreted row-wise rather than
column-wise:

In[35]: data[data.density > 100]

Out[35]:           area    pop       density
         Florida   170312  19552860  114.806121
         New York  141297  19651127  139.076746

These two conventions are syntactically similar to those on a NumPy array, and while
these may not precisely fit the mold of the Pandas conventions, they are nevertheless
quite useful in practice.
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Operating on Data in Pandas
One of the essential pieces of NumPy is the ability to perform quick element-wise
operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and
with more sophisticated operations (trigonometric functions, exponential and loga‐
rithmic functions, etc.). Pandas inherits much of this functionality from NumPy, and
the ufuncs that we introduced in “Computation on NumPy Arrays: Universal Func‐
tions” on page 50 are key to this.

Pandas includes a couple useful twists, however: for unary operations like negation
and trigonometric functions, these ufuncs will preserve index and column labels in the
output, and for binary operations such as addition and multiplication, Pandas will
automatically align indices when passing the objects to the ufunc. This means that
keeping the context of data and combining data from different sources—both poten‐
tially error-prone tasks with raw NumPy arrays—become essentially foolproof ones
with Pandas. We will additionally see that there are well-defined operations between
one-dimensional Series structures and two-dimensional DataFrame structures.

Ufuncs: Index Preservation
Because Pandas is designed to work with NumPy, any NumPy ufunc will work on
Pandas Series and DataFrame objects. Let’s start by defining a simple Series and
DataFrame on which to demonstrate this:

In[1]: import pandas as pd
       import numpy as np

In[2]: rng = np.random.RandomState(42)
       ser = pd.Series(rng.randint(0, 10, 4))
       ser

Out[2]: 0    6
        1    3
        2    7
        3    4
        dtype: int64

In[3]: df = pd.DataFrame(rng.randint(0, 10, (3, 4)),
                         columns=['A', 'B', 'C', 'D'])
       df

Out[3]:    A  B  C  D
        0  6  9  2  6
        1  7  4  3  7
        2  7  2  5  4

If we apply a NumPy ufunc on either of these objects, the result will be another Pan‐
das object with the indices preserved:

In[4]: np.exp(ser)
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Out[4]: 0     403.428793
        1      20.085537
        2    1096.633158
        3      54.598150
        dtype: float64

Or, for a slightly more complex calculation:

In[5]: np.sin(df * np.pi / 4)

Out[5]:           A             B         C             D
        0 -1.000000  7.071068e-01  1.000000 -1.000000e+00
        1 -0.707107  1.224647e-16  0.707107 -7.071068e-01
        2 -0.707107  1.000000e+00 -0.707107  1.224647e-16

Any of the ufuncs discussed in “Computation on NumPy Arrays: Universal Func‐
tions” on page 50 can be used in a similar manner.

UFuncs: Index Alignment
For binary operations on two Series or DataFrame objects, Pandas will align indices
in the process of performing the operation. This is very convenient when you are
working with incomplete data, as we’ll see in some of the examples that follow.

Index alignment in Series
As an example, suppose we are combining two different data sources, and find only
the top three US states by area and the top three US states by population:

In[6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662,
                         'California': 423967}, name='area')
       population = pd.Series({'California': 38332521, 'Texas': 26448193,
                               'New York': 19651127}, name='population')

Let’s see what happens when we divide these to compute the population density:

In[7]: population / area

Out[7]: Alaska              NaN
        California    90.413926
        New York            NaN
        Texas         38.018740
        dtype: float64

The resulting array contains the union of indices of the two input arrays, which we
could determine using standard Python set arithmetic on these indices:

In[8]: area.index | population.index

Out[8]: Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object')

Any item for which one or the other does not have an entry is marked with NaN, or
“Not a Number,” which is how Pandas marks missing data (see further discussion of
missing data in “Handling Missing Data” on page 119). This index matching is imple‐
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mented this way for any of Python’s built-in arithmetic expressions; any missing val‐
ues are filled in with NaN by default:

In[9]: A = pd.Series([2, 4, 6], index=[0, 1, 2])
       B = pd.Series([1, 3, 5], index=[1, 2, 3])
       A + B

Out[9]: 0    NaN
        1    5.0
        2    9.0
        3    NaN
        dtype: float64

If using NaN values is not the desired behavior, we can modify the fill value using
appropriate object methods in place of the operators. For example, calling A.add(B)
is equivalent to calling A + B, but allows optional explicit specification of the fill value
for any elements in A or B that might be missing:

In[10]: A.add(B, fill_value=0)

Out[10]: 0    2.0
         1    5.0
         2    9.0
         3    5.0
         dtype: float64

Index alignment in DataFrame
A similar type of alignment takes place for both columns and indices when you are
performing operations on DataFrames:

In[11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)),
                         columns=list('AB'))
        A

Out[11]:    A   B
         0  1  11
         1  5   1

In[12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)),
                         columns=list('BAC'))
        B

Out[12]:    B  A  C
         0  4  0  9
         1  5  8  0
         2  9  2  6

In[13]: A + B

Out[13]:       A     B   C
         0   1.0  15.0 NaN
         1  13.0   6.0 NaN
         2   NaN   NaN NaN
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Notice that indices are aligned correctly irrespective of their order in the two objects,
and indices in the result are sorted. As was the case with Series, we can use the asso‐
ciated object’s arithmetic method and pass any desired fill_value to be used in place
of missing entries. Here we’ll fill with the mean of all values in A (which we compute
by first stacking the rows of A):

In[14]: fill = A.stack().mean()
        A.add(B, fill_value=fill)

Out[14]:       A     B     C
         0   1.0  15.0  13.5
         1  13.0   6.0   4.5
         2   6.5  13.5  10.5

Table 3-1 lists Python operators and their equivalent Pandas object methods.

Table 3-1. Mapping between Python operators and Pandas methods

Python operator Pandas method(s)

+ add()

- sub(), subtract()

* mul(), multiply()

/ truediv(), div(), divide()

// floordiv()

% mod()

** pow()

Ufuncs: Operations Between DataFrame and Series
When you are performing operations between a DataFrame and a Series, the index
and column alignment is similarly maintained. Operations between a DataFrame and
a Series are similar to operations between a two-dimensional and one-dimensional
NumPy array. Consider one common operation, where we find the difference of a
two-dimensional array and one of its rows:

In[15]: A = rng.randint(10, size=(3, 4))
        A

Out[15]: array([[3, 8, 2, 4],
                [2, 6, 4, 8],
                [6, 1, 3, 8]])

In[16]: A - A[0]

Out[16]: array([[ 0,  0,  0,  0],
                [-1, -2,  2,  4],
                [ 3, -7,  1,  4]])
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According to NumPy’s broadcasting rules (see “Computation on Arrays: Broadcast‐
ing” on page 63), subtraction between a two-dimensional array and one of its rows is
applied row-wise.

In Pandas, the convention similarly operates row-wise by default:

In[17]: df = pd.DataFrame(A, columns=list('QRST'))
        df - df.iloc[0]

Out[17]:    Q  R  S  T
         0  0  0  0  0
         1 -1 -2  2  4
         2  3 -7  1  4

If you would instead like to operate column-wise, you can use the object methods
mentioned earlier, while specifying the axis keyword:

In[18]: df.subtract(df['R'], axis=0)

Out[18]:    Q  R  S  T
         0 -5  0 -6 -4
         1 -4  0 -2  2
         2  5  0  2  7

Note that these DataFrame/Series operations, like the operations discussed before,
will automatically align indices between the two elements:

In[19]: halfrow = df.iloc[0, ::2]
        halfrow

Out[19]: Q    3
         S    2
         Name: 0, dtype: int64

In[20]: df - halfrow

Out[20]:      Q   R    S   T
         0  0.0 NaN  0.0 NaN
         1 -1.0 NaN  2.0 NaN
         2  3.0 NaN  1.0 NaN

This preservation and alignment of indices and columns means that operations on
data in Pandas will always maintain the data context, which prevents the types of silly
errors that might come up when you are working with heterogeneous and/or mis‐
aligned data in raw NumPy arrays.

Handling Missing Data
The difference between data found in many tutorials and data in the real world is that
real-world data is rarely clean and homogeneous. In particular, many interesting
datasets will have some amount of data missing. To make matters even more compli‐
cated, different data sources may indicate missing data in different ways.
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In this section, we will discuss some general considerations for missing data, discuss
how Pandas chooses to represent it, and demonstrate some built-in Pandas tools for
handling missing data in Python. Here and throughout the book, we’ll refer to miss‐
ing data in general as null, NaN, or NA values.

Trade-Offs in Missing Data Conventions
A number of schemes have been developed to indicate the presence of missing data in
a table or DataFrame. Generally, they revolve around one of two strategies: using a
mask that globally indicates missing values, or choosing a sentinel value that indicates
a missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or it
may involve appropriation of one bit in the data representation to locally indicate the
null status of a value.

In the sentinel approach, the sentinel value could be some data-specific convention,
such as indicating a missing integer value with –9999 or some rare bit pattern, or it
could be a more global convention, such as indicating a missing floating-point value
with NaN (Not a Number), a special value which is part of the IEEE floating-point
specification.

None of these approaches is without trade-offs: use of a separate mask array requires
allocation of an additional Boolean array, which adds overhead in both storage and
computation. A sentinel value reduces the range of valid values that can be repre‐
sented, and may require extra (often non-optimized) logic in CPU and GPU arith‐
metic. Common special values like NaN are not available for all data types.

As in most cases where no universally optimal choice exists, different languages and
systems use different conventions. For example, the R language uses reserved bit pat‐
terns within each data type as sentinel values indicating missing data, while the SciDB
system uses an extra byte attached to every cell to indicate a NA state.

Missing Data in Pandas
The way in which Pandas handles missing values is constrained by its reliance on the
NumPy package, which does not have a built-in notion of NA values for non-
floating-point data types.

Pandas could have followed R’s lead in specifying bit patterns for each individual data
type to indicate nullness, but this approach turns out to be rather unwieldy. While R
contains four basic data types, NumPy supports far more than this: for example,
while R has a single integer type, NumPy supports fourteen basic integer types once
you account for available precisions, signedness, and endianness of the encoding.
Reserving a specific bit pattern in all available NumPy types would lead to an
unwieldy amount of overhead in special-casing various operations for various types,
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likely even requiring a new fork of the NumPy package. Further, for the smaller data
types (such as 8-bit integers), sacrificing a bit to use as a mask will significantly
reduce the range of values it can represent.

NumPy does have support for masked arrays—that is, arrays that have a separate
Boolean mask array attached for marking data as “good” or “bad.” Pandas could have
derived from this, but the overhead in both storage, computation, and code mainte‐
nance makes that an unattractive choice.

With these constraints in mind, Pandas chose to use sentinels for missing data, and
further chose to use two already-existing Python null values: the special floating-
point NaN value, and the Python None object. This choice has some side effects, as we
will see, but in practice ends up being a good compromise in most cases of interest.

None: Pythonic missing data

The first sentinel value used by Pandas is None, a Python singleton object that is often
used for missing data in Python code. Because None is a Python object, it cannot be
used in any arbitrary NumPy/Pandas array, but only in arrays with data type
'object' (i.e., arrays of Python objects):

In[1]: import numpy as np
       import pandas as pd

In[2]: vals1 = np.array([1, None, 3, 4])
       vals1

Out[2]: array([1, None, 3, 4], dtype=object)

This dtype=object means that the best common type representation NumPy could
infer for the contents of the array is that they are Python objects. While this kind of
object array is useful for some purposes, any operations on the data will be done at
the Python level, with much more overhead than the typically fast operations seen for
arrays with native types:

In[3]: for dtype in ['object', 'int']:
           print("dtype =", dtype)
           %timeit np.arange(1E6, dtype=dtype).sum()
           print()

dtype = object
10 loops, best of 3: 78.2 ms per loop

dtype = int
100 loops, best of 3: 3.06 ms per loop

The use of Python objects in an array also means that if you perform aggregations
like sum() or min() across an array with a None value, you will generally get an error:
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In[4]: vals1.sum()

TypeError                                 Traceback (most recent call last)

<ipython-input-4-749fd8ae6030> in <module>()
----> 1 vals1.sum()

/Users/jakevdp/anaconda/lib/python3.5/site-packages/numpy/core/_methods.py ...
     30
     31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
---> 32     return umr_sum(a, axis, dtype, out, keepdims)
     33
     34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

This reflects the fact that addition between an integer and None is undefined.

NaN: Missing numerical data

The other missing data representation, NaN (acronym for Not a Number), is different;
it is a special floating-point value recognized by all systems that use the standard
IEEE floating-point representation:

In[5]: vals2 = np.array([1, np.nan, 3, 4])
       vals2.dtype

Out[5]: dtype('float64')

Notice that NumPy chose a native floating-point type for this array: this means that
unlike the object array from before, this array supports fast operations pushed into
compiled code. You should be aware that NaN is a bit like a data virus—it infects any
other object it touches. Regardless of the operation, the result of arithmetic with NaN
will be another NaN:

In[6]: 1 + np.nan

Out[6]: nan

In[7]: 0 *  np.nan

Out[7]: nan

Note that this means that aggregates over the values are well defined (i.e., they don’t
result in an error) but not always useful:

In[8]: vals2.sum(), vals2.min(), vals2.max()

Out[8]: (nan, nan, nan)

NumPy does provide some special aggregations that will ignore these missing values:
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In[9]: np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)

Out[9]: (8.0, 1.0, 4.0)

Keep in mind that NaN is specifically a floating-point value; there is no equivalent
NaN value for integers, strings, or other types.

NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle the two of them
nearly interchangeably, converting between them where appropriate:

In[10]: pd.Series([1, np.nan, 2, None])

Out[10]: 0    1.0
         1    NaN
         2    2.0
         3    NaN
         dtype: float64

For types that don’t have an available sentinel value, Pandas automatically type-casts
when NA values are present. For example, if we set a value in an integer array to
np.nan, it will automatically be upcast to a floating-point type to accommodate the
NA:

In[11]: x = pd.Series(range(2), dtype=int)
        x

Out[11]: 0    0
         1    1
         dtype: int64

In[12]: x[0] = None
        x

Out[12]: 0    NaN
         1    1.0
         dtype: float64

Notice that in addition to casting the integer array to floating point, Pandas automati‐
cally converts the None to a NaN value. (Be aware that there is a proposal to add a
native integer NA to Pandas in the future; as of this writing, it has not been included.)

While this type of magic may feel a bit hackish compared to the more unified
approach to NA values in domain-specific languages like R, the Pandas sentinel/cast‐
ing approach works quite well in practice and in my experience only rarely causes
issues.

Table 3-2 lists the upcasting conventions in Pandas when NA values are introduced.
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Table 3-2. Pandas handling of NAs by type

Typeclass Conversion when storing NAs NA sentinel value

floating No change np.nan

object No change None or np.nan

integer Cast to float64 np.nan

boolean Cast to object None or np.nan

Keep in mind that in Pandas, string data is always stored with an object dtype.

Operating on Null Values
As we have seen, Pandas treats None and NaN as essentially interchangeable for indi‐
cating missing or null values. To facilitate this convention, there are several useful
methods for detecting, removing, and replacing null values in Pandas data structures.
They are:

isnull()

Generate a Boolean mask indicating missing values

notnull()

Opposite of isnull()

dropna()

Return a filtered version of the data

fillna()

Return a copy of the data with missing values filled or imputed

We will conclude this section with a brief exploration and demonstration of these
routines.

Detecting null values

Pandas data structures have two useful methods for detecting null data: isnull() and
notnull(). Either one will return a Boolean mask over the data. For example:

In[13]: data = pd.Series([1, np.nan, 'hello', None])

In[14]: data.isnull()

Out[14]: 0    False
         1     True
         2    False
         3     True
         dtype: bool

As mentioned in “Data Indexing and Selection” on page 107, Boolean masks can be
used directly as a Series or DataFrame index:
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In[15]: data[data.notnull()]

Out[15]: 0        1
         2    hello
         dtype: object

The isnull() and notnull() methods produce similar Boolean results for Data
Frames.

Dropping null values

In addition to the masking used before, there are the convenience methods, dropna()
(which removes NA values) and fillna() (which fills in NA values). For a Series,
the result is straightforward:

In[16]: data.dropna()

Out[16]: 0        1
         2    hello
         dtype: object

For a DataFrame, there are more options. Consider the following DataFrame:

In[17]: df = pd.DataFrame([[1,      np.nan, 2],
                           [2,      3,      5],
                           [np.nan, 4,      6]])
        df

Out[17]:      0    1  2
         0  1.0  NaN  2
         1  2.0  3.0  5
         2  NaN  4.0  6

We cannot drop single values from a DataFrame; we can only drop full rows or full
columns. Depending on the application, you might want one or the other, so
dropna() gives a number of options for a DataFrame.

By default, dropna() will drop all rows in which any null value is present:

In[18]: df.dropna()

Out[18]:      0    1  2
         1  2.0  3.0  5

Alternatively, you can drop NA values along a different axis; axis=1 drops all col‐
umns containing a null value:

In[19]: df.dropna(axis='columns')

Out[19]:    2
         0  2
         1  5
         2  6

Handling Missing Data | 125



But this drops some good data as well; you might rather be interested in dropping
rows or columns with all NA values, or a majority of NA values. This can be specified
through the how or thresh parameters, which allow fine control of the number of
nulls to allow through.

The default is how='any', such that any row or column (depending on the axis key‐
word) containing a null value will be dropped. You can also specify how='all', which
will only drop rows/columns that are all null values:

In[20]: df[3] = np.nan
        df

Out[20]:      0    1  2   3
         0  1.0  NaN  2 NaN
         1  2.0  3.0  5 NaN
         2  NaN  4.0  6 NaN

In[21]: df.dropna(axis='columns', how='all')

Out[21]:      0    1  2
         0  1.0  NaN  2
         1  2.0  3.0  5
         2  NaN  4.0  6

For finer-grained control, the thresh parameter lets you specify a minimum number
of non-null values for the row/column to be kept:

In[22]: df.dropna(axis='rows', thresh=3)

Out[22]:      0    1  2   3
         1  2.0  3.0  5 NaN

Here the first and last row have been dropped, because they contain only two non-
null values.

Filling null values
Sometimes rather than dropping NA values, you’d rather replace them with a valid
value. This value might be a single number like zero, or it might be some sort of
imputation or interpolation from the good values. You could do this in-place using
the isnull() method as a mask, but because it is such a common operation Pandas
provides the fillna() method, which returns a copy of the array with the null values
replaced.

Consider the following Series:

In[23]: data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))
        data

Out[23]: a    1.0
         b    NaN
         c    2.0
         d    NaN
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         e    3.0
         dtype: float64

We can fill NA entries with a single value, such as zero:

In[24]: data.fillna(0)

Out[24]: a    1.0
         b    0.0
         c    2.0
         d    0.0
         e    3.0
         dtype: float64

We can specify a forward-fill to propagate the previous value forward:

In[25]: # forward-fill
        data.fillna(method='ffill')

Out[25]: a    1.0
         b    1.0
         c    2.0
         d    2.0
         e    3.0
         dtype: float64

Or we can specify a back-fill to propagate the next values backward:

In[26]: # back-fill
        data.fillna(method='bfill')

Out[26]: a    1.0
         b    2.0
         c    2.0
         d    3.0
         e    3.0
         dtype: float64

For DataFrames, the options are similar, but we can also specify an axis along which
the fills take place:

In[27]: df

Out[27]:      0    1  2   3
         0  1.0  NaN  2 NaN
         1  2.0  3.0  5 NaN
         2  NaN  4.0  6 NaN

In[28]: df.fillna(method='ffill', axis=1)

Out[28]:      0    1    2    3
         0  1.0  1.0  2.0  2.0
         1  2.0  3.0  5.0  5.0
         2  NaN  4.0  6.0  6.0

Notice that if a previous value is not available during a forward fill, the NA value
remains.
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Hierarchical Indexing
Up to this point we’ve been focused primarily on one-dimensional and two-
dimensional data, stored in Pandas Series and DataFrame objects, respectively. Often
it is useful to go beyond this and store higher-dimensional data—that is, data indexed
by more than one or two keys. While Pandas does provide Panel and Panel4D objects
that natively handle three-dimensional and four-dimensional data (see “Panel Data”
on page 141), a far more common pattern in practice is to make use of hierarchical
indexing (also known as multi-indexing) to incorporate multiple index levels within a
single index. In this way, higher-dimensional data can be compactly represented
within the familiar one-dimensional Series and two-dimensional DataFrame objects.

In this section, we’ll explore the direct creation of MultiIndex objects; considerations
around indexing, slicing, and computing statistics across multiply indexed data; and
useful routines for converting between simple and hierarchically indexed representa‐
tions of your data.

We begin with the standard imports:

In[1]: import pandas as pd
       import numpy as np

A Multiply Indexed Series
Let’s start by considering how we might represent two-dimensional data within a
one-dimensional Series. For concreteness, we will consider a series of data where
each point has a character and numerical key.

The bad way
Suppose you would like to track data about states from two different years. Using the
Pandas tools we’ve already covered, you might be tempted to simply use Python
tuples as keys:

In[2]: index = [('California', 2000), ('California', 2010),
                ('New York', 2000), ('New York', 2010),
                ('Texas', 2000), ('Texas', 2010)]
       populations = [33871648, 37253956,
                      18976457, 19378102,
                      20851820, 25145561]
       pop = pd.Series(populations, index=index)
       pop

Out[2]: (California, 2000)    33871648
        (California, 2010)    37253956
        (New York, 2000)      18976457
        (New York, 2010)      19378102
        (Texas, 2000)         20851820
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        (Texas, 2010)         25145561
        dtype: int64

With this indexing scheme, you can straightforwardly index or slice the series based
on this multiple index:

In[3]: pop[('California', 2010):('Texas', 2000)]

Out[3]: (California, 2010)    37253956
        (New York, 2000)      18976457
        (New York, 2010)      19378102
        (Texas, 2000)         20851820
        dtype: int64

But the convenience ends there. For example, if you need to select all values from
2010, you’ll need to do some messy (and potentially slow) munging to make it
happen:

In[4]: pop[[i for i in pop.index if i[1] == 2010]]

Out[4]: (California, 2010)    37253956
        (New York, 2010)      19378102
        (Texas, 2010)         25145561
        dtype: int64

This produces the desired result, but is not as clean (or as efficient for large datasets)
as the slicing syntax we’ve grown to love in Pandas.

The better way: Pandas MultiIndex
Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a
rudimentary multi-index, and the Pandas MultiIndex type gives us the type of opera‐
tions we wish to have. We can create a multi-index from the tuples as follows:

In[5]: index = pd.MultiIndex.from_tuples(index)
       index

Out[5]: MultiIndex(levels=[['California', 'New York', 'Texas'], [2000, 2010]],
                   labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

Notice that the MultiIndex contains multiple levels of indexing—in this case, the state
names and the years, as well as multiple labels for each data point which encode these
levels.

If we reindex our series with this MultiIndex, we see the hierarchical representation
of the data:

In[6]: pop = pop.reindex(index)
       pop

Out[6]: California  2000    33871648
                    2010    37253956
        New York    2000    18976457
                    2010    19378102
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        Texas       2000    20851820
                    2010    25145561
        dtype: int64

Here the first two columns of the Series representation show the multiple index val‐
ues, while the third column shows the data. Notice that some entries are missing in
the first column: in this multi-index representation, any blank entry indicates the
same value as the line above it.

Now to access all data for which the second index is 2010, we can simply use the Pan‐
das slicing notation:

In[7]: pop[:, 2010]

Out[7]: California    37253956
        New York      19378102
        Texas         25145561
        dtype: int64

The result is a singly indexed array with just the keys we’re interested in. This syntax
is much more convenient (and the operation is much more efficient!) than the home-
spun tuple-based multi-indexing solution that we started with. We’ll now further dis‐
cuss this sort of indexing operation on hierarchically indexed data.

MultiIndex as extra dimension
You might notice something else here: we could easily have stored the same data
using a simple DataFrame with index and column labels. In fact, Pandas is built with
this equivalence in mind. The unstack() method will quickly convert a multiply-
indexed Series into a conventionally indexed DataFrame:

In[8]: pop_df = pop.unstack()
       pop_df

Out[8]:                 2000      2010
        California  33871648  37253956
        New York    18976457  19378102
        Texas       20851820  25145561

Naturally, the stack() method provides the opposite operation:

In[9]: pop_df.stack()

Out[9]:  California  2000    33871648
                     2010    37253956
         New York    2000    18976457
                     2010    19378102
         Texas       2000    20851820
                     2010    25145561
         dtype: int64

Seeing this, you might wonder why would we would bother with hierarchical index‐
ing at all. The reason is simple: just as we were able to use multi-indexing to represent
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two-dimensional data within a one-dimensional Series, we can also use it to repre‐
sent data of three or more dimensions in a Series or DataFrame. Each extra level in a
multi-index represents an extra dimension of data; taking advantage of this property
gives us much more flexibility in the types of data we can represent. Concretely, we
might want to add another column of demographic data for each state at each year
(say, population under 18); with a MultiIndex this is as easy as adding another col‐
umn to the DataFrame:

In[10]: pop_df = pd.DataFrame({'total': pop,
                               'under18': [9267089, 9284094,
                                           4687374, 4318033,
                                           5906301, 6879014]})
        pop_df

Out[10]:                     total  under18
         California 2000  33871648  9267089
                    2010  37253956  9284094
         New York   2000  18976457  4687374
                    2010  19378102  4318033
         Texas      2000  20851820  5906301
                    2010  25145561  6879014

In addition, all the ufuncs and other functionality discussed in “Operating on Data in
Pandas” on page 115 work with hierarchical indices as well. Here we compute the
fraction of people under 18 by year, given the above data:

In[11]: f_u18 = pop_df['under18'] / pop_df['total']
        f_u18.unstack()

Out[11]:                 2000      2010
         California  0.273594  0.249211
         New York    0.247010  0.222831
         Texas       0.283251  0.273568

This allows us to easily and quickly manipulate and explore even high-dimensional
data.

Methods of MultiIndex Creation
The most straightforward way to construct a multiply indexed Series or DataFrame
is to simply pass a list of two or more index arrays to the constructor. For example:

In[12]: df = pd.DataFrame(np.random.rand(4, 2),
                          index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
                          columns=['data1', 'data2'])
        df

Out[12]:         data1     data2
         a 1  0.554233  0.356072
           2  0.925244  0.219474
         b 1  0.441759  0.610054
           2  0.171495  0.886688
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The work of creating the MultiIndex is done in the background.

Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will auto‐
matically recognize this and use a MultiIndex by default:

In[13]: data = {('California', 2000): 33871648,
                ('California', 2010): 37253956,
                ('Texas', 2000): 20851820,
                ('Texas', 2010): 25145561,
                ('New York', 2000): 18976457,
                ('New York', 2010): 19378102}
        pd.Series(data)

Out[13]: California  2000    33871648
                     2010    37253956
         New York    2000    18976457
                     2010    19378102
         Texas       2000    20851820
                     2010    25145561
         dtype: int64

Nevertheless, it is sometimes useful to explicitly create a MultiIndex; we’ll see a cou‐
ple of these methods here.

Explicit MultiIndex constructors
For more flexibility in how the index is constructed, you can instead use the class
method constructors available in the pd.MultiIndex. For example, as we did before,
you can construct the MultiIndex from a simple list of arrays, giving the index values
within each level:

In[14]: pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]])

Out[14]: MultiIndex(levels=[['a', 'b'], [1, 2]],
                    labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can construct it from a list of tuples, giving the multiple index values of each
point:

In[15]: pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)])

Out[15]: MultiIndex(levels=[['a', 'b'], [1, 2]],
                    labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can even construct it from a Cartesian product of single indices:

In[16]: pd.MultiIndex.from_product([['a', 'b'], [1, 2]])

Out[16]: MultiIndex(levels=[['a', 'b'], [1, 2]],
                    labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Similarly, you can construct the MultiIndex directly using its internal encoding by
passing levels (a list of lists containing available index values for each level) and
labels (a list of lists that reference these labels):
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In[17]: pd.MultiIndex(levels=[['a', 'b'], [1, 2]],
                       labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Out[17]: MultiIndex(levels=[['a', 'b'], [1, 2]],
                    labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can pass any of these objects as the index argument when creating a Series or
DataFrame, or to the reindex method of an existing Series or DataFrame.

MultiIndex level names

Sometimes it is convenient to name the levels of the MultiIndex. You can accomplish
this by passing the names argument to any of the above MultiIndex constructors, or
by setting the names attribute of the index after the fact:

In[18]: pop.index.names = ['state', 'year']
        pop

Out[18]: state       year
         California  2000    33871648
                     2010    37253956
         New York    2000    18976457
                     2010    19378102
         Texas       2000    20851820
                     2010    25145561
         dtype: int64

With more involved datasets, this can be a useful way to keep track of the meaning of
various index values.

MultiIndex for columns

In a DataFrame, the rows and columns are completely symmetric, and just as the rows
can have multiple levels of indices, the columns can have multiple levels as well. Con‐
sider the following, which is a mock-up of some (somewhat realistic) medical data:

In[19]:
# hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],
                                   names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],
                                     names=['subject', 'type'])

# mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37

# create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data
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Out[19]: subject      Bob       Guido         Sue
         type          HR  Temp    HR  Temp    HR  Temp
         year visit
         2013 1      31.0  38.7  32.0  36.7  35.0  37.2
              2      44.0  37.7  50.0  35.0  29.0  36.7
         2014 1      30.0  37.4  39.0  37.8  61.0  36.9
              2      47.0  37.8  48.0  37.3  51.0  36.5

Here we see where the multi-indexing for both rows and columns can come in very
handy. This is fundamentally four-dimensional data, where the dimensions are the
subject, the measurement type, the year, and the visit number. With this in place we
can, for example, index the top-level column by the person’s name and get a full Data
Frame containing just that person’s information:

In[20]: health_data['Guido']

Out[20]: type          HR  Temp
         year visit
         2013 1      32.0  36.7
              2      50.0  35.0
         2014 1      39.0  37.8
              2      48.0  37.3

For complicated records containing multiple labeled measurements across multiple
times for many subjects (people, countries, cities, etc.), use of hierarchical rows and
columns can be extremely convenient!

Indexing and Slicing a MultiIndex
Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you
think about the indices as added dimensions. We’ll first look at indexing multiply
indexed Series, and then multiply indexed DataFrames.

Multiply indexed Series

Consider the multiply indexed Series of state populations we saw earlier:

In[21]: pop

Out[21]: state       year
         California  2000    33871648
                     2010    37253956
         New York    2000    18976457
                     2010    19378102
         Texas       2000    20851820
                     2010    25145561
         dtype: int64

We can access single elements by indexing with multiple terms:

In[22]: pop['California', 2000]

Out[22]: 33871648
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The MultiIndex also supports partial indexing, or indexing just one of the levels in
the index. The result is another Series, with the lower-level indices maintained:

In[23]: pop['California']

Out[23]: year
         2000    33871648
         2010    37253956
         dtype: int64

Partial slicing is available as well, as long as the MultiIndex is sorted (see discussion
in “Sorted and unsorted indices” on page 137):

In[24]: pop.loc['California':'New York']

Out[24]: state       year
         California  2000    33871648
                     2010    37253956
         New York    2000    18976457
                     2010    19378102
         dtype: int64

With sorted indices, we can perform partial indexing on lower levels by passing an
empty slice in the first index:

In[25]: pop[:, 2000]

Out[25]: state
         California    33871648
         New York      18976457
         Texas         20851820
         dtype: int64

Other types of indexing and selection (discussed in “Data Indexing and Selection” on
page 107) work as well; for example, selection based on Boolean masks:

In[26]: pop[pop > 22000000]

Out[26]: state       year
         California  2000    33871648
                     2010    37253956
         Texas       2010    25145561
         dtype: int64

Selection based on fancy indexing also works:

In[27]: pop[['California', 'Texas']]

Out[27]: state       year
         California  2000    33871648
                     2010    37253956
         Texas       2000    20851820
                     2010    25145561
         dtype: int64
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Multiply indexed DataFrames

A multiply indexed DataFrame behaves in a similar manner. Consider our toy medi‐
cal DataFrame from before:

In[28]: health_data

Out[28]: subject      Bob       Guido         Sue
         type          HR  Temp    HR  Temp    HR  Temp
         year visit
         2013 1      31.0  38.7  32.0  36.7  35.0  37.2
              2      44.0  37.7  50.0  35.0  29.0  36.7
         2014 1      30.0  37.4  39.0  37.8  61.0  36.9
              2      47.0  37.8  48.0  37.3  51.0  36.5

Remember that columns are primary in a DataFrame, and the syntax used for multi‐
ply indexed Series applies to the columns. For example, we can recover Guido’s heart
rate data with a simple operation:

In[29]: health_data['Guido', 'HR']

Out[29]: year  visit
         2013  1        32.0
               2        50.0
         2014  1        39.0
               2        48.0
         Name: (Guido, HR), dtype: float64

Also, as with the single-index case, we can use the loc, iloc, and ix indexers intro‐
duced in “Data Indexing and Selection” on page 107. For example:

In[30]: health_data.iloc[:2, :2]

Out[30]: subject      Bob
         type          HR  Temp
         year visit
         2013 1      31.0  38.7
              2      44.0  37.7

These indexers provide an array-like view of the underlying two-dimensional data,
but each individual index in loc or iloc can be passed a tuple of multiple indices. For
example:

In[31]: health_data.loc[:, ('Bob', 'HR')]

Out[31]: year  visit
         2013  1        31.0
               2        44.0
         2014  1        30.0
               2        47.0
         Name: (Bob, HR), dtype: float64

Working with slices within these index tuples is not especially convenient; trying to
create a slice within a tuple will lead to a syntax error:
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In[32]: health_data.loc[(:, 1), (:, 'HR')]

  File "<ipython-input-32-8e3cc151e316>", line 1
    health_data.loc[(:, 1), (:, 'HR')]
                     ^
SyntaxError: invalid syntax

You could get around this by building the desired slice explicitly using Python’s built-
in slice() function, but a better way in this context is to use an IndexSlice object,
which Pandas provides for precisely this situation. For example:

In[33]: idx = pd.IndexSlice
        health_data.loc[idx[:, 1], idx[:, 'HR']]

Out[33]: subject      Bob Guido   Sue
         type          HR    HR    HR
         year visit
         2013 1      31.0  32.0  35.0
         2014 1      30.0  39.0  61.0

There are so many ways to interact with data in multiply indexed Series and Data
Frames, and as with many tools in this book the best way to become familiar with
them is to try them out!

Rearranging Multi-Indices
One of the keys to working with multiply indexed data is knowing how to effectively
transform the data. There are a number of operations that will preserve all the infor‐
mation in the dataset, but rearrange it for the purposes of various computations. We
saw a brief example of this in the stack() and unstack() methods, but there are
many more ways to finely control the rearrangement of data between hierarchical
indices and columns, and we’ll explore them here.

Sorted and unsorted indices
Earlier, we briefly mentioned a caveat, but we should emphasize it more here. Many of
the MultiIndex slicing operations will fail if the index is not sorted. Let’s take a look at
this here.

We’ll start by creating some simple multiply indexed data where the indices are not
lexographically sorted:

In[34]: index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]])
        data = pd.Series(np.random.rand(6), index=index)
        data.index.names = ['char', 'int']
        data

Out[34]: char  int
         a     1      0.003001
               2      0.164974
         c     1      0.741650
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               2      0.569264
         b     1      0.001693
               2      0.526226
         dtype: float64

If we try to take a partial slice of this index, it will result in an error:

In[35]: try:
            data['a':'b']
        except KeyError as e:
            print(type(e))
            print(e)

<class 'KeyError'>
'Key length (1) was greater than MultiIndex lexsort depth (0)'

Although it is not entirely clear from the error message, this is the result of the Multi
Index not being sorted. For various reasons, partial slices and other similar opera‐
tions require the levels in the MultiIndex to be in sorted (i.e., lexographical) order.
Pandas provides a number of convenience routines to perform this type of sorting;
examples are the sort_index() and sortlevel() methods of the DataFrame. We’ll
use the simplest, sort_index(), here:

In[36]: data = data.sort_index()
        data

Out[36]: char  int
         a     1      0.003001
               2      0.164974
         b     1      0.001693
               2      0.526226
         c     1      0.741650
               2      0.569264
         dtype: float64

With the index sorted in this way, partial slicing will work as expected:

In[37]: data['a':'b']

Out[37]: char  int
         a     1      0.003001
               2      0.164974
         b     1      0.001693
               2      0.526226
         dtype: float64

Stacking and unstacking indices
As we saw briefly before, it is possible to convert a dataset from a stacked multi-index
to a simple two-dimensional representation, optionally specifying the level to use:
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In[38]: pop.unstack(level=0)

Out[38]:  state  California   New York     Texas
          year
          2000     33871648   18976457  20851820
          2010     37253956   19378102  25145561

In[39]: pop.unstack(level=1)

Out[39]: year            2000      2010
         state
         California  33871648  37253956
         New York    18976457  19378102
         Texas       20851820  25145561

The opposite of unstack() is stack(), which here can be used to recover the original
series:

In[40]: pop.unstack().stack()

Out[40]: state       year
         California  2000    33871648
                     2010    37253956
         New York    2000    18976457
                     2010    19378102
         Texas       2000    20851820
                     2010    25145561
         dtype: int64

Index setting and resetting
Another way to rearrange hierarchical data is to turn the index labels into columns;
this can be accomplished with the reset_index method. Calling this on the popula‐
tion dictionary will result in a DataFrame with a state and year column holding the
information that was formerly in the index. For clarity, we can optionally specify the
name of the data for the column representation:

In[41]: pop_flat = pop.reset_index(name='population')
        pop_flat

Out[41]:         state  year  population
         0  California  2000    33871648
         1  California  2010    37253956
         2    New York  2000    18976457
         3    New York  2010    19378102
         4       Texas  2000    20851820
         5       Texas  2010    25145561

Often when you are working with data in the real world, the raw input data looks like
this and it’s useful to build a MultiIndex from the column values. This can be done
with the set_index method of the DataFrame, which returns a multiply indexed Data
Frame:
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In[42]: pop_flat.set_index(['state', 'year'])

Out[42]:                  population
         state      year
         California 2000    33871648
                    2010    37253956
         New York   2000    18976457
                    2010    19378102
         Texas      2000    20851820
                    2010    25145561

In practice, I find this type of reindexing to be one of the more useful patterns when I
encounter real-world datasets.

Data Aggregations on Multi-Indices
We’ve previously seen that Pandas has built-in data aggregation methods, such as
mean(), sum(), and max(). For hierarchically indexed data, these can be passed a
level parameter that controls which subset of the data the aggregate is computed on.

For example, let’s return to our health data:

In[43]: health_data

Out[43]:  subject      Bob       Guido         Sue
          type          HR  Temp    HR  Temp    HR  Temp
          year visit
          2013 1      31.0  38.7  32.0  36.7  35.0  37.2
               2      44.0  37.7  50.0  35.0  29.0  36.7
          2014 1      30.0  37.4  39.0  37.8  61.0  36.9
               2      47.0  37.8  48.0  37.3  51.0  36.5

Perhaps we’d like to average out the measurements in the two visits each year. We can
do this by naming the index level we’d like to explore, in this case the year:

In[44]: data_mean = health_data.mean(level='year')
        data_mean

Out[44]: subject   Bob       Guido          Sue
         type       HR  Temp    HR   Temp    HR   Temp
         year
         2013     37.5  38.2  41.0  35.85  32.0  36.95
         2014     38.5  37.6  43.5  37.55  56.0  36.70

By further making use of the axis keyword, we can take the mean among levels on
the columns as well:

In[45]: data_mean.mean(axis=1, level='type')

Out[45]: type         HR       Temp
         year
         2013  36.833333  37.000000
         2014  46.000000  37.283333
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Thus in two lines, we’ve been able to find the average heart rate and temperature
measured among all subjects in all visits each year. This syntax is actually a shortcut
to the GroupBy functionality, which we will discuss in “Aggregation and Grouping” on
page 158. While this is a toy example, many real-world datasets have similar hierarch‐
ical structure.

Panel Data
Pandas has a few other fundamental data structures that we have not yet discussed,
namely the pd.Panel and pd.Panel4D objects. These can be thought of, respectively,
as three-dimensional and four-dimensional generalizations of the (one-dimensional)
Series and (two-dimensional) DataFrame structures. Once you are familiar with
indexing and manipulation of data in a Series and DataFrame, Panel and Panel4D
are relatively straightforward to use. In particular, the ix, loc, and iloc indexers dis‐
cussed in “Data Indexing and Selection” on page 107 extend readily to these higher-
dimensional structures.

We won’t cover these panel structures further in this text, as I’ve found in the majority
of cases that multi-indexing is a more useful and conceptually simpler representation
for higher-dimensional data. Additionally, panel data is fundamentally a dense data
representation, while multi-indexing is fundamentally a sparse data representation.
As the number of dimensions increases, the dense representation can become very
inefficient for the majority of real-world datasets. For the occasional specialized appli‐
cation, however, these structures can be useful. If you’d like to read more about the
Panel and Panel4D structures, see the references listed in “Further Resources” on
page 215.

Combining Datasets: Concat and Append
Some of the most interesting studies of data come from combining different data
sources. These operations can involve anything from very straightforward concatena‐
tion of two different datasets, to more complicated database-style joins and merges
that correctly handle any overlaps between the datasets. Series and DataFrames are
built with this type of operation in mind, and Pandas includes functions and methods
that make this sort of data wrangling fast and straightforward.

Here we’ll take a look at simple concatenation of Series and DataFrames with the
pd.concat function; later we’ll dive into more sophisticated in-memory merges and
joins implemented in Pandas.

We begin with the standard imports:

In[1]: import pandas as pd
       import numpy as np
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For convenience, we’ll define this function, which creates a DataFrame of a particular
form that will be useful below:

In[2]: def make_df(cols, ind):
           """Quickly make a DataFrame"""
           data = {c: [str(c) + str(i) for i in ind]
                   for c in cols}
           return pd.DataFrame(data, ind)

       # example DataFrame
       make_df('ABC', range(3))

Out[2]:     A   B   C
        0  A0  B0  C0
        1  A1  B1  C1
        2  A2  B2  C2

Recall: Concatenation of NumPy Arrays
Concatenation of Series and DataFrame objects is very similar to concatenation of
NumPy arrays, which can be done via the np.concatenate function as discussed in
“The Basics of NumPy Arrays” on page 42. Recall that with it, you can combine the
contents of two or more arrays into a single array:

In[4]: x = [1, 2, 3]
       y = [4, 5, 6]
       z = [7, 8, 9]
       np.concatenate([x, y, z])

Out[4]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

The first argument is a list or tuple of arrays to concatenate. Additionally, it takes an
axis keyword that allows you to specify the axis along which the result will be
concatenated:

In[5]: x = [[1, 2],
            [3, 4]]
       np.concatenate([x, x], axis=1)

Out[5]: array([[1, 2, 1, 2],
               [3, 4, 3, 4]])

Simple Concatenation with pd.concat
Pandas has a function, pd.concat(), which has a similar syntax to np.concatenate
but contains a number of options that we’ll discuss momentarily:

# Signature in Pandas v0.18
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
          keys=None, levels=None, names=None, verify_integrity=False,
          copy=True)
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pd.concat() can be used for a simple concatenation of Series or DataFrame objects,
just as np.concatenate() can be used for simple concatenations of arrays:

In[6]: ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
       ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
       pd.concat([ser1, ser2])

Out[6]: 1    A
        2    B
        3    C
        4    D
        5    E
        6    F
        dtype: object

It also works to concatenate higher-dimensional objects, such as DataFrames:

In[7]: df1 = make_df('AB', [1, 2])
       df2 = make_df('AB', [3, 4])
       print(df1); print(df2); print(pd.concat([df1, df2]))

df1             df2           pd.concat([df1, df2])
     A   B          A   B          A   B
 1  A1  B1      3  A3  B3      1  A1  B1
 2  A2  B2      4  A4  B4      2  A2  B2
                               3  A3  B3
                               4  A4  B4

By default, the concatenation takes place row-wise within the DataFrame (i.e.,
axis=0). Like np.concatenate, pd.concat allows specification of an axis along which
concatenation will take place. Consider the following example:

In[8]: df3 = make_df('AB', [0, 1])
       df4 = make_df('CD', [0, 1])
       print(df3); print(df4); print(pd.concat([df3, df4], axis='col'))

df3             df4           pd.concat([df3, df4], axis='col')
     A   B          C   D         A   B   C   D
 0  A0  B0      0  C0  D0     0  A0  B0  C0  D0
 1  A1  B1      1  C1  D1     1  A1  B1  C1  D1

We could have equivalently specified axis=1; here we’ve used the more intuitive
axis='col'.

Duplicate indices

One important difference between np.concatenate and pd.concat is that Pandas
concatenation preserves indices, even if the result will have duplicate indices! Consider
this simple example:

In[9]: x = make_df('AB', [0, 1])
       y = make_df('AB', [2, 3])
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       y.index = x.index  # make duplicate indices!
       print(x); print(y); print(pd.concat([x, y]))

x             y            pd.concat([x, y])
     A   B        A   B        A   B
 0  A0  B0    0  A2  B2    0  A0  B0
 1  A1  B1    1  A3  B3    1  A1  B1
                           0  A2  B2
                           1  A3  B3

Notice the repeated indices in the result. While this is valid within DataFrames, the
outcome is often undesirable. pd.concat() gives us a few ways to handle it.

Catching the repeats as an error.    If you’d like to simply verify that the indices in the
result of pd.concat() do not overlap, you can specify the verify_integrity flag.
With this set to True, the concatenation will raise an exception if there are duplicate
indices. Here is an example, where for clarity we’ll catch and print the error message:

In[10]: try:
            pd.concat([x, y], verify_integrity=True)
        except ValueError as e:
            print("ValueError:", e)

ValueError: Indexes have overlapping values: [0, 1]

Ignoring the index.    Sometimes the index itself does not matter, and you would prefer
it to simply be ignored. You can specify this option using the ignore_index flag. With
this set to True, the concatenation will create a new integer index for the resulting
Series:

In[11]: print(x); print(y); print(pd.concat([x, y], ignore_index=True))

x             y            pd.concat([x, y], ignore_index=True)
     A   B        A   B        A   B
 0  A0  B0    0  A2  B2    0  A0  B0
 1  A1  B1    1  A3  B3    1  A1  B1
                           2  A2  B2
                           3  A3  B3

Adding MultiIndex keys.    Another alternative is to use the keys option to specify a label
for the data sources; the result will be a hierarchically indexed series containing the
data:

In[12]: print(x); print(y); print(pd.concat([x, y], keys=['x', 'y']))

x               y              pd.concat([x, y], keys=['x', 'y'])
     A   B          A   B             A   B
 0  A0  B0      0  A2  B2      x  0  A0  B0
 1  A1  B1      1  A3  B3         1  A1  B1
                               y  0  A2  B2
                                  1  A3  B3
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The result is a multiply indexed DataFrame, and we can use the tools discussed in
“Hierarchical Indexing” on page 128 to transform this data into the representation
we’re interested in.

Concatenation with joins

In the simple examples we just looked at, we were mainly concatenating DataFrames
with shared column names. In practice, data from different sources might have differ‐
ent sets of column names, and pd.concat offers several options in this case. Consider
the concatenation of the following two DataFrames, which have some (but not all!)
columns in common:

In[13]: df5 = make_df('ABC', [1, 2])
        df6 = make_df('BCD', [3, 4])
        print(df5); print(df6); print(pd.concat([df5, df6])

df5               df6              pd.concat([df5, df6])
     A   B   C        B   C   D         A   B   C    D
 1  A1  B1  C1    3  B3  C3  D3    1   A1  B1  C1  NaN
 2  A2  B2  C2    4  B4  C4  D4    2   A2  B2  C2  NaN
                                   3  NaN  B3  C3   D3
                                   4  NaN  B4  C4   D4

By default, the entries for which no data is available are filled with NA values. To
change this, we can specify one of several options for the join and join_axes param‐
eters of the concatenate function. By default, the join is a union of the input columns
(join='outer'), but we can change this to an intersection of the columns using
join='inner':

In[14]: print(df5); print(df6);
        print(pd.concat([df5, df6], join='inner'))

df5               df6              pd.concat([df5, df6], join='inner')
     A   B   C        B   C   D        B   C
 1  A1  B1  C1    3  B3  C3  D3    1  B1  C1
 2  A2  B2  C2    4  B4  C4  D4    2  B2  C2
                                   3  B3  C3
                                   4  B4  C4

Another option is to directly specify the index of the remaining colums using the
join_axes argument, which takes a list of index objects. Here we’ll specify that the
returned columns should be the same as those of the first input:

In[15]: print(df5); print(df6);
        print(pd.concat([df5, df6], join_axes=[df5.columns]))

df5               df6              pd.concat([df5, df6], join_axes=[df5.columns])
     A   B   C        B   C   D         A   B   C
 1  A1  B1  C1    3  B3  C3  D3    1   A1  B1  C1
 2  A2  B2  C2    4  B4  C4  D4    2   A2  B2  C2
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                                   3  NaN  B3  C3
                                   4  NaN  B4  C4

The combination of options of the pd.concat function allows a wide range of possi‐
ble behaviors when you are joining two datasets; keep these in mind as you use these
tools for your own data.

The append() method

Because direct array concatenation is so common, Series and DataFrame objects
have an append method that can accomplish the same thing in fewer keystrokes. For
example, rather than calling pd.concat([df1, df2]), you can simply call
df1.append(df2):

In[16]: print(df1); print(df2); print(df1.append(df2))

df1             df2           df1.append(df2)
     A   B          A   B          A   B
 1  A1  B1      3  A3  B3     1   A1  B1
 2  A2  B2      4  A4  B4     2   A2  B2
                              3   A3  B3
                              4   A4  B4

Keep in mind that unlike the append() and extend() methods of Python lists, the
append() method in Pandas does not modify the original object—instead, it creates a
new object with the combined data. It also is not a very efficient method, because it
involves creation of a new index and data buffer. Thus, if you plan to do multiple
append operations, it is generally better to build a list of DataFrames and pass them all
at once to the concat() function.

In the next section, we’ll look at another more powerful approach to combining data
from multiple sources, the database-style merges/joins implemented in pd.merge. For
more information on concat(), append(), and related functionality, see the “Merge,
Join, and Concatenate” section of the Pandas documentation.

Combining Datasets: Merge and Join
One essential feature offered by Pandas is its high-performance, in-memory join and
merge operations. If you have ever worked with databases, you should be familiar
with this type of data interaction. The main interface for this is the pd.merge func‐
tion, and we’ll see a few examples of how this can work in practice.

Relational Algebra
The behavior implemented in pd.merge() is a subset of what is known as relational
algebra, which is a formal set of rules for manipulating relational data, and forms the
conceptual foundation of operations available in most databases. The strength of the
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relational algebra approach is that it proposes several primitive operations, which
become the building blocks of more complicated operations on any dataset. With this
lexicon of fundamental operations implemented efficiently in a database or other pro‐
gram, a wide range of fairly complicated composite operations can be performed.

Pandas implements several of these fundamental building blocks in the pd.merge()
function and the related join() method of Series and DataFrames. As we will see,
these let you efficiently link data from different sources.

Categories of Joins
The pd.merge() function implements a number of types of joins: the one-to-one,
many-to-one, and many-to-many joins. All three types of joins are accessed via an
identical call to the pd.merge() interface; the type of join performed depends on the
form of the input data. Here we will show simple examples of the three types of
merges, and discuss detailed options further below.

One-to-one joins
Perhaps the simplest type of merge expression is the one-to-one join, which is in
many ways very similar to the column-wise concatenation seen in “Combining Data‐
sets: Concat and Append” on page 141. As a concrete example, consider the following
two DataFrames, which contain information on several employees in a company:

In[2]:
df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],
                    'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})
df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],
                    'hire_date': [2004, 2008, 2012, 2014]})
print(df1); print(df2)

df1                        df2
  employee        group      employee  hire_date
0      Bob   Accounting    0     Lisa       2004
1     Jake  Engineering    1      Bob       2008
2     Lisa  Engineering    2     Jake       2012
3      Sue           HR    3      Sue       2014

To combine this information into a single DataFrame, we can use the pd.merge()
function:

In[3]: df3 = pd.merge(df1, df2)
       df3

Out[3]:   employee        group  hire_date
        0      Bob   Accounting       2008
        1     Jake  Engineering       2012
        2     Lisa  Engineering       2004
        3      Sue           HR       2014
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The pd.merge() function recognizes that each DataFrame has an “employee” column,
and automatically joins using this column as a key. The result of the merge is a new
DataFrame that combines the information from the two inputs. Notice that the order
of entries in each column is not necessarily maintained: in this case, the order of the
“employee” column differs between df1 and df2, and the pd.merge() function cor‐
rectly accounts for this. Additionally, keep in mind that the merge in general discards
the index, except in the special case of merges by index (see “The left_index and
right_index keywords” on page 151).

Many-to-one joins
Many-to-one joins are joins in which one of the two key columns contains duplicate
entries. For the many-to-one case, the resulting DataFrame will preserve those dupli‐
cate entries as appropriate. Consider the following example of a many-to-one join:

In[4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],
                           'supervisor': ['Carly', 'Guido', 'Steve']})
       print(df3); print(df4); print(pd.merge(df3, df4))

df3                                   df4
  employee        group  hire_date             group supervisor
0      Bob   Accounting       2008    0   Accounting      Carly
1     Jake  Engineering       2012    1  Engineering      Guido
2     Lisa  Engineering       2004    2           HR      Steve
3      Sue           HR       2014

pd.merge(df3, df4)
  employee        group  hire_date supervisor
0      Bob   Accounting       2008      Carly
1     Jake  Engineering       2012      Guido
2     Lisa  Engineering       2004      Guido
3      Sue           HR       2014      Steve

The resulting DataFrame has an additional column with the “supervisor” information,
where the information is repeated in one or more locations as required by the inputs.

Many-to-many joins
Many-to-many joins are a bit confusing conceptually, but are nevertheless well
defined. If the key column in both the left and right array contains duplicates, then
the result is a many-to-many merge. This will be perhaps most clear with a concrete
example. Consider the following, where we have a DataFrame showing one or more
skills associated with a particular group.

By performing a many-to-many join, we can recover the skills associated with any
individual person:

In[5]: df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',
                                     'Engineering', 'Engineering', 'HR', 'HR'],
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                           'skills': ['math', 'spreadsheets', 'coding', 'linux',
                                      'spreadsheets', 'organization']})
print(df1); print(df5); print(pd.merge(df1, df5))

df1                          df5
  employee        group               group        skills
0      Bob   Accounting      0   Accounting          math
1     Jake  Engineering      1   Accounting  spreadsheets
2     Lisa  Engineering      2  Engineering        coding
3      Sue           HR      3  Engineering         linux
                             4           HR  spreadsheets
                             5           HR  organization

pd.merge(df1, df5)
  employee        group        skills
0      Bob   Accounting          math
1      Bob   Accounting  spreadsheets
2     Jake  Engineering        coding
3     Jake  Engineering         linux
4     Lisa  Engineering        coding
5     Lisa  Engineering         linux
6      Sue           HR  spreadsheets
7      Sue           HR  organization

These three types of joins can be used with other Pandas tools to implement a wide
array of functionality. But in practice, datasets are rarely as clean as the one we’re
working with here. In the following section, we’ll consider some of the options pro‐
vided by pd.merge() that enable you to tune how the join operations work.

Specification of the Merge Key
We’ve already seen the default behavior of pd.merge(): it looks for one or more
matching column names between the two inputs, and uses this as the key. However,
often the column names will not match so nicely, and pd.merge() provides a variety
of options for handling this.

The on keyword

Most simply, you can explicitly specify the name of the key column using the on key‐
word, which takes a column name or a list of column names:

In[6]: print(df1); print(df2); print(pd.merge(df1, df2, on='employee'))

df1                          df2
  employee        group          employee  hire_date
0      Bob   Accounting        0     Lisa       2004
1     Jake  Engineering        1      Bob       2008
2     Lisa  Engineering        2     Jake       2012
3      Sue           HR        3      Sue       2014
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pd.merge(df1, df2, on='employee')
  employee        group  hire_date
0      Bob   Accounting       2008
1     Jake  Engineering       2012
2     Lisa  Engineering       2004
3      Sue           HR       2014

This option works only if both the left and right DataFrames have the specified col‐
umn name.

The left_on and right_on keywords
At times you may wish to merge two datasets with different column names; for exam‐
ple, we may have a dataset in which the employee name is labeled as “name” rather
than “employee”. In this case, we can use the left_on and right_on keywords to
specify the two column names:

In[7]:
df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
                    'salary': [70000, 80000, 120000, 90000]})
print(df1); print(df3);
print(pd.merge(df1, df3, left_on="employee", right_on="name"))

df1                          df3
  employee        group          name  salary
0      Bob   Accounting        0   Bob   70000
1     Jake  Engineering        1  Jake   80000
2     Lisa  Engineering        2  Lisa  120000
3      Sue           HR        3   Sue   90000

pd.merge(df1, df3, left_on="employee", right_on="name")
  employee        group  name  salary
0      Bob   Accounting   Bob   70000
1     Jake  Engineering  Jake   80000
2     Lisa  Engineering  Lisa  120000
3      Sue           HR   Sue   90000

The result has a redundant column that we can drop if desired—for example, by
using the drop() method of DataFrames:

In[8]:
pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1)

Out[8]:   employee        group  salary
        0      Bob   Accounting   70000
        1     Jake  Engineering   80000
        2     Lisa  Engineering  120000
        3      Sue           HR   90000
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The left_index and right_index keywords
Sometimes, rather than merging on a column, you would instead like to merge on an
index. For example, your data might look like this:

In[9]: df1a = df1.set_index('employee')
       df2a = df2.set_index('employee')
       print(df1a); print(df2a)

df1a                        df2a
                group                  hire_date
employee                     employee
Bob        Accounting        Lisa           2004
Jake      Engineering        Bob            2008
Lisa      Engineering        Jake           2012
Sue                HR        Sue            2014

You can use the index as the key for merging by specifying the left_index and/or
right_index flags in pd.merge():

In[10]:
print(df1a); print(df2a);
print(pd.merge(df1a, df2a, left_index=True, right_index=True))

df1a                        df2a
                group                  hire_date
employee                     employee
Bob        Accounting        Lisa           2004
Jake      Engineering        Bob            2008
Lisa      Engineering        Jake           2012
Sue                HR        Sue            2014

pd.merge(df1a, df2a, left_index=True, right_index=True)
                 group  hire_date
employee
Lisa      Engineering       2004
Bob        Accounting       2008
Jake      Engineering       2012
Sue                HR       2014

For convenience, DataFrames implement the join() method, which performs a
merge that defaults to joining on indices:

In[11]: print(df1a); print(df2a); print(df1a.join(df2a))

df1a                      df2a
                group                hire_date
employee                   employee
Bob        Accounting      Lisa           2004
Jake      Engineering      Bob            2008
Lisa      Engineering      Jake           2012
Sue                HR      Sue            2014
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df1a.join(df2a)
                group  hire_date
employee
Bob        Accounting       2008
Jake      Engineering       2012
Lisa      Engineering       2004
Sue                HR       2014

If you’d like to mix indices and columns, you can combine left_index with right_on
or left_on with right_index to get the desired behavior:

In[12]:
print(df1a); print(df3);
print(pd.merge(df1a, df3, left_index=True, right_on='name'))

df1a                        df3
                group
employee                    name  salary
Bob        Accounting    0   Bob   70000
Jake      Engineering    1  Jake   80000
Lisa      Engineering    2  Lisa  120000
Sue                HR    3   Sue   90000

pd.merge(df1a, df3, left_index=True, right_on='name')
          group  name  salary
0   Accounting   Bob   70000
1  Engineering  Jake   80000
2  Engineering  Lisa  120000
3           HR   Sue   90000

All of these options also work with multiple indices and/or multiple columns; the
interface for this behavior is very intuitive. For more information on this, see the
“Merge, Join, and Concatenate” section of the Pandas documentation.

Specifying Set Arithmetic for Joins
In all the preceding examples we have glossed over one important consideration in
performing a join: the type of set arithmetic used in the join. This comes up when a
value appears in one key column but not the other. Consider this example:

In[13]: df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'],
                            'food': ['fish', 'beans', 'bread']},
                           columns=['name', 'food'])
        df7 = pd.DataFrame({'name': ['Mary', 'Joseph'],
                            'drink': ['wine', 'beer']},
                           columns=['name', 'drink'])
        print(df6); print(df7); print(pd.merge(df6, df7))
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df6                 df7               pd.merge(df6, df7)
    name   food          name drink       name   food  drink
0  Peter   fish     0    Mary  wine   0   Mary  bread   wine
1   Paul  beans     1  Joseph  beer
2   Mary  bread

Here we have merged two datasets that have only a single “name” entry in common:
Mary. By default, the result contains the intersection of the two sets of inputs; this is
what is known as an inner join. We can specify this explicitly using the how keyword,
which defaults to 'inner':

In[14]: pd.merge(df6, df7, how='inner')

Out[14]:    name   food drink
         0  Mary  bread  wine

Other options for the how keyword are 'outer', 'left', and 'right'. An outer join
returns a join over the union of the input columns, and fills in all missing values with
NAs:

In[15]: print(df6); print(df7); print(pd.merge(df6, df7, how='outer'))

df6                 df7                pd.merge(df6, df7, how='outer')
     name   food         name drink         name   food drink
0  Peter   fish     0    Mary  wine    0   Peter   fish   NaN
1   Paul  beans     1  Joseph  beer    1    Paul  beans   NaN
2   Mary  bread                        2    Mary  bread  wine
                                       3  Joseph    NaN  beer

The left join and right join return join over the left entries and right entries, respec‐
tively. For example:

In[16]: print(df6); print(df7); print(pd.merge(df6, df7, how='left'))

df6                 df7                pd.merge(df6, df7, how='left')
     name   food         name drink         name   food drink
0  Peter   fish     0    Mary  wine    0   Peter   fish   NaN
1   Paul  beans     1  Joseph  beer    1    Paul  beans   NaN
2   Mary  bread                        2    Mary  bread  wine

The output rows now correspond to the entries in the left input. Using how='right'
works in a similar manner.

All of these options can be applied straightforwardly to any of the preceding join
types.

Overlapping Column Names: The suffixes Keyword
Finally, you may end up in a case where your two input DataFrames have conflicting
column names. Consider this example:

In[17]: df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
                            'rank': [1, 2, 3, 4]})
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        df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
                            'rank': [3, 1, 4, 2]})
        print(df8); print(df9); print(pd.merge(df8, df9, on="name"))

df8                df9               pd.merge(df8, df9, on="name")
    name  rank         name  rank       name  rank_x  rank_y
0   Bob     1      0   Bob     3     0   Bob       1       3
1  Jake     2      1  Jake     1     1  Jake       2       1
2  Lisa     3      2  Lisa     4     2  Lisa       3       4
3   Sue     4      3   Sue     2     3   Sue       4       2

Because the output would have two conflicting column names, the merge function
automatically appends a suffix _x or _y to make the output columns unique. If these
defaults are inappropriate, it is possible to specify a custom suffix using the suffixes
keyword:

In[18]:
print(df8); print(df9);
print(pd.merge(df8, df9, on="name", suffixes=["_L", "_R"]))

df8                df9
    name  rank         name  rank
0   Bob     1      0   Bob     3
1  Jake     2      1  Jake     1
2  Lisa     3      2  Lisa     4
3   Sue     4      3   Sue     2

pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])
   name  rank_L  rank_R
0   Bob       1       3
1  Jake       2       1
2  Lisa       3       4
3   Sue       4       2

These suffixes work in any of the possible join patterns, and work also if there are
multiple overlapping columns.

For more information on these patterns, see “Aggregation and Grouping” on page
158, where we dive a bit deeper into relational algebra. Also see the “Merge, Join, and
Concatenate” section of the Pandas documentation for further discussion of these
topics.

Example: US States Data
Merge and join operations come up most often when one is combining data from dif‐
ferent sources. Here we will consider an example of some data about US states and
their populations. The data files can be found at http://github.com/jakevdp/data-
USstates/:

In[19]:
# Following are shell commands to download the data
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# !curl -O https://raw.githubusercontent.com/jakevdp/
#    data-USstates/master/state-population.csv
# !curl -O https://raw.githubusercontent.com/jakevdp/
#    data-USstates/master/state-areas.csv
# !curl -O https://raw.githubusercontent.com/jakevdp/
#    data-USstates/master/state-abbrevs.csv

Let’s take a look at the three datasets, using the Pandas read_csv() function:

In[20]: pop = pd.read_csv('state-population.csv')
        areas = pd.read_csv('state-areas.csv')
        abbrevs = pd.read_csv('state-abbrevs.csv')

        print(pop.head()); print(areas.head()); print(abbrevs.head())

pop.head()                                    areas.head()
  state/region     ages  year  population             state  area (sq. mi)
0           AL  under18  2012   1117489.0     0     Alabama          52423
1           AL    total  2012   4817528.0     1      Alaska         656425
2           AL  under18  2010   1130966.0     2     Arizona         114006
3           AL    total  2010   4785570.0     3    Arkansas          53182
4           AL  under18  2011   1125763.0     3    Arkansas          53182
                                              4  California         163707

abbrevs.head()
        state abbreviation
0     Alabama           AL
1      Alaska           AK
2     Arizona           AZ
3    Arkansas           AR
4  California           CA

Given this information, say we want to compute a relatively straightforward result:
rank US states and territories by their 2010 population density. We clearly have the
data here to find this result, but we’ll have to combine the datasets to get it.

We’ll start with a many-to-one merge that will give us the full state name within the
population DataFrame. We want to merge based on the state/region column of pop,
and the abbreviation column of abbrevs. We’ll use how='outer' to make sure no
data is thrown away due to mismatched labels.

In[21]: merged = pd.merge(pop, abbrevs, how='outer',
                          left_on='state/region', right_on='abbreviation')
        merged = merged.drop('abbreviation', 1) # drop duplicate info
        merged.head()

Out[21]:   state/region     ages  year  population    state
         0           AL  under18  2012   1117489.0  Alabama
         1           AL    total  2012   4817528.0  Alabama
         2           AL  under18  2010   1130966.0  Alabama
         3           AL    total  2010   4785570.0  Alabama
         4           AL  under18  2011   1125763.0  Alabama
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Let’s double-check whether there were any mismatches here, which we can do by
looking for rows with nulls:

In[22]: merged.isnull().any()

Out[22]: state/region    False
         ages            False
         year            False
         population       True
         state            True
         dtype: bool

Some of the population info is null; let’s figure out which these are!

In[23]: merged[merged['population'].isnull()].head()

Out[23]:      state/region     ages  year  population state
         2448           PR  under18  1990         NaN   NaN
         2449           PR    total  1990         NaN   NaN
         2450           PR    total  1991         NaN   NaN
         2451           PR  under18  1991         NaN   NaN
         2452           PR    total  1993         NaN   NaN

It appears that all the null population values are from Puerto Rico prior to the year
2000; this is likely due to this data not being available from the original source.

More importantly, we see also that some of the new state entries are also null, which
means that there was no corresponding entry in the abbrevs key! Let’s figure out
which regions lack this match:

In[24]: merged.loc[merged['state'].isnull(), 'state/region'].unique()

Out[24]: array(['PR', 'USA'], dtype=object)

We can quickly infer the issue: our population data includes entries for Puerto Rico
(PR) and the United States as a whole (USA), while these entries do not appear in the
state abbreviation key. We can fix these quickly by filling in appropriate entries:

In[25]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
        merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'
        merged.isnull().any()

Out[25]: state/region    False
         ages            False
         year            False
         population       True
         state           False
         dtype: bool

No more nulls in the state column: we’re all set!

Now we can merge the result with the area data using a similar procedure. Examining
our results, we will want to join on the state column in both:
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In[26]: final = pd.merge(merged, areas, on='state', how='left')
        final.head()

Out[26]:   state/region     ages  year  population    state  area (sq. mi)
         0           AL  under18  2012   1117489.0  Alabama        52423.0
         1           AL    total  2012   4817528.0  Alabama        52423.0
         2           AL  under18  2010   1130966.0  Alabama        52423.0
         3           AL    total  2010   4785570.0  Alabama        52423.0
         4           AL  under18  2011   1125763.0  Alabama        52423.0

Again, let’s check for nulls to see if there were any mismatches:

In[27]: final.isnull().any()

Out[27]: state/region     False
         ages             False
         year             False
         population        True
         state            False
         area (sq. mi)     True
         dtype: bool

There are nulls in the area column; we can take a look to see which regions were
ignored here:

In[28]: final['state'][final['area (sq. mi)'].isnull()].unique()

Out[28]: array(['United States'], dtype=object)

We see that our areas DataFrame does not contain the area of the United States as a
whole. We could insert the appropriate value (using the sum of all state areas, for
instance), but in this case we’ll just drop the null values because the population den‐
sity of the entire United States is not relevant to our current discussion:

In[29]: final.dropna(inplace=True)
        final.head()

Out[29]:   state/region     ages  year  population    state  area (sq. mi)
         0           AL  under18  2012   1117489.0  Alabama        52423.0
         1           AL    total  2012   4817528.0  Alabama        52423.0
         2           AL  under18  2010   1130966.0  Alabama        52423.0
         3           AL    total  2010   4785570.0  Alabama        52423.0
         4           AL  under18  2011   1125763.0  Alabama        52423.0

Now we have all the data we need. To answer the question of interest, let’s first select
the portion of the data corresponding with the year 2000, and the total population.
We’ll use the query() function to do this quickly (this requires the numexpr package
to be installed; see “High-Performance Pandas: eval() and query()” on page 208):

In[30]: data2010 = final.query("year == 2010 & ages == 'total'")
        data2010.head()

Out[30]:     state/region   ages  year  population       state  area (sq. mi)
         3             AL  total  2010   4785570.0     Alabama        52423.0
         91            AK  total  2010    713868.0      Alaska       656425.0

Combining Datasets: Merge and Join | 157



         101           AZ  total  2010   6408790.0     Arizona       114006.0
         189           AR  total  2010   2922280.0    Arkansas        53182.0
         197           CA  total  2010  37333601.0  California       163707.0

Now let’s compute the population density and display it in order. We’ll start by rein‐
dexing our data on the state, and then compute the result:

In[31]: data2010.set_index('state', inplace=True)
        density = data2010['population'] / data2010['area (sq. mi)']

In[32]: density.sort_values(ascending=False, inplace=True)
        density.head()

Out[32]: state
         District of Columbia    8898.897059
         Puerto Rico             1058.665149
         New Jersey              1009.253268
         Rhode Island             681.339159
         Connecticut              645.600649
         dtype: float64

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of
their 2010 population density, in residents per square mile. We can see that by far the
densest region in this dataset is Washington, DC (i.e., the District of Columbia);
among states, the densest is New Jersey.

We can also check the end of the list:

In[33]: density.tail()

Out[33]: state
         South Dakota    10.583512
         North Dakota     9.537565
         Montana          6.736171
         Wyoming          5.768079
         Alaska           1.087509
         dtype: float64

We see that the least dense state, by far, is Alaska, averaging slightly over one resident
per square mile.

This type of messy data merging is a common task when one is trying to answer
questions using real-world data sources. I hope that this example has given you an
idea of the ways you can combine tools we’ve covered in order to gain insight from
your data!

Aggregation and Grouping
An essential piece of analysis of large data is efficient summarization: computing
aggregations like sum(), mean(), median(), min(), and max(), in which a single num‐
ber gives insight into the nature of a potentially large dataset. In this section, we’ll
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explore aggregations in Pandas, from simple operations akin to what we’ve seen on
NumPy arrays, to more sophisticated operations based on the concept of a groupby.

Planets Data
Here we will use the Planets dataset, available via the Seaborn package (see “Visuali‐
zation with Seaborn” on page 311). It gives information on planets that astronomers
have discovered around other stars (known as extrasolar planets or exoplanets for
short). It can be downloaded with a simple Seaborn command:

In[2]: import seaborn as sns
       planets = sns.load_dataset('planets')
       planets.shape

Out[2]: (1035, 6)

In[3]: planets.head()

Out[3]:    method           number  orbital_period  mass   distance  year
        0  Radial Velocity  1       269.300         7.10   77.40     2006
        1  Radial Velocity  1       874.774         2.21   56.95     2008
        2  Radial Velocity  1       763.000         2.60   19.84     2011
        3  Radial Velocity  1       326.030         19.40  110.62    2007
        4  Radial Velocity  1       516.220         10.50  119.47    2009

This has some details on the 1,000+ exoplanets discovered up to 2014.

Simple Aggregation in Pandas
Earlier we explored some of the data aggregations available for NumPy arrays
(“Aggregations: Min, Max, and Everything in Between” on page 58). As with a one-
dimensional NumPy array, for a Pandas Series the aggregates return a single value:

In[4]: rng = np.random.RandomState(42)
       ser = pd.Series(rng.rand(5))
       ser

Out[4]: 0    0.374540
        1    0.950714
        2    0.731994
        3    0.598658
        4    0.156019
        dtype: float64

In[5]: ser.sum()

Out[5]: 2.8119254917081569

In[6]: ser.mean()

Out[6]: 0.56238509834163142

For a DataFrame, by default the aggregates return results within each column:
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In[7]: df = pd.DataFrame({'A': rng.rand(5),
                          'B': rng.rand(5)})
       df

Out[7]:           A         B
        0  0.155995  0.020584
        1  0.058084  0.969910
        2  0.866176  0.832443
        3  0.601115  0.212339
        4  0.708073  0.181825

In[8]: df.mean()

Out[8]: A    0.477888
        B    0.443420
        dtype: float64

By specifying the axis argument, you can instead aggregate within each row:

In[9]: df.mean(axis='columns')

Out[9]: 0    0.088290
        1    0.513997
        2    0.849309
        3    0.406727
        4    0.444949
        dtype: float64

Pandas Series and DataFrames include all of the common aggregates mentioned in
“Aggregations: Min, Max, and Everything in Between” on page 58; in addition, there
is a convenience method describe() that computes several common aggregates for
each column and returns the result. Let’s use this on the Planets data, for now drop‐
ping rows with missing values:

In[10]: planets.dropna().describe()

Out[10]:           number  orbital_period        mass    distance         year
         count  498.00000      498.000000  498.000000  498.000000   498.000000
         mean     1.73494      835.778671    2.509320   52.068213  2007.377510
         std      1.17572     1469.128259    3.636274   46.596041     4.167284
         min      1.00000        1.328300    0.003600    1.350000  1989.000000
         25%      1.00000       38.272250    0.212500   24.497500  2005.000000
         50%      1.00000      357.000000    1.245000   39.940000  2009.000000
         75%      2.00000      999.600000    2.867500   59.332500  2011.000000
         max      6.00000    17337.500000   25.000000  354.000000  2014.000000

This can be a useful way to begin understanding the overall properties of a dataset.
For example, we see in the year column that although exoplanets were discovered as
far back as 1989, half of all known exoplanets were not discovered until 2010 or after.
This is largely thanks to the Kepler mission, which is a space-based telescope specifi‐
cally designed for finding eclipsing planets around other stars.

Table 3-3 summarizes some other built-in Pandas aggregations.
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Table 3-3. Listing of Pandas aggregation methods

Aggregation Description

count() Total number of items

first(), last() First and last item

mean(), median() Mean and median

min(), max() Minimum and maximum

std(), var() Standard deviation and variance

mad() Mean absolute deviation

prod() Product of all items

sum() Sum of all items

These are all methods of DataFrame and Series objects.

To go deeper into the data, however, simple aggregates are often not enough. The
next level of data summarization is the groupby operation, which allows you to
quickly and efficiently compute aggregates on subsets of data.

GroupBy: Split, Apply, Combine
Simple aggregations can give you a flavor of your dataset, but often we would prefer
to aggregate conditionally on some label or index: this is implemented in the so-
called groupby operation. The name “group by” comes from a command in the SQL
database language, but it is perhaps more illuminative to think of it in the terms first
coined by Hadley Wickham of Rstats fame: split, apply, combine.

Split, apply, combine
A canonical example of this split-apply-combine operation, where the “apply” is a
summation aggregation, is illustrated in Figure 3-1.

Figure 3-1 makes clear what the GroupBy accomplishes:

• The split step involves breaking up and grouping a DataFrame depending on the
value of the specified key.

• The apply step involves computing some function, usually an aggregate, transfor‐
mation, or filtering, within the individual groups.

• The combine step merges the results of these operations into an output array.
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Figure 3-1. A visual representation of a groupby operation

While we could certainly do this manually using some combination of the masking,
aggregation, and merging commands covered earlier, it’s important to realize that the
intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can
(often) do this in a single pass over the data, updating the sum, mean, count, min, or
other aggregate for each group along the way. The power of the GroupBy is that it
abstracts away these steps: the user need not think about how the computation is
done under the hood, but rather thinks about the operation as a whole.

As a concrete example, let’s take a look at using Pandas for the computation shown in
Figure 3-1. We’ll start by creating the input DataFrame:

In[11]: df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
                           'data': range(6)}, columns=['key', 'data'])
        df

Out[11]:   key  data
         0   A     0
         1   B     1
         2   C     2
         3   A     3
         4   B     4
         5   C     5

We can compute the most basic split-apply-combine operation with the groupby()
method of DataFrames, passing the name of the desired key column:

In[12]: df.groupby('key')

Out[12]: <pandas.core.groupby.DataFrameGroupBy object at 0x117272160>
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Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy
object. This object is where the magic is: you can think of it as a special view of the
DataFrame, which is poised to dig into the groups but does no actual computation
until the aggregation is applied. This “lazy evaluation” approach means that common
aggregates can be implemented very efficiently in a way that is almost transparent to
the user.

To produce a result, we can apply an aggregate to this DataFrameGroupBy object,
which will perform the appropriate apply/combine steps to produce the desired
result:

In[13]: df.groupby('key').sum()

Out[13]:      data
         key
         A       3
         B       5
         C       7

The sum() method is just one possibility here; you can apply virtually any common
Pandas or NumPy aggregation function, as well as virtually any valid DataFrame
operation, as we will see in the following discussion.

The GroupBy object

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat
it as if it’s a collection of DataFrames, and it does the difficult things under the hood.
Let’s see some examples using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate,
filter, transform, and apply. We’ll discuss each of these more fully in “Aggregate, filter,
transform, apply” on page 165, but before that let’s introduce some of the other func‐
tionality that can be used with the basic GroupBy operation.

Column indexing.    The GroupBy object supports column indexing in the same way as
the DataFrame, and returns a modified GroupBy object. For example:

In[14]: planets.groupby('method')

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at 0x1172727b8>

In[15]: planets.groupby('method')['orbital_period']

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Here we’ve selected a particular Series group from the original DataFrame group by
reference to its column name. As with the GroupBy object, no computation is done
until we call some aggregate on the object:

In[16]: planets.groupby('method')['orbital_period'].median()
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Out[16]: method
         Astrometry                         631.180000
         Eclipse Timing Variations         4343.500000
         Imaging                          27500.000000
         Microlensing                      3300.000000
         Orbital Brightness Modulation        0.342887
         Pulsar Timing                       66.541900
         Pulsation Timing Variations       1170.000000
         Radial Velocity                    360.200000
         Transit                              5.714932
         Transit Timing Variations           57.011000
         Name: orbital_period, dtype: float64

This gives an idea of the general scale of orbital periods (in days) that each method is
sensitive to.

Iteration over groups.    The GroupBy object supports direct iteration over the groups,
returning each group as a Series or DataFrame:

In[17]: for (method, group) in planets.groupby('method'):
            print("{0:30s} shape={1}".format(method, group.shape))

Astrometry                     shape=(2, 6)
Eclipse Timing Variations      shape=(9, 6)
Imaging                        shape=(38, 6)
Microlensing                   shape=(23, 6)
Orbital Brightness Modulation  shape=(3, 6)
Pulsar Timing                  shape=(5, 6)
Pulsation Timing Variations    shape=(1, 6)
Radial Velocity                shape=(553, 6)
Transit                        shape=(397, 6)
Transit Timing Variations      shape=(4, 6)

This can be useful for doing certain things manually, though it is often much faster to
use the built-in apply functionality, which we will discuss momentarily.

Dispatch methods.    Through some Python class magic, any method not explicitly
implemented by the GroupBy object will be passed through and called on the groups,
whether they are DataFrame or Series objects. For example, you can use the 
describe() method of DataFrames to perform a set of aggregations that describe each
group in the data:

In[18]: planets.groupby('method')['year'].describe().unstack()

Out[18]:
                               count         mean       std     min      25%  \\
method
Astrometry                       2.0  2011.500000  2.121320  2010.0  2010.75
Eclipse Timing Variations        9.0  2010.000000  1.414214  2008.0  2009.00
Imaging                         38.0  2009.131579  2.781901  2004.0  2008.00
Microlensing                    23.0  2009.782609  2.859697  2004.0  2008.00
Orbital Brightness Modulation    3.0  2011.666667  1.154701  2011.0  2011.00
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Pulsar Timing                    5.0  1998.400000  8.384510  1992.0  1992.00
Pulsation Timing Variations      1.0  2007.000000       NaN  2007.0  2007.00
Radial Velocity                553.0  2007.518987  4.249052  1989.0  2005.00
Transit                        397.0  2011.236776  2.077867  2002.0  2010.00
Transit Timing Variations        4.0  2012.500000  1.290994  2011.0  2011.75

                                  50%      75%     max
method
Astrometry                     2011.5  2012.25  2013.0
Eclipse Timing Variations      2010.0  2011.00  2012.0
Imaging                        2009.0  2011.00  2013.0
Microlensing                   2010.0  2012.00  2013.0
Orbital Brightness Modulation  2011.0  2012.00  2013.0
Pulsar Timing                  1994.0  2003.00  2011.0
Pulsation Timing Variations    2007.0  2007.00  2007.0
Radial Velocity                2009.0  2011.00  2014.0
Transit                        2012.0  2013.00  2014.0
Transit Timing Variations      2012.5  2013.25  2014.0

Looking at this table helps us to better understand the data: for example, the vast
majority of planets have been discovered by the Radial Velocity and Transit methods,
though the latter only became common (due to new, more accurate telescopes) in the
last decade. The newest methods seem to be Transit Timing Variation and Orbital
Brightness Modulation, which were not used to discover a new planet until 2011.

This is just one example of the utility of dispatch methods. Notice that they are
applied to each individual group, and the results are then combined within GroupBy
and returned. Again, any valid DataFrame/Series method can be used on the corre‐
sponding GroupBy object, which allows for some very flexible and powerful
operations!

Aggregate, filter, transform, apply
The preceding discussion focused on aggregation for the combine operation, but
there are more options available. In particular, GroupBy objects have aggregate(),
filter(), transform(), and apply() methods that efficiently implement a variety of
useful operations before combining the grouped data.

For the purpose of the following subsections, we’ll use this DataFrame:

In[19]: rng = np.random.RandomState(0)
        df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
                           'data1': range(6),
                           'data2': rng.randint(0, 10, 6)},
                           columns = ['key', 'data1', 'data2'])
        df

Out[19]:   key  data1  data2
         0   A      0      5
         1   B      1      0
         2   C      2      3
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         3   A      3      3
         4   B      4      7
         5   C      5      9

Aggregation.    We’re now familiar with GroupBy aggregations with sum(), median(),
and the like, but the aggregate() method allows for even more flexibility. It can take
a string, a function, or a list thereof, and compute all the aggregates at once. Here is a
quick example combining all these:

In[20]: df.groupby('key').aggregate(['min', np.median, max])

Out[20]:       data1            data2
               min median max   min median max
         key
         A       0    1.5   3     3    4.0   5
         B       1    2.5   4     0    3.5   7
         C       2    3.5   5     3    6.0   9

Another useful pattern is to pass a dictionary mapping column names to operations
to be applied on that column:

In[21]: df.groupby('key').aggregate({'data1': 'min',
                                     'data2': 'max'})

Out[21]:      data1  data2
         key
         A        0      5
         B        1      7
         C        2      9

Filtering.    A filtering operation allows you to drop data based on the group proper‐
ties. For example, we might want to keep all groups in which the standard deviation is
larger than some critical value:

In[22]:
def filter_func(x):
    return x['data2'].std() > 4

print(df); print(df.groupby('key').std());
print(df.groupby('key').filter(filter_func))

df                      df.groupby('key').std()
   key  data1  data2    key      data1     data2
0   A      0      5     A    2.12132  1.414214
1   B      1      0     B    2.12132  4.949747
2   C      2      3     C    2.12132  4.242641
3   A      3      3
4   B      4      7
5   C      5      9

df.groupby('key').filter(filter_func)
  key  data1  data2
1   B      1      0
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2   C      2      3
4   B      4      7
5   C      5      9

The filter() function should return a Boolean value specifying whether the group
passes the filtering. Here because group A does not have a standard deviation greater
than 4, it is dropped from the result.

Transformation.    While aggregation must return a reduced version of the data, trans‐
formation can return some transformed version of the full data to recombine. For
such a transformation, the output is the same shape as the input. A common example
is to center the data by subtracting the group-wise mean:

In[23]: df.groupby('key').transform(lambda x: x - x.mean())

Out[23]:   data1  data2
         0   -1.5    1.0
         1   -1.5   -3.5
         2   -1.5   -3.0
         3    1.5   -1.0
         4    1.5    3.5
         5    1.5    3.0

The apply() method.    The apply() method lets you apply an arbitrary function to the
group results. The function should take a DataFrame, and return either a Pandas
object (e.g., DataFrame, Series) or a scalar; the combine operation will be tailored to
the type of output returned.

For example, here is an apply() that normalizes the first column by the sum of the
second:

In[24]: def norm_by_data2(x):
            # x is a DataFrame of group values
            x['data1'] /= x['data2'].sum()
            return x

        print(df); print(df.groupby('key').apply(norm_by_data2))

df                     df.groupby('key').apply(norm_by_data2)
  key  data1  data2       key     data1  data2
0   A      0      5     0   A  0.000000      5
1   B      1      0     1   B  0.142857      0
2   C      2      3     2   C  0.166667      3
3   A      3      3     3   A  0.375000      3
4   B      4      7     4   B  0.571429      7
5   C      5      9     5   C  0.416667      9

apply() within a GroupBy is quite flexible: the only criterion is that the function takes
a DataFrame and returns a Pandas object or scalar; what you do in the middle is up to
you!
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Specifying the split key

In the simple examples presented before, we split the DataFrame on a single column
name. This is just one of many options by which the groups can be defined, and we’ll
go through some other options for group specification here.

A list, array, series, or index providing the grouping keys.    The key can be any series or list
with a length matching that of the DataFrame. For example:

In[25]: L = [0, 1, 0, 1, 2, 0]
print(df); print(df.groupby(L).sum())

df                     df.groupby(L).sum()
  key  data1  data2        data1  data2
0   A      0      5     0      7     17
1   B      1      0     1      4      3
2   C      2      3     2      4      7
3   A      3      3
4   B      4      7
5   C      5      9

Of course, this means there’s another, more verbose way of accomplishing the
df.groupby('key') from before:

In[26]: print(df); print(df.groupby(df['key']).sum())

df                        df.groupby(df['key']).sum()
  key  data1  data2            data1  data2
0   A      0      5       A        3      8
1   B      1      0       B        5      7
2   C      2      3       C        7     12
3   A      3      3
4   B      4      7
5   C      5      9

A dictionary or series mapping index to group.    Another method is to provide a dictionary
that maps index values to the group keys:

In[27]: df2 = df.set_index('key')
        mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'}
        print(df2); print(df2.groupby(mapping).sum())

df2                       df2.groupby(mapping).sum()
key  data1  data2                    data1  data2
A        0      5         consonant     12     19
B        1      0         vowel          3      8
C        2      3
A        3      3
B        4      7
C        5      9
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Any Python function.    Similar to mapping, you can pass any Python function that will
input the index value and output the group:

In[28]: print(df2); print(df2.groupby(str.lower).mean())

df2                       df2.groupby(str.lower).mean()
key  data1  data2            data1  data2
A        0      5         a    1.5    4.0
B        1      0         b    2.5    3.5
C        2      3         c    3.5    6.0
A        3      3
B        4      7
C        5      9

A list of valid keys.    Further, any of the preceding key choices can be combined to
group on a multi-index:

In[29]: df2.groupby([str.lower, mapping]).mean()

Out[29]:              data1  data2
         a vowel        1.5    4.0
         b consonant    2.5    3.5
         c consonant    3.5    6.0

Grouping example
As an example of this, in a couple lines of Python code we can put all these together
and count discovered planets by method and by decade:

In[30]: decade = 10 * (planets['year'] // 10)
        decade = decade.astype(str) + 's'
        decade.name = 'decade'
        planets.groupby(['method', decade])['number'].sum().unstack().fillna(0)

Out[30]: decade                         1980s  1990s  2000s  2010s
         method
         Astrometry                       0.0    0.0    0.0    2.0
         Eclipse Timing Variations        0.0    0.0    5.0   10.0
         Imaging                          0.0    0.0   29.0   21.0
         Microlensing                     0.0    0.0   12.0   15.0
         Orbital Brightness Modulation    0.0    0.0    0.0    5.0
         Pulsar Timing                    0.0    9.0    1.0    1.0
         Pulsation Timing Variations      0.0    0.0    1.0    0.0
         Radial Velocity                  1.0   52.0  475.0  424.0
         Transit                          0.0    0.0   64.0  712.0
         Transit Timing Variations        0.0    0.0    0.0    9.0

This shows the power of combining many of the operations we’ve discussed up to this
point when looking at realistic datasets. We immediately gain a coarse understanding
of when and how planets have been discovered over the past several decades!
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Here I would suggest digging into these few lines of code, and evaluating the individ‐
ual steps to make sure you understand exactly what they are doing to the result. It’s
certainly a somewhat complicated example, but understanding these pieces will give
you the means to similarly explore your own data.

Pivot Tables
We have seen how the GroupBy abstraction lets us explore relationships within a data‐
set. A pivot table is a similar operation that is commonly seen in spreadsheets and
other programs that operate on tabular data. The pivot table takes simple column-
wise data as input, and groups the entries into a two-dimensional table that provides
a multidimensional summarization of the data. The difference between pivot tables
and GroupBy can sometimes cause confusion; it helps me to think of pivot tables as
essentially a multidimensional version of GroupBy aggregation. That is, you split-
apply-combine, but both the split and the combine happen across not a one-
dimensional index, but across a two-dimensional grid.

Motivating Pivot Tables
For the examples in this section, we’ll use the database of passengers on the Titanic,
available through the Seaborn library (see “Visualization with Seaborn” on page 311):

In[1]: import numpy as np
       import pandas as pd
       import seaborn as sns
       titanic = sns.load_dataset('titanic')

In[2]: titanic.head()

Out[2]:
   survived  pclass     sex   age  sibsp  parch     fare embarked  class  \\
0         0       3    male  22.0      1      0   7.2500        S  Third
1         1       1  female  38.0      1      0  71.2833        C  First
2         1       3  female  26.0      0      0   7.9250        S  Third
3         1       1  female  35.0      1      0  53.1000        S  First
4         0       3    male  35.0      0      0   8.0500        S  Third

     who adult_male deck  embark_town alive  alone
0    man       True  NaN  Southampton    no  False
1  woman      False    C    Cherbourg   yes  False
2  woman      False  NaN  Southampton   yes   True
3  woman      False    C  Southampton   yes  False
4    man       True  NaN  Southampton    no   True

This contains a wealth of information on each passenger of that ill-fated voyage,
including gender, age, class, fare paid, and much more.
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Pivot Tables by Hand
To start learning more about this data, we might begin by grouping it according to
gender, survival status, or some combination thereof. If you have read the previous
section, you might be tempted to apply a GroupBy operation—for example, let’s look
at survival rate by gender:

In[3]: titanic.groupby('sex')[['survived']].mean()

Out[3]:        survived
        sex
        female  0.742038
        male    0.188908

This immediately gives us some insight: overall, three of every four females on board
survived, while only one in five males survived!

This is useful, but we might like to go one step deeper and look at survival by both sex
and, say, class. Using the vocabulary of GroupBy, we might proceed using something
like this: we group by class and gender, select survival, apply a mean aggregate, com‐
bine the resulting groups, and then unstack the hierarchical index to reveal the hidden
multidimensionality. In code:

In[4]: titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack()

Out[4]: class      First    Second     Third
        sex
        female  0.968085  0.921053  0.500000
        male    0.368852  0.157407  0.135447

This gives us a better idea of how both gender and class affected survival, but the
code is starting to look a bit garbled. While each step of this pipeline makes sense in
light of the tools we’ve previously discussed, the long string of code is not particularly
easy to read or use. This two-dimensional GroupBy is common enough that Pandas
includes a convenience routine, pivot_table, which succinctly handles this type of
multidimensional aggregation.

Pivot Table Syntax
Here is the equivalent to the preceding operation using the pivot_table method of
DataFrames:

In[5]: titanic.pivot_table('survived', index='sex', columns='class')

Out[5]: class      First    Second     Third
        sex
        female  0.968085  0.921053  0.500000
        male    0.368852  0.157407  0.135447

This is eminently more readable than the GroupBy approach, and produces the same
result. As you might expect of an early 20th-century transatlantic cruise, the survival
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gradient favors both women and higher classes. First-class women survived with near
certainty (hi, Rose!), while only one in ten third-class men survived (sorry, Jack!).

Multilevel pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple lev‐
els, and via a number of options. For example, we might be interested in looking at
age as a third dimension. We’ll bin the age using the pd.cut function:

In[6]: age = pd.cut(titanic['age'], [0, 18, 80])
       titanic.pivot_table('survived', ['sex', age], 'class')

Out[6]:   class               First    Second     Third
          sex    age
          female (0, 18]   0.909091  1.000000  0.511628
                 (18, 80]  0.972973  0.900000  0.423729
          male   (0, 18]   0.800000  0.600000  0.215686
                 (18, 80]  0.375000  0.071429  0.133663

We can apply this same strategy when working with the columns as well; let’s add info
on the fare paid using pd.qcut to automatically compute quantiles:

In[7]: fare = pd.qcut(titanic['fare'], 2)
       titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

Out[7]:
fare            [0, 14.454]
class                 First    Second     Third      \\
sex    age
female (0, 18]          NaN  1.000000  0.714286
       (18, 80]         NaN  0.880000  0.444444
male   (0, 18]          NaN  0.000000  0.260870
       (18, 80]         0.0  0.098039  0.125000

fare            (14.454, 512.329]
class                 First    Second     Third
sex    age
female (0, 18]     0.909091  1.000000  0.318182
       (18, 80]    0.972973  0.914286  0.391304
male   (0, 18]     0.800000  0.818182  0.178571
       (18, 80]    0.391304  0.030303  0.192308

The result is a four-dimensional aggregation with hierarchical indices (see “Hierarch‐
ical Indexing” on page 128), shown in a grid demonstrating the relationship between
the values.
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Additional pivot table options

The full call signature of the pivot_table method of DataFrames is as follows:

# call signature as of Pandas 0.18
DataFrame.pivot_table(data, values=None, index=None, columns=None,
                      aggfunc='mean', fill_value=None, margins=False,
                      dropna=True, margins_name='All')

We’ve already seen examples of the first three arguments; here we’ll take a quick look
at the remaining ones. Two of the options, fill_value and dropna, have to do with
missing data and are fairly straightforward; we will not show examples of them here.

The aggfunc keyword controls what type of aggregation is applied, which is a mean
by default. As in the GroupBy, the aggregation specification can be a string represent‐
ing one of several common choices ('sum', 'mean', 'count', 'min', 'max', etc.) or a
function that implements an aggregation (np.sum(), min(), sum(), etc.). Additionally,
it can be specified as a dictionary mapping a column to any of the above desired
options:

In[8]: titanic.pivot_table(index='sex', columns='class',
                           aggfunc={'survived':sum, 'fare':'mean'})

Out[8]:              fare                           survived
        class        First     Second      Third    First Second Third
        sex
        female  106.125798  21.970121  16.118810     91.0   70.0  72.0
        male     67.226127  19.741782  12.661633     45.0   17.0  47.0

Notice also here that we’ve omitted the values keyword; when you’re specifying a
mapping for aggfunc, this is determined automatically.

At times it’s useful to compute totals along each grouping. This can be done via the
margins keyword:

In[9]: titanic.pivot_table('survived', index='sex', columns='class', margins=True)

Out[9]: class      First    Second     Third       All
        sex
        female  0.968085  0.921053  0.500000  0.742038
        male    0.368852  0.157407  0.135447  0.188908
        All     0.629630  0.472826  0.242363  0.383838

Here this automatically gives us information about the class-agnostic survival rate by
gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%.
The margin label can be specified with the margins_name keyword, which defaults to
"All".
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Example: Birthrate Data
As a more interesting example, let’s take a look at the freely available data on births in
the United States, provided by the Centers for Disease Control (CDC). This data can
be found at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/
births.csv (this dataset has been analyzed rather extensively by Andrew Gelman and
his group; see, for example, this blog post):

In[10]:
# shell command to download the data:
# !curl -O https://raw.githubusercontent.com/jakevdp/data-CDCbirths/
# master/births.csv

In[11]: births = pd.read_csv('births.csv')

Taking a look at the data, we see that it’s relatively simple—it contains the number of
births grouped by date and gender:

In[12]: births.head()

Out[12]:   year  month day gender  births
         0  1969      1   1      F    4046
         1  1969      1   1      M    4440
         2  1969      1   2      F    4454
         3  1969      1   2      M    4548
         4  1969      1   3      F    4548

We can start to understand this data a bit more by using a pivot table. Let’s add a dec‐
ade column, and take a look at male and female births as a function of decade:

In[13]:
births['decade'] = 10 * (births['year'] // 10)
births.pivot_table('births', index='decade', columns='gender', aggfunc='sum')

Out[13]: gender         F         M
         decade
         1960     1753634   1846572
         1970    16263075  17121550
         1980    18310351  19243452
         1990    19479454  20420553
         2000    18229309  19106428

We immediately see that male births outnumber female births in every decade. To see
this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visual‐
ize the total number of births by year (Figure 3-2; see Chapter 4 for a discussion of
plotting with Matplotlib):

In[14]:
%matplotlib inline
import matplotlib.pyplot as plt
sns.set()  # use Seaborn styles
births.pivot_table('births', index='year', columns='gender', aggfunc='sum').plot()
plt.ylabel('total births per year');
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1 You can learn more about sigma-clipping operations in a book I coauthored with Željko Ivezić, Andrew J.
Connolly, and Alexander Gray: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical
Python Guide for the Analysis of Survey Data (Princeton University Press, 2014).

Figure 3-2. Total number of US births by year and gender

With a simple pivot table and plot() method, we can immediately see the annual
trend in births by gender. By eye, it appears that over the past 50 years male births
have outnumbered female births by around 5%.

Further data exploration
Though this doesn’t necessarily relate to the pivot table, there are a few more interest‐
ing features we can pull out of this dataset using the Pandas tools covered up to this
point. We must start by cleaning the data a bit, removing outliers caused by mistyped
dates (e.g., June 31st) or missing values (e.g., June 99th). One easy way to remove
these all at once is to cut outliers; we’ll do this via a robust sigma-clipping operation:1

In[15]: quartiles = np.percentile(births['births'], [25, 50, 75])
        mu = quartiles[1]
        sig = 0.74 * (quartiles[2] - quartiles[0])

This final line is a robust estimate of the sample mean, where the 0.74 comes from the
interquartile range of a Gaussian distribution. With this we can use the query()
method (discussed further in “High-Performance Pandas: eval() and query()” on
page 208) to filter out rows with births outside these values:

In[16]:
births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')
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Next we set the day column to integers; previously it had been a string because some
columns in the dataset contained the value 'null':

In[17]: # set 'day' column to integer; it originally was a string due to nulls
        births['day'] = births['day'].astype(int)

Finally, we can combine the day, month, and year to create a Date index (see “Work‐
ing with Time Series” on page 188). This allows us to quickly compute the weekday
corresponding to each row:

In[18]: # create a datetime index from the year, month, day
        births.index = pd.to_datetime(10000 * births.year +
                                      100 * births.month +
                                      births.day, format='%Y%m%d')

        births['dayofweek'] = births.index.dayofweek

Using this we can plot births by weekday for several decades (Figure 3-3):

In[19]:
import matplotlib.pyplot as plt
import matplotlib as mpl

births.pivot_table('births', index='dayofweek',
                    columns='decade', aggfunc='mean').plot()
plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'])
plt.ylabel('mean births by day');

Figure 3-3. Average daily births by day of week and decade

Apparently births are slightly less common on weekends than on weekdays! Note that
the 1990s and 2000s are missing because the CDC data contains only the month of
birth starting in 1989.
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Another interesting view is to plot the mean number of births by the day of the year.
Let’s first group the data by month and day separately:

In[20]:
births_by_date = births.pivot_table('births',
                                    [births.index.month, births.index.day])
births_by_date.head()

Out[20]: 1  1    4009.225
            2    4247.400
            3    4500.900
            4    4571.350
            5    4603.625
         Name: births, dtype: float64

The result is a multi-index over months and days. To make this easily plottable, let’s
turn these months and days into a date by associating them with a dummy year vari‐
able (making sure to choose a leap year so February 29th is correctly handled!)

In[21]: births_by_date.index = [pd.datetime(2012, month, day)
                                for (month, day) in births_by_date.index]
        births_by_date.head()

Out[21]: 2012-01-01    4009.225
         2012-01-02    4247.400
         2012-01-03    4500.900
         2012-01-04    4571.350
         2012-01-05    4603.625
         Name: births, dtype: float64

Focusing on the month and day only, we now have a time series reflecting the average
number of births by date of the year. From this, we can use the plot method to plot
the data (Figure 3-4). It reveals some interesting trends:

In[22]: # Plot the results
        fig, ax = plt.subplots(figsize=(12, 4))
        births_by_date.plot(ax=ax);

Figure 3-4. Average daily births by date
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In particular, the striking feature of this graph is the dip in birthrate on US holidays
(e.g., Independence Day, Labor Day, Thanksgiving, Christmas, New Year’s Day)
although this likely reflects trends in scheduled/induced births rather than some deep
psychosomatic effect on natural births. For more discussion on this trend, see the
analysis and links in Andrew Gelman’s blog post on the subject. We’ll return to this
figure in “Example: Effect of Holidays on US Births” on page 269, where we will use
Matplotlib’s tools to annotate this plot.

Looking at this short example, you can see that many of the Python and Pandas tools
we’ve seen to this point can be combined and used to gain insight from a variety of
datasets. We will see some more sophisticated applications of these data manipula‐
tions in future sections!

Vectorized String Operations
One strength of Python is its relative ease in handling and manipulating string data.
Pandas builds on this and provides a comprehensive set of vectorized string operations
that become an essential piece of the type of munging required when one is working
with (read: cleaning up) real-world data. In this section, we’ll walk through some of
the Pandas string operations, and then take a look at using them to partially clean up
a very messy dataset of recipes collected from the Internet.

Introducing Pandas String Operations
We saw in previous sections how tools like NumPy and Pandas generalize arithmetic
operations so that we can easily and quickly perform the same operation on many
array elements. For example:

In[1]: import numpy as np
       x = np.array([2, 3, 5, 7, 11, 13])
       x * 2

Out[1]: array([ 4,  6, 10, 14, 22, 26])

This vectorization of operations simplifies the syntax of operating on arrays of data:
we no longer have to worry about the size or shape of the array, but just about what
operation we want done. For arrays of strings, NumPy does not provide such simple
access, and thus you’re stuck using a more verbose loop syntax:

In[2]: data = ['peter', 'Paul', 'MARY', 'gUIDO']
       [s.capitalize() for s in data]

Out[2]: ['Peter', 'Paul', 'Mary', 'Guido']

This is perhaps sufficient to work with some data, but it will break if there are any
missing values. For example:

In[3]: data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
       [s.capitalize() for s in data]
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---------------------------------------------------------------------------
---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

<ipython-input-3-fc1d891ab539> in <module>()
      1 data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
----> 2 [s.capitalize() for s in data]

<ipython-input-3-fc1d891ab539> in <listcomp>(.0)
      1 data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
----> 2 [s.capitalize() for s in data]

AttributeError: 'NoneType' object has no attribute 'capitalize'
---------------------------------------------------------------------------

Pandas includes features to address both this need for vectorized string operations
and for correctly handling missing data via the str attribute of Pandas Series and
Index objects containing strings. So, for example, suppose we create a Pandas Series
with this data:

In[4]: import pandas as pd
       names = pd.Series(data)
       names

Out[4]: 0    peter
        1     Paul
        2     None
        3     MARY
        4    gUIDO
        dtype: object

We can now call a single method that will capitalize all the entries, while skipping
over any missing values:

In[5]: names.str.capitalize()

Out[5]: 0    Peter
        1     Paul
        2     None
        3     Mary
        4    Guido
        dtype: object

Using tab completion on this str attribute will list all the vectorized string methods
available to Pandas.
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Tables of Pandas String Methods
If you have a good understanding of string manipulation in Python, most of Pandas’
string syntax is intuitive enough that it’s probably sufficient to just list a table of avail‐
able methods; we will start with that here, before diving deeper into a few of the sub‐
tleties. The examples in this section use the following series of names:

In[6]: monte = pd.Series(['Graham Chapman', 'John Cleese', 'Terry Gilliam',
                          'Eric Idle', 'Terry Jones', 'Michael Palin'])

Methods similar to Python string methods
Nearly all Python’s built-in string methods are mirrored by a Pandas vectorized string
method. Here is a list of Pandas str methods that mirror Python string methods:

len() lower() translate() islower()

ljust() upper() startswith() isupper()

rjust() find() endswith() isnumeric()

center() rfind() isalnum() isdecimal()

zfill() index() isalpha() split()

strip() rindex() isdigit() rsplit()

rstrip() capitalize() isspace() partition()

lstrip() swapcase() istitle() rpartition()

Notice that these have various return values. Some, like lower(), return a series of
strings:

In[7]: monte.str.lower()

Out[7]: 0    graham chapman
        1       john cleese
        2     terry gilliam
        3         eric idle
        4       terry jones
        5     michael palin
        dtype: object

But some others return numbers:

In[8]: monte.str.len()

Out[8]: 0    14
        1    11
        2    13
        3     9
        4    11
        5    13
        dtype: int64
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Or Boolean values:

In[9]: monte.str.startswith('T')

Out[9]: 0    False
        1    False
        2     True
        3    False
        4     True
        5    False
        dtype: bool

Still others return lists or other compound values for each element:

In[10]: monte.str.split()

Out[10]: 0    [Graham, Chapman]
         1       [John, Cleese]
         2     [Terry, Gilliam]
         3         [Eric, Idle]
         4       [Terry, Jones]
         5     [Michael, Palin]
         dtype: object

We’ll see further manipulations of this kind of series-of-lists object as we continue
our discussion.

Methods using regular expressions
In addition, there are several methods that accept regular expressions to examine the
content of each string element, and follow some of the API conventions of Python’s
built-in re module (see Table 3-4).

Table 3-4. Mapping between Pandas methods and functions in Python’s re module

Method Description

match() Call re.match() on each element, returning a Boolean.

extract() Call re.match() on each element, returning matched groups as strings.

findall() Call re.findall() on each element.

replace() Replace occurrences of pattern with some other string.

contains() Call re.search() on each element, returning a Boolean.

count() Count occurrences of pattern.

split() Equivalent to str.split(), but accepts regexps.

rsplit() Equivalent to str.rsplit(), but accepts regexps.

With these, you can do a wide range of interesting operations. For example, we can
extract the first name from each by asking for a contiguous group of characters at the
beginning of each element:
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In[11]: monte.str.extract('([A-Za-z]+)')

Out[11]: 0     Graham
         1       John
         2      Terry
         3       Eric
         4      Terry
         5    Michael
         dtype: object

Or we can do something more complicated, like finding all names that start and end
with a consonant, making use of the start-of-string (^) and end-of-string ($) regular
expression characters:

In[12]: monte.str.findall(r'^[^AEIOU].*[^aeiou]$')

Out[12]: 0    [Graham Chapman]
         1                  []
         2     [Terry Gilliam]
         3                  []
         4       [Terry Jones]
         5     [Michael Palin]
         dtype: object

The ability to concisely apply regular expressions across Series or DataFrame entries
opens up many possibilities for analysis and cleaning of data.

Miscellaneous methods
Finally, there are some miscellaneous methods that enable other convenient opera‐
tions (see Table 3-5).

Table 3-5. Other Pandas string methods

Method Description

get() Index each element

slice() Slice each element

slice_replace() Replace slice in each element with passed value

cat() Concatenate strings

repeat() Repeat values

normalize() Return Unicode form of string

pad() Add whitespace to left, right, or both sides of strings

wrap() Split long strings into lines with length less than a given width

join() Join strings in each element of the Series with passed separator

get_dummies() Extract dummy variables as a DataFrame
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Vectorized item access and slicing.    The get() and slice() operations, in particular,
enable vectorized element access from each array. For example, we can get a slice of
the first three characters of each array using str.slice(0, 3). Note that this behav‐
ior is also available through Python’s normal indexing syntax—for example,
df.str.slice(0, 3) is equivalent to df.str[0:3]:

In[13]: monte.str[0:3]

Out[13]: 0    Gra
         1    Joh
         2    Ter
         3    Eri
         4    Ter
         5    Mic
         dtype: object

Indexing via df.str.get(i) and df.str[i] is similar.

These get() and slice() methods also let you access elements of arrays returned by
split(). For example, to extract the last name of each entry, we can combine
split() and get():

In[14]: monte.str.split().str.get(-1)

Out[14]: 0    Chapman
         1     Cleese
         2    Gilliam
         3       Idle
         4      Jones
         5      Palin
         dtype: object

Indicator variables.    Another method that requires a bit of extra explanation is the
get_dummies() method. This is useful when your data has a column containing some
sort of coded indicator. For example, we might have a dataset that contains informa‐
tion in the form of codes, such as A=“born in America,” B=“born in the United King‐
dom,” C=“likes cheese,” D=“likes spam”:

In[15]:
full_monte = pd.DataFrame({'name': monte,
                           'info': ['B|C|D', 'B|D', 'A|C', 'B|D', 'B|C',
                           'B|C|D']})
full_monte

Out[15]:     info            name
         0  B|C|D  Graham Chapman
         1    B|D     John Cleese
         2    A|C   Terry Gilliam
         3    B|D       Eric Idle
         4    B|C     Terry Jones
         5  B|C|D   Michael Palin
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The get_dummies() routine lets you quickly split out these indicator variables into a
DataFrame:

In[16]: full_monte['info'].str.get_dummies('|')

Out[16]:    A  B  C  D
         0  0  1  1  1
         1  0  1  0  1
         2  1  0  1  0
         3  0  1  0  1
         4  0  1  1  0
         5  0  1  1  1

With these operations as building blocks, you can construct an endless range of string
processing procedures when cleaning your data.

We won’t dive further into these methods here, but I encourage you to read through
“Working with Text Data” in the pandas online documentation, or to refer to the
resources listed in “Further Resources” on page 215.

Example: Recipe Database
These vectorized string operations become most useful in the process of cleaning up
messy, real-world data. Here I’ll walk through an example of that, using an open
recipe database compiled from various sources on the Web. Our goal will be to parse
the recipe data into ingredient lists, so we can quickly find a recipe based on some
ingredients we have on hand.

The scripts used to compile this can be found at https://github.com/fictivekin/openre
cipes, and the link to the current version of the database is found there as well.

As of spring 2016, this database is about 30 MB, and can be downloaded and unzip‐
ped with these commands:

In[17]: # !curl -O http://openrecipes.s3.amazonaws.com/recipeitems-latest.json.gz
        # !gunzip recipeitems-latest.json.gz

The database is in JSON format, so we will try pd.read_json to read it:

In[18]: try:
            recipes = pd.read_json('recipeitems-latest.json')
        except ValueError as e:
            print("ValueError:", e)

ValueError: Trailing data

Oops! We get a ValueError mentioning that there is “trailing data.” Searching for this
error on the Internet, it seems that it’s due to using a file in which each line is itself a
valid JSON, but the full file is not. Let’s check if this interpretation is true:
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In[19]: with open('recipeitems-latest.json') as f:
            line = f.readline()
        pd.read_json(line).shape

Out[19]: (2, 12)

Yes, apparently each line is a valid JSON, so we’ll need to string them together. One
way we can do this is to actually construct a string representation containing all these
JSON entries, and then load the whole thing with pd.read_json:

In[20]: # read the entire file into a Python array
        with open('recipeitems-latest.json', 'r') as f:
            # Extract each line
            data = (line.strip() for line in f)
            # Reformat so each line is the element of a list
            data_json = "[{0}]".format(','.join(data))
        # read the result as a JSON
        recipes = pd.read_json(data_json)

In[21]: recipes.shape

Out[21]: (173278, 17)

We see there are nearly 200,000 recipes, and 17 columns. Let’s take a look at one row
to see what we have:

In[22]: recipes.iloc[0]

Out[22]:
_id                                {'$oid': '5160756b96cc62079cc2db15'}
cookTime                                                          PT30M
creator                                                             NaN
dateModified                                                        NaN
datePublished                                                2013-03-11
description           Late Saturday afternoon, after Marlboro Man ha...
image                 http://static.thepioneerwoman.com/cooking/file...
ingredients           Biscuits\n3 cups All-purpose Flour\n2 Tablespo...
name                                    Drop Biscuits and Sausage Gravy
prepTime                                                          PT10M
recipeCategory                                                      NaN
recipeInstructions                                                  NaN
recipeYield                                                          12
source                                                  thepioneerwoman
totalTime                                                           NaN
ts                                             {'$date': 1365276011104}
url                   http://thepioneerwoman.com/cooking/2013/03/dro...
Name: 0, dtype: object

There is a lot of information there, but much of it is in a very messy form, as is typical
of data scraped from the Web. In particular, the ingredient list is in string format;
we’re going to have to carefully extract the information we’re interested in. Let’s start
by taking a closer look at the ingredients:

In[23]: recipes.ingredients.str.len().describe()
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Out[23]: count    173278.000000
         mean        244.617926
         std         146.705285
         min           0.000000
         25%         147.000000
         50%         221.000000
         75%         314.000000
         max        9067.000000
         Name: ingredients, dtype: float64

The ingredient lists average 250 characters long, with a minimum of 0 and a maxi‐
mum of nearly 10,000 characters!

Just out of curiosity, let’s see which recipe has the longest ingredient list:

In[24]: recipes.name[np.argmax(recipes.ingredients.str.len())]

Out[24]: 'Carrot Pineapple Spice &amp; Brownie Layer Cake with Whipped Cream
&amp; Cream Cheese Frosting and Marzipan Carrots'

That certainly looks like an involved recipe.

We can do other aggregate explorations; for example, let’s see how many of the rec‐
ipes are for breakfast food:

In[33]: recipes.description.str.contains('[Bb]reakfast').sum()

Out[33]: 3524

Or how many of the recipes list cinnamon as an ingredient:

In[34]: recipes.ingredients.str.contains('[Cc]innamon').sum()

Out[34]: 10526

We could even look to see whether any recipes misspell the ingredient as “cinamon”:

In[27]: recipes.ingredients.str.contains('[Cc]inamon').sum()

Out[27]: 11

This is the type of essential data exploration that is possible with Pandas string tools.
It is data munging like this that Python really excels at.

A simple recipe recommender
Let’s go a bit further, and start working on a simple recipe recommendation system:
given a list of ingredients, find a recipe that uses all those ingredients. While concep‐
tually straightforward, the task is complicated by the heterogeneity of the data: there
is no easy operation, for example, to extract a clean list of ingredients from each row.
So we will cheat a bit: we’ll start with a list of common ingredients, and simply search
to see whether they are in each recipe’s ingredient list. For simplicity, let’s just stick
with herbs and spices for the time being:
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In[28]: spice_list = ['salt', 'pepper', 'oregano', 'sage', 'parsley',
                      'rosemary', 'tarragon', 'thyme', 'paprika', 'cumin']

We can then build a Boolean DataFrame consisting of True and False values, indicat‐
ing whether this ingredient appears in the list:

In[29]:
import re
spice_df = pd.DataFrame(
           dict((spice, recipes.ingredients.str.contains(spice, re.IGNORECASE))
                                                        for spice in spice_list))
spice_df.head()

Out[29]:
   cumin oregano paprika parsley pepper rosemary   sage   salt tarragon  thyme
0  False   False   False   False  False    False   True  False    False  False
1  False   False   False   False  False    False  False  False    False  False
2   True   False   False   False   True    False  False   True    False  False
3  False   False   False   False  False    False  False  False    False  False
4  False   False   False   False  False    False  False  False    False  False

Now, as an example, let’s say we’d like to find a recipe that uses parsley, paprika, and
tarragon. We can compute this very quickly using the query() method of Data
Frames, discussed in “High-Performance Pandas: eval() and query()” on page 208:

In[30]: selection = spice_df.query('parsley & paprika & tarragon')
        len(selection)

Out[30]: 10

We find only 10 recipes with this combination; let’s use the index returned by this
selection to discover the names of the recipes that have this combination:

In[31]: recipes.name[selection.index]

Out[31]: 2069      All cremat with a Little Gem, dandelion and wa...
         74964                         Lobster with Thermidor butter
         93768      Burton's Southern Fried Chicken with White Gravy
         113926                     Mijo's Slow Cooker Shredded Beef
         137686                     Asparagus Soup with Poached Eggs
         140530                                 Fried Oyster Po’boys
         158475                Lamb shank tagine with herb tabbouleh
         158486                 Southern fried chicken in buttermilk
         163175            Fried Chicken Sliders with Pickles + Slaw
         165243                        Bar Tartine Cauliflower Salad
         Name: name, dtype: object

Now that we have narrowed down our recipe selection by a factor of almost 20,000,
we are in a position to make a more informed decision about what we’d like to cook
for dinner.
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Going further with recipes
Hopefully this example has given you a bit of a flavor (ba-dum!) for the types of data
cleaning operations that are efficiently enabled by Pandas string methods. Of course,
building a very robust recipe recommendation system would require a lot more
work! Extracting full ingredient lists from each recipe would be an important piece of
the task; unfortunately, the wide variety of formats used makes this a relatively time-
consuming process. This points to the truism that in data science, cleaning and
munging of real-world data often comprises the majority of the work, and Pandas
provides the tools that can help you do this efficiently.

Working with Time Series
Pandas was developed in the context of financial modeling, so as you might expect, it
contains a fairly extensive set of tools for working with dates, times, and time-
indexed data. Date and time data comes in a few flavors, which we will discuss here:

• Time stamps reference particular moments in time (e.g., July 4th, 2015, at 7:00
a.m.).

• Time intervals and periods reference a length of time between a particular begin‐
ning and end point—for example, the year 2015. Periods usually reference a spe‐
cial case of time intervals in which each interval is of uniform length and does
not overlap (e.g., 24 hour-long periods constituting days).

• Time deltas or durations reference an exact length of time (e.g., a duration of
22.56 seconds).

In this section, we will introduce how to work with each of these types of date/time
data in Pandas. This short section is by no means a complete guide to the time series
tools available in Python or Pandas, but instead is intended as a broad overview of
how you as a user should approach working with time series. We will start with a
brief discussion of tools for dealing with dates and times in Python, before moving
more specifically to a discussion of the tools provided by Pandas. After listing some
resources that go into more depth, we will review some short examples of working
with time series data in Pandas.

Dates and Times in Python
The Python world has a number of available representations of dates, times, deltas,
and timespans. While the time series tools provided by Pandas tend to be the most
useful for data science applications, it is helpful to see their relationship to other
packages used in Python.
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Native Python dates and times: datetime and dateutil

Python’s basic objects for working with dates and times reside in the built-in date
time module. Along with the third-party dateutil module, you can use it to quickly
perform a host of useful functionalities on dates and times. For example, you can
manually build a date using the datetime type:

In[1]: from datetime import datetime
       datetime(year=2015, month=7, day=4)

Out[1]: datetime.datetime(2015, 7, 4, 0, 0)

Or, using the dateutil module, you can parse dates from a variety of string formats:

In[2]: from dateutil import parser
       date = parser.parse("4th of July, 2015")
       date

Out[2]: datetime.datetime(2015, 7, 4, 0, 0)

Once you have a datetime object, you can do things like printing the day of the week:

In[3]: date.strftime('%A')

Out[3]: 'Saturday'

In the final line, we’ve used one of the standard string format codes for printing dates
("%A"), which you can read about in the strftime section of Python’s datetime docu‐
mentation. Documentation of other useful date utilities can be found in dateutil’s
online documentation. A related package to be aware of is pytz, which contains tools
for working with the most migraine-inducing piece of time series data: time zones.

The power of datetime and dateutil lies in their flexibility and easy syntax: you can
use these objects and their built-in methods to easily perform nearly any operation
you might be interested in. Where they break down is when you wish to work with
large arrays of dates and times: just as lists of Python numerical variables are subopti‐
mal compared to NumPy-style typed numerical arrays, lists of Python datetime
objects are suboptimal compared to typed arrays of encoded dates.

Typed arrays of times: NumPy’s datetime64
The weaknesses of Python’s datetime format inspired the NumPy team to add a set of
native time series data type to NumPy. The datetime64 dtype encodes dates as 64-bit
integers, and thus allows arrays of dates to be represented very compactly. The date
time64 requires a very specific input format:

In[4]: import numpy as np
       date = np.array('2015-07-04', dtype=np.datetime64)
       date

Out[4]: array(datetime.date(2015, 7, 4), dtype='datetime64[D]')
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Once we have this date formatted, however, we can quickly do vectorized operations
on it:

In[5]: date + np.arange(12)

Out[5]:
array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
        '2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',
        '2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'],
        dtype='datetime64[D]')

Because of the uniform type in NumPy datetime64 arrays, this type of operation can
be accomplished much more quickly than if we were working directly with Python’s
datetime objects, especially as arrays get large (we introduced this type of vectoriza‐
tion in “Computation on NumPy Arrays: Universal Functions” on page 50).

One detail of the datetime64 and timedelta64 objects is that they are built on a fun‐
damental time unit. Because the datetime64 object is limited to 64-bit precision, the
range of encodable times is 264 times this fundamental unit. In other words, date
time64 imposes a trade-off between time resolution and maximum time span.

For example, if you want a time resolution of one nanosecond, you only have enough
information to encode a range of 264 nanoseconds, or just under 600 years. NumPy
will infer the desired unit from the input; for example, here is a day-based datetime:

In[6]: np.datetime64('2015-07-04')

Out[6]: numpy.datetime64('2015-07-04')

Here is a minute-based datetime:

In[7]: np.datetime64('2015-07-04 12:00')

Out[7]: numpy.datetime64('2015-07-04T12:00')

Notice that the time zone is automatically set to the local time on the computer exe‐
cuting the code. You can force any desired fundamental unit using one of many for‐
mat codes; for example, here we’ll force a nanosecond-based time:

In[8]: np.datetime64('2015-07-04 12:59:59.50', 'ns')

Out[8]: numpy.datetime64('2015-07-04T12:59:59.500000000')

Table 3-6, drawn from the NumPy datetime64 documentation, lists the available for‐
mat codes along with the relative and absolute timespans that they can encode.

Table 3-6. Description of date and time codes

Code Meaning Time span (relative) Time span (absolute)

Y Year ± 9.2e18 years [9.2e18 BC, 9.2e18 AD]

M Month ± 7.6e17 years [7.6e17 BC, 7.6e17 AD]

W Week ± 1.7e17 years [1.7e17 BC, 1.7e17 AD]
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Code Meaning Time span (relative) Time span (absolute)

D Day ± 2.5e16 years [2.5e16 BC, 2.5e16 AD]

h Hour ± 1.0e15 years [1.0e15 BC, 1.0e15 AD]

m Minute ± 1.7e13 years [1.7e13 BC, 1.7e13 AD]

s Second ± 2.9e12 years [ 2.9e9 BC, 2.9e9 AD]

ms Millisecond ± 2.9e9 years [ 2.9e6 BC, 2.9e6 AD]

us Microsecond ± 2.9e6 years [290301 BC, 294241 AD]

ns Nanosecond ± 292 years [ 1678 AD, 2262 AD]

ps Picosecond ± 106 days [ 1969 AD, 1970 AD]

fs Femtosecond ± 2.6 hours [ 1969 AD, 1970 AD]

as Attosecond ± 9.2 seconds [ 1969 AD, 1970 AD]

For the types of data we see in the real world, a useful default is datetime64[ns], as it
can encode a useful range of modern dates with a suitably fine precision.

Finally, we will note that while the datetime64 data type addresses some of the defi‐
ciencies of the built-in Python datetime type, it lacks many of the convenient meth‐
ods and functions provided by datetime and especially dateutil. More information
can be found in NumPy’s datetime64 documentation.

Dates and times in Pandas: Best of both worlds

Pandas builds upon all the tools just discussed to provide a Timestamp object, which
combines the ease of use of datetime and dateutil with the efficient storage and
vectorized interface of numpy.datetime64. From a group of these Timestamp objects,
Pandas can construct a DatetimeIndex that can be used to index data in a Series or
DataFrame; we’ll see many examples of this below.

For example, we can use Pandas tools to repeat the demonstration from above. We
can parse a flexibly formatted string date, and use format codes to output the day of
the week:

In[9]: import pandas as pd
       date = pd.to_datetime("4th of July, 2015")
       date

Out[9]: Timestamp('2015-07-04 00:00:00')

In[10]: date.strftime('%A')

Out[10]: 'Saturday'

Additionally, we can do NumPy-style vectorized operations directly on this same
object:

In[11]: date + pd.to_timedelta(np.arange(12), 'D')
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Out[11]: DatetimeIndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
                        '2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',
                        '2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'],
                       dtype='datetime64[ns]', freq=None)

In the next section, we will take a closer look at manipulating time series data with
the tools provided by Pandas.

Pandas Time Series: Indexing by Time
Where the Pandas time series tools really become useful is when you begin to index
data by timestamps. For example, we can construct a Series object that has time-
indexed data:

In[12]: index = pd.DatetimeIndex(['2014-07-04', '2014-08-04',
                                  '2015-07-04', '2015-08-04'])
        data = pd.Series([0, 1, 2, 3], index=index)
        data

Out[12]: 2014-07-04    0
         2014-08-04    1
         2015-07-04    2
         2015-08-04    3
         dtype: int64

Now that we have this data in a Series, we can make use of any of the Series index‐
ing patterns we discussed in previous sections, passing values that can be coerced into
dates:

In[13]: data['2014-07-04':'2015-07-04']

Out[13]: 2014-07-04    0
         2014-08-04    1
         2015-07-04    2
         dtype: int64

There are additional special date-only indexing operations, such as passing a year to
obtain a slice of all data from that year:

In[14]: data['2015']

Out[14]: 2015-07-04    2
         2015-08-04    3
         dtype: int64

Later, we will see additional examples of the convenience of dates-as-indices. But first,
let’s take a closer look at the available time series data structures.

Pandas Time Series Data Structures
This section will introduce the fundamental Pandas data structures for working with
time series data:
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• For time stamps, Pandas provides the Timestamp type. As mentioned before, it is
essentially a replacement for Python’s native datetime, but is based on the more
efficient numpy.datetime64 data type. The associated index structure is
DatetimeIndex.

• For time periods, Pandas provides the Period type. This encodes a fixed-
frequency interval based on numpy.datetime64. The associated index structure is
PeriodIndex.

• For time deltas or durations, Pandas provides the Timedelta type. Timedelta is a
more efficient replacement for Python’s native datetime.timedelta type, and is
based on numpy.timedelta64. The associated index structure is TimedeltaIndex.

The most fundamental of these date/time objects are the Timestamp and DatetimeIn
dex objects. While these class objects can be invoked directly, it is more common to
use the pd.to_datetime() function, which can parse a wide variety of formats. Pass‐
ing a single date to pd.to_datetime() yields a Timestamp; passing a series of dates by
default yields a DatetimeIndex:

In[15]: dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015',
                               '2015-Jul-6', '07-07-2015', '20150708'])
        dates

Out[15]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
                        '2015-07-08'],
                       dtype='datetime64[ns]', freq=None)

Any DatetimeIndex can be converted to a PeriodIndex with the to_period() func‐
tion with the addition of a frequency code; here we’ll use 'D' to indicate daily
frequency:

In[16]: dates.to_period('D')

Out[16]: PeriodIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
                      '2015-07-08'],
                     dtype='int64', freq='D')

A TimedeltaIndex is created, for example, when one date is subtracted from another:

In[17]: dates - dates[0]

Out[17]:
TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'],
               dtype='timedelta64[ns]', freq=None)

Regular sequences: pd.date_range()
To make the creation of regular date sequences more convenient, Pandas offers a few
functions for this purpose: pd.date_range() for timestamps, pd.period_range() for
periods, and pd.timedelta_range() for time deltas. We’ve seen that Python’s
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range() and NumPy’s np.arange() turn a startpoint, endpoint, and optional stepsize
into a sequence. Similarly, pd.date_range() accepts a start date, an end date, and an
optional frequency code to create a regular sequence of dates. By default, the fre‐
quency is one day:

In[18]: pd.date_range('2015-07-03', '2015-07-10')

Out[18]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
                        '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
                       dtype='datetime64[ns]', freq='D')

Alternatively, the date range can be specified not with a start- and endpoint, but with
a startpoint and a number of periods:

In[19]: pd.date_range('2015-07-03', periods=8)

Out[19]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
                        '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
                       dtype='datetime64[ns]', freq='D')

You can modify the spacing by altering the freq argument, which defaults to D. For
example, here we will construct a range of hourly timestamps:

In[20]: pd.date_range('2015-07-03', periods=8, freq='H')

Out[20]: DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00',
                        '2015-07-03 02:00:00', '2015-07-03 03:00:00',
                        '2015-07-03 04:00:00', '2015-07-03 05:00:00',
                        '2015-07-03 06:00:00', '2015-07-03 07:00:00'],
                       dtype='datetime64[ns]', freq='H')

To create regular sequences of period or time delta values, the very similar
pd.period_range() and pd.timedelta_range() functions are useful. Here are some
monthly periods:

In[21]: pd.period_range('2015-07', periods=8, freq='M')

Out[21]:
PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12',
             '2016-01', '2016-02'],
            dtype='int64', freq='M')

And a sequence of durations increasing by an hour:

In[22]: pd.timedelta_range(0, periods=10, freq='H')

Out[22]:
TimedeltaIndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00',
                '05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00'],
               dtype='timedelta64[ns]', freq='H')

All of these require an understanding of Pandas frequency codes, which we’ll summa‐
rize in the next section.
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Frequencies and Offsets
Fundamental to these Pandas time series tools is the concept of a frequency or date
offset. Just as we saw the D (day) and H (hour) codes previously, we can use such codes
to specify any desired frequency spacing. Table 3-7 summarizes the main codes
available.

Table 3-7. Listing of Pandas frequency codes

Code Description Code Description

D Calendar day B Business day

W Weekly

M Month end BM Business month end

Q Quarter end BQ Business quarter end

A Year end BA Business year end

H Hours BH Business hours

T Minutes

S Seconds

L Milliseonds

U Microseconds

N Nanoseconds

The monthly, quarterly, and annual frequencies are all marked at the end of the speci‐
fied period. Adding an S suffix to any of these marks it instead at the beginning
(Table 3-8).

Table 3-8. Listing of start-indexed frequency codes

Code Description

MS Month start

BMS Business month start

QS Quarter start

BQS Business quarter start

AS Year start

BAS Business year start
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Additionally, you can change the month used to mark any quarterly or annual code
by adding a three-letter month code as a suffix:

• Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc.
• A-JAN, BA-FEB, AS-MAR, BAS-APR, etc.

In the same way, you can modify the split-point of the weekly frequency by adding a
three-letter weekday code:

• W-SUN, W-MON, W-TUE, W-WED, etc.

On top of this, codes can be combined with numbers to specify other frequencies. For
example, for a frequency of 2 hours 30 minutes, we can combine the hour (H) and
minute (T) codes as follows:

In[23]: pd.timedelta_range(0, periods=9, freq="2H30T")

Out[23]:
TimedeltaIndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00',
                '12:30:00', '15:00:00', '17:30:00', '20:00:00'],
               dtype='timedelta64[ns]', freq='150T')

All of these short codes refer to specific instances of Pandas time series offsets, which
can be found in the pd.tseries.offsets module. For example, we can create a busi‐
ness day offset directly as follows:

In[24]: from pandas.tseries.offsets import BDay
        pd.date_range('2015-07-01', periods=5, freq=BDay())

Out[24]: DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06',
                        '2015-07-07'],
                       dtype='datetime64[ns]', freq='B')

For more discussion of the use of frequencies and offsets, see the “DateOffset objects”
section of the Pandas online documentation.

Resampling, Shifting, and Windowing
The ability to use dates and times as indices to intuitively organize and access data is
an important piece of the Pandas time series tools. The benefits of indexed data in
general (automatic alignment during operations, intuitive data slicing and access,
etc.) still apply, and Pandas provides several additional time series–specific
operations.

We will take a look at a few of those here, using some stock price data as an example.
Because Pandas was developed largely in a finance context, it includes some very spe‐
cific tools for financial data. For example, the accompanying pandas-datareader
package (installable via conda install pandas-datareader) knows how to import
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financial data from a number of available sources, including Yahoo finance, Google
Finance, and others. Here we will load Google’s closing price history:

In[25]: from pandas_datareader import data

        goog = data.DataReader('GOOG', start='2004', end='2016',
                               data_source='google')
        goog.head()

Out[25]:              Open   High    Low  Close  Volume
         Date
         2004-08-19  49.96  51.98  47.93  50.12     NaN
         2004-08-20  50.69  54.49  50.20  54.10     NaN
         2004-08-23  55.32  56.68  54.47  54.65     NaN
         2004-08-24  55.56  55.74  51.73  52.38     NaN
         2004-08-25  52.43  53.95  51.89  52.95     NaN

For simplicity, we’ll use just the closing price:

In[26]: goog = goog['Close']

We can visualize this using the plot() method, after the normal Matplotlib setup
boilerplate (Figure 3-5):

In[27]: %matplotlib inline
        import matplotlib.pyplot as plt
        import seaborn; seaborn.set()

In[28]: goog.plot();

Figure 3-5. Google’s closing stock price over time

Resampling and converting frequencies
One common need for time series data is resampling at a higher or lower frequency.
You can do this using the resample() method, or the much simpler asfreq()
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method. The primary difference between the two is that resample() is fundamentally
a data aggregation, while asfreq() is fundamentally a data selection.

Taking a look at the Google closing price, let’s compare what the two return when we
down-sample the data. Here we will resample the data at the end of business year
(Figure 3-6):

In[29]: goog.plot(alpha=0.5, style='-')
        goog.resample('BA').mean().plot(style=':')
        goog.asfreq('BA').plot(style='--');
        plt.legend(['input', 'resample', 'asfreq'],
                   loc='upper left');

Figure 3-6. Resamplings of Google’s stock price

Notice the difference: at each point, resample reports the average of the previous year,
while asfreq reports the value at the end of the year.

For up-sampling, resample() and asfreq() are largely equivalent, though resample
has many more options available. In this case, the default for both methods is to leave
the up-sampled points empty—that is, filled with NA values. Just as with the
pd.fillna() function discussed previously, asfreq() accepts a method argument to
specify how values are imputed. Here, we will resample the business day data at a
daily frequency (i.e., including weekends); see Figure 3-7:

In[30]: fig, ax = plt.subplots(2, sharex=True)
        data = goog.iloc[:10]

        data.asfreq('D').plot(ax=ax[0], marker='o')

        data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o')
        data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o')
        ax[1].legend(["back-fill", "forward-fill"]);
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Figure 3-7. Comparison between forward-fill and back-fill interpolation

The top panel is the default: non-business days are left as NA values and do not
appear on the plot. The bottom panel shows the differences between two strategies
for filling the gaps: forward-filling and backward-filling.

Time-shifts
Another common time series–specific operation is shifting of data in time. Pandas
has two closely related methods for computing this: shift() and tshift(). In short,
the difference between them is that shift() shifts the data, while tshift() shifts the
index. In both cases, the shift is specified in multiples of the frequency.

Here we will both shift() and tshift() by 900 days (Figure 3-8):

In[31]: fig, ax = plt.subplots(3, sharey=True)

        # apply a frequency to the data
        goog = goog.asfreq('D', method='pad')

        goog.plot(ax=ax[0])
        goog.shift(900).plot(ax=ax[1])
        goog.tshift(900).plot(ax=ax[2])

        # legends and annotations
        local_max = pd.to_datetime('2007-11-05')
        offset = pd.Timedelta(900, 'D')

        ax[0].legend(['input'], loc=2)
        ax[0].get_xticklabels()[4].set(weight='heavy', color='red')
        ax[0].axvline(local_max, alpha=0.3, color='red')
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        ax[1].legend(['shift(900)'], loc=2)
        ax[1].get_xticklabels()[4].set(weight='heavy', color='red')
        ax[1].axvline(local_max + offset, alpha=0.3, color='red')

        ax[2].legend(['tshift(900)'], loc=2)
        ax[2].get_xticklabels()[1].set(weight='heavy', color='red')
        ax[2].axvline(local_max + offset, alpha=0.3, color='red');

Figure 3-8. Comparison between shift and tshift

We see here that shift(900) shifts the data by 900 days, pushing some of it off the
end of the graph (and leaving NA values at the other end), while tshift(900) shifts
the index values by 900 days.

A common context for this type of shift is computing differences over time. For
example, we use shifted values to compute the one-year return on investment for
Google stock over the course of the dataset (Figure 3-9):

In[32]: ROI = 100 * (goog.tshift(-365) / goog - 1)
        ROI.plot()
        plt.ylabel('% Return on Investment');
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Figure 3-9. Return on investment to present day for Google stock

This helps us to see the overall trend in Google stock: thus far, the most profitable
times to invest in Google have been (unsurprisingly, in retrospect) shortly after its
IPO, and in the middle of the 2009 recession.

Rolling windows
Rolling statistics are a third type of time series–specific operation implemented by
Pandas. These can be accomplished via the rolling() attribute of Series and Data
Frame objects, which returns a view similar to what we saw with the groupby opera‐
tion (see “Aggregation and Grouping” on page 158). This rolling view makes available
a number of aggregation operations by default.

For example, here is the one-year centered rolling mean and standard deviation of the
Google stock prices (Figure 3-10):

In[33]: rolling = goog.rolling(365, center=True)

        data = pd.DataFrame({'input': goog,
                             'one-year rolling_mean': rolling.mean(),
                             'one-year rolling_std': rolling.std()})
        ax = data.plot(style=['-', '--', ':'])
        ax.lines[0].set_alpha(0.3)
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Figure 3-10. Rolling statistics on Google stock prices

As with groupby operations, the aggregate() and apply() methods can be used for
custom rolling computations.

Where to Learn More
This section has provided only a brief summary of some of the most essential features
of time series tools provided by Pandas; for a more complete discussion, you can refer
to the “Time Series/Date” section of the Pandas online documentation.

Another excellent resource is the textbook Python for Data Analysis by Wes McKin‐
ney (O’Reilly, 2012). Although it is now a few years old, it is an invaluable resource on
the use of Pandas. In particular, this book emphasizes time series tools in the context
of business and finance, and focuses much more on particular details of business cal‐
endars, time zones, and related topics.

As always, you can also use the IPython help functionality to explore and try further
options available to the functions and methods discussed here. I find this often is the
best way to learn a new Python tool.

Example: Visualizing Seattle Bicycle Counts
As a more involved example of working with some time series data, let’s take a look at
bicycle counts on Seattle’s Fremont Bridge. This data comes from an automated bicy‐
cle counter, installed in late 2012, which has inductive sensors on the east and west
sidewalks of the bridge. The hourly bicycle counts can be downloaded from http://
data.seattle.gov/; here is the direct link to the dataset.

As of summer 2016, the CSV can be downloaded as follows:

202 | Chapter 3: Data Manipulation with Pandas



In[34]:
# !curl -o FremontBridge.csv
# https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Once this dataset is downloaded, we can use Pandas to read the CSV output into a
DataFrame. We will specify that we want the Date as an index, and we want these
dates to be automatically parsed:

In[35]:
data = pd.read_csv('FremontBridge.csv', index_col='Date', parse_dates=True)
data.head()

Out[35]:                     Fremont Bridge West Sidewalk  \\
         Date
         2012-10-03 00:00:00                           4.0
         2012-10-03 01:00:00                           4.0
         2012-10-03 02:00:00                           1.0
         2012-10-03 03:00:00                           2.0
         2012-10-03 04:00:00                           6.0

                              Fremont Bridge East Sidewalk
         Date
         2012-10-03 00:00:00                           9.0
         2012-10-03 01:00:00                           6.0
         2012-10-03 02:00:00                           1.0
         2012-10-03 03:00:00                           3.0
         2012-10-03 04:00:00                           1.0

For convenience, we’ll further process this dataset by shortening the column names
and adding a “Total” column:

In[36]: data.columns = ['West', 'East']
        data['Total'] = data.eval('West + East')

Now let’s take a look at the summary statistics for this data:

In[37]: data.dropna().describe()

Out[37]:                West          East         Total
         count  33544.000000  33544.000000  33544.000000
         mean      61.726568     53.541706    115.268275
         std       83.210813     76.380678    144.773983
         min        0.000000      0.000000      0.000000
         25%        8.000000      7.000000     16.000000
         50%       33.000000     28.000000     64.000000
         75%       80.000000     66.000000    151.000000
         max      825.000000    717.000000   1186.000000
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Visualizing the data
We can gain some insight into the dataset by visualizing it. Let’s start by plotting the
raw data (Figure 3-11):

In[38]: %matplotlib inline
        import seaborn; seaborn.set()

In[39]: data.plot()
        plt.ylabel('Hourly Bicycle Count');

Figure 3-11. Hourly bicycle counts on Seattle’s Fremont bridge

The ~25,000 hourly samples are far too dense for us to make much sense of. We can
gain more insight by resampling the data to a coarser grid. Let’s resample by week
(Figure 3-12):

In[40]: weekly = data.resample('W').sum()
        weekly.plot(style=[':', '--', '-'])
        plt.ylabel('Weekly bicycle count');

This shows us some interesting seasonal trends: as you might expect, people bicycle
more in the summer than in the winter, and even within a particular season the bicy‐
cle use varies from week to week (likely dependent on weather; see “In Depth: Linear
Regression” on page 390 where we explore this further).
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Figure 3-12. Weekly bicycle crossings of Seattle’s Fremont bridge

Another way that comes in handy for aggregating the data is to use a rolling mean,
utilizing the pd.rolling_mean() function. Here we’ll do a 30-day rolling mean of our
data, making sure to center the window (Figure 3-13):

In[41]: daily = data.resample('D').sum()
        daily.rolling(30, center=True).sum().plot(style=[':', '--', '-'])
        plt.ylabel('mean hourly count');

Figure 3-13. Rolling mean of weekly bicycle counts
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The jaggedness of the result is due to the hard cutoff of the window. We can get a
smoother version of a rolling mean using a window function—for example, a Gaus‐
sian window. The following code (visualized in Figure 3-14) specifies both the width
of the window (we chose 50 days) and the width of the Gaussian within the window
(we chose 10 days):

In[42]:
daily.rolling(50, center=True,
              win_type='gaussian').sum(std=10).plot(style=[':', '--', '-']);

Figure 3-14. Gaussian smoothed weekly bicycle counts

Digging into the data
While the smoothed data views in Figure 3-14 are useful to get an idea of the general
trend in the data, they hide much of the interesting structure. For example, we might
want to look at the average traffic as a function of the time of day. We can do this
using the GroupBy functionality discussed in “Aggregation and Grouping” on page
158 (Figure 3-15):

In[43]: by_time = data.groupby(data.index.time).mean()
        hourly_ticks = 4 * 60 * 60 * np.arange(6)
        by_time.plot(xticks=hourly_ticks, style=[':', '--', '-']);

The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the
morning and 5:00 in the evening. This is likely evidence of a strong component of
commuter traffic crossing the bridge. This is further evidenced by the differences
between the western sidewalk (generally used going toward downtown Seattle),
which peaks more strongly in the morning, and the eastern sidewalk (generally used
going away from downtown Seattle), which peaks more strongly in the evening.
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Figure 3-15. Average hourly bicycle counts

We also might be curious about how things change based on the day of the week.
Again, we can do this with a simple groupby (Figure 3-16):

In[44]: by_weekday = data.groupby(data.index.dayofweek).mean()
        by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']
        by_weekday.plot(style=[':', '--', '-']);

Figure 3-16. Average daily bicycle counts

This shows a strong distinction between weekday and weekend totals, with around
twice as many average riders crossing the bridge on Monday through Friday than on
Saturday and Sunday.
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With this in mind, let’s do a compound groupby and look at the hourly trend on
weekdays versus weekends. We’ll start by grouping by both a flag marking the week‐
end, and the time of day:

In[45]: weekend = np.where(data.index.weekday < 5, 'Weekday', 'Weekend')
        by_time = data.groupby([weekend, data.index.time]).mean()

Now we’ll use some of the Matplotlib tools described in “Multiple Subplots” on page
262 to plot two panels side by side (Figure 3-17):

In[46]: import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 2, figsize=(14, 5))
        by_time.ix['Weekday'].plot(ax=ax[0], title='Weekdays',
                                   xticks=hourly_ticks, style=[':', '--', '-'])
        by_time.ix['Weekend'].plot(ax=ax[1], title='Weekends',
                                   xticks=hourly_ticks, style=[':', '--', '-']);

Figure 3-17. Average hourly bicycle counts by weekday and weekend

The result is very interesting: we see a bimodal commute pattern during the work
week, and a unimodal recreational pattern during the weekends. It would be interest‐
ing to dig through this data in more detail, and examine the effect of weather, temper‐
ature, time of year, and other factors on people’s commuting patterns; for further
discussion, see my blog post “Is Seattle Really Seeing an Uptick In Cycling?”, which
uses a subset of this data. We will also revisit this dataset in the context of modeling in
“In Depth: Linear Regression” on page 390.

High-Performance Pandas: eval() and query()
As we’ve already seen in previous chapters, the power of the PyData stack is built
upon the ability of NumPy and Pandas to push basic operations into C via an intu‐
itive syntax: examples are vectorized/broadcasted operations in NumPy, and
grouping-type operations in Pandas. While these abstractions are efficient and effec‐
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tive for many common use cases, they often rely on the creation of temporary inter‐
mediate objects, which can cause undue overhead in computational time and
memory use.

As of version 0.13 (released January 2014), Pandas includes some experimental tools
that allow you to directly access C-speed operations without costly allocation of inter‐
mediate arrays. These are the eval() and query() functions, which rely on the
Numexpr package. In this notebook we will walk through their use and give some
rules of thumb about when you might think about using them.

Motivating query() and eval(): Compound Expressions
We’ve seen previously that NumPy and Pandas support fast vectorized operations; for
example, when you are adding the elements of two arrays:

In[1]: import numpy as np
       rng = np.random.RandomState(42)
       x = rng.rand(1E6)
       y = rng.rand(1E6)
       %timeit x + y

100 loops, best of 3: 3.39 ms per loop

As discussed in “Computation on NumPy Arrays: Universal Functions” on page 50,
this is much faster than doing the addition via a Python loop or comprehension:

In[2]:
%timeit np.fromiter((xi + yi for xi, yi in zip(x, y)),
                     dtype=x.dtype, count=len(x))

1 loop, best of 3: 266 ms per loop

But this abstraction can become less efficient when you are computing compound
expressions. For example, consider the following expression:

In[3]: mask = (x > 0.5) & (y < 0.5)

Because NumPy evaluates each subexpression, this is roughly equivalent to the
following:

In[4]: tmp1 = (x > 0.5)
       tmp2 = (y < 0.5)
       mask = tmp1 & tmp2

In other words, every intermediate step is explicitly allocated in memory. If the x and y
arrays are very large, this can lead to significant memory and computational over‐
head. The Numexpr library gives you the ability to compute this type of compound
expression element by element, without the need to allocate full intermediate arrays.
The Numexpr documentation has more details, but for the time being it is sufficient
to say that the library accepts a string giving the NumPy-style expression you’d like to
compute:

High-Performance Pandas: eval() and query() | 209



In[5]: import numexpr
       mask_numexpr = numexpr.evaluate('(x > 0.5) & (y < 0.5)')
       np.allclose(mask, mask_numexpr)

Out[5]: True

The benefit here is that Numexpr evaluates the expression in a way that does not use
full-sized temporary arrays, and thus can be much more efficient than NumPy, espe‐
cially for large arrays. The Pandas eval() and query() tools that we will discuss here
are conceptually similar, and depend on the Numexpr package.

pandas.eval() for Efficient Operations
The eval() function in Pandas uses string expressions to efficiently compute opera‐
tions using DataFrames. For example, consider the following DataFrames:

In[6]: import pandas as pd
       nrows, ncols = 100000, 100
       rng = np.random.RandomState(42)
       df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))
                             for i in range(4))

To compute the sum of all four DataFrames using the typical Pandas approach, we can
just write the sum:

In[7]: %timeit df1 + df2 + df3 + df4

10 loops, best of 3: 87.1 ms per loop

We can compute the same result via pd.eval by constructing the expression as a
string:

In[8]: %timeit pd.eval('df1 + df2 + df3 + df4')

10 loops, best of 3: 42.2 ms per loop

The eval() version of this expression is about 50% faster (and uses much less mem‐
ory), while giving the same result:

In[9]: np.allclose(df1 + df2 + df3 + df4,
                   pd.eval('df1 + df2 + df3 + df4'))

Out[9]: True

Operations supported by pd.eval()

As of Pandas v0.16, pd.eval() supports a wide range of operations. To demonstrate
these, we’ll use the following integer DataFrames:

In[10]: df1, df2, df3, df4, df5 = (pd.DataFrame(rng.randint(0, 1000, (100, 3)))
                                   for i in range(5))

Arithmetic operators.    pd.eval() supports all arithmetic operators. For example:
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In[11]: result1 = -df1 * df2 / (df3 + df4) - df5
        result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5')
        np.allclose(result1, result2)

Out[11]: True

Comparison operators.    pd.eval() supports all comparison operators, including
chained expressions:

In[12]: result1 = (df1 < df2) & (df2 <= df3) & (df3 != df4)
        result2 = pd.eval('df1 < df2 <= df3 != df4')
        np.allclose(result1, result2)

Out[12]: True

Bitwise operators.    pd.eval() supports the & and | bitwise operators:

In[13]: result1 = (df1 < 0.5) & (df2 < 0.5) | (df3 < df4)
        result2 = pd.eval('(df1 < 0.5) & (df2 < 0.5) | (df3 < df4)')
        np.allclose(result1, result2)

Out[13]: True

In addition, it supports the use of the literal and and or in Boolean expressions:

In[14]: result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)')
        np.allclose(result1, result3)

Out[14]: True

Object attributes and indices.    pd.eval() supports access to object attributes via the
obj.attr syntax, and indexes via the obj[index] syntax:

In[15]: result1 = df2.T[0] + df3.iloc[1]
        result2 = pd.eval('df2.T[0] + df3.iloc[1]')
        np.allclose(result1, result2)

Out[15]: True

Other operations.    Other operations, such as function calls, conditional statements,
loops, and other more involved constructs, are currently not implemented in
pd.eval(). If you’d like to execute these more complicated types of expressions, you
can use the Numexpr library itself.

DataFrame.eval() for Column-Wise Operations
Just as Pandas has a top-level pd.eval() function, DataFrames have an eval()
method that works in similar ways. The benefit of the eval() method is that columns
can be referred to by name. We’ll use this labeled array as an example:

In[16]: df = pd.DataFrame(rng.rand(1000, 3), columns=['A', 'B', 'C'])
        df.head()
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Out[16]:           A         B         C
         0  0.375506  0.406939  0.069938
         1  0.069087  0.235615  0.154374
         2  0.677945  0.433839  0.652324
         3  0.264038  0.808055  0.347197
         4  0.589161  0.252418  0.557789

Using pd.eval() as above, we can compute expressions with the three columns like
this:

In[17]: result1 = (df['A'] + df['B']) / (df['C'] - 1)
        result2 = pd.eval("(df.A + df.B) / (df.C - 1)")
        np.allclose(result1, result2)

Out[17]: True

The DataFrame.eval() method allows much more succinct evaluation of expressions
with the columns:

In[18]: result3 = df.eval('(A + B) / (C - 1)')
        np.allclose(result1, result3)

Out[18]: True

Notice here that we treat column names as variables within the evaluated expression,
and the result is what we would wish.

Assignment in DataFrame.eval()

In addition to the options just discussed, DataFrame.eval() also allows assignment
to any column. Let’s use the DataFrame from before, which has columns 'A', 'B', and
'C':

In[19]: df.head()

Out[19]:           A         B         C
         0  0.375506  0.406939  0.069938
         1  0.069087  0.235615  0.154374
         2  0.677945  0.433839  0.652324
         3  0.264038  0.808055  0.347197
         4  0.589161  0.252418  0.557789

We can use df.eval() to create a new column 'D' and assign to it a value computed
from the other columns:

In[20]: df.eval('D = (A + B) / C', inplace=True)
        df.head()

Out[20]:           A         B         C          D
         0  0.375506  0.406939  0.069938  11.187620
         1  0.069087  0.235615  0.154374   1.973796
         2  0.677945  0.433839  0.652324   1.704344
         3  0.264038  0.808055  0.347197   3.087857
         4  0.589161  0.252418  0.557789   1.508776
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In the same way, any existing column can be modified:

In[21]: df.eval('D = (A - B) / C', inplace=True)
        df.head()

Out[21]:          A         B         C         D
        0  0.375506  0.406939  0.069938 -0.449425
         1  0.069087  0.235615  0.154374 -1.078728
         2  0.677945  0.433839  0.652324  0.374209
         3  0.264038  0.808055  0.347197 -1.566886
         4  0.589161  0.252418  0.557789  0.603708

Local variables in DataFrame.eval()

The DataFrame.eval() method supports an additional syntax that lets it work with
local Python variables. Consider the following:

In[22]: column_mean = df.mean(1)
        result1 = df['A'] + column_mean
        result2 = df.eval('A + @column_mean')
        np.allclose(result1, result2)

Out[22]: True

The @ character here marks a variable name rather than a column name, and lets you
efficiently evaluate expressions involving the two “namespaces”: the namespace of
columns, and the namespace of Python objects. Notice that this @ character is only
supported by the DataFrame.eval() method, not by the pandas.eval() function,
because the pandas.eval() function only has access to the one (Python) namespace.

DataFrame.query() Method
The DataFrame has another method based on evaluated strings, called the query()
method. Consider the following:

In[23]: result1 = df[(df.A < 0.5) & (df.B < 0.5)]
        result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]')
        np.allclose(result1, result2)

Out[23]: True

As with the example used in our discussion of DataFrame.eval(), this is an expres‐
sion involving columns of the DataFrame. It cannot be expressed using the Data
Frame.eval() syntax, however! Instead, for this type of filtering operation, you can
use the query() method:

In[24]: result2 = df.query('A < 0.5 and B < 0.5')
        np.allclose(result1, result2)

Out[24]: True
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In addition to being a more efficient computation, compared to the masking expres‐
sion this is much easier to read and understand. Note that the query() method also
accepts the @ flag to mark local variables:

In[25]: Cmean = df['C'].mean()
        result1 = df[(df.A < Cmean) & (df.B < Cmean)]
        result2 = df.query('A < @Cmean and B < @Cmean')
        np.allclose(result1, result2)

Out[25]: True

Performance: When to Use These Functions
When considering whether to use these functions, there are two considerations: com‐
putation time and memory use. Memory use is the most predictable aspect. As already
mentioned, every compound expression involving NumPy arrays or Pandas Data
Frames will result in implicit creation of temporary arrays: For example, this:

In[26]: x = df[(df.A < 0.5) & (df.B < 0.5)]

is roughly equivalent to this:

In[27]: tmp1 = df.A < 0.5
        tmp2 = df.B < 0.5
        tmp3 = tmp1 & tmp2
        x = df[tmp3]

If the size of the temporary DataFrames is significant compared to your available sys‐
tem memory (typically several gigabytes), then it’s a good idea to use an eval() or
query() expression. You can check the approximate size of your array in bytes using
this:

In[28]: df.values.nbytes

Out[28]: 32000

On the performance side, eval() can be faster even when you are not maxing out
your system memory. The issue is how your temporary DataFrames compare to the
size of the L1 or L2 CPU cache on your system (typically a few megabytes in 2016); if
they are much bigger, then eval() can avoid some potentially slow movement of val‐
ues between the different memory caches. In practice, I find that the difference in
computation time between the traditional methods and the eval/query method is
usually not significant—if anything, the traditional method is faster for smaller
arrays! The benefit of eval/query is mainly in the saved memory, and the sometimes
cleaner syntax they offer.

We’ve covered most of the details of eval() and query() here; for more information
on these, you can refer to the Pandas documentation. In particular, different parsers
and engines can be specified for running these queries; for details on this, see the dis‐
cussion within the “Enhancing Performance” section.
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Further Resources
In this chapter, we’ve covered many of the basics of using Pandas effectively for data
analysis. Still, much has been omitted from our discussion. To learn more about Pan‐
das, I recommend the following resources:

Pandas online documentation
This is the go-to source for complete documentation of the package. While the
examples in the documentation tend to be small generated datasets, the descrip‐
tion of the options is complete and generally very useful for understanding the
use of various functions.

Python for Data Analysis
Written by Wes McKinney (the original creator of Pandas), this book contains
much more detail on the package than we had room for in this chapter. In partic‐
ular, he takes a deep dive into tools for time series, which were his bread and but‐
ter as a financial consultant. The book also has many entertaining examples of
applying Pandas to gain insight from real-world datasets. Keep in mind, though,
that the book is now several years old, and the Pandas package has quite a few
new features that this book does not cover (but be on the lookout for a new edi‐
tion in 2017).

Pandas on Stack Overflow
Pandas has so many users that any question you have has likely been asked and
answered on Stack Overflow. Using Pandas is a case where some Google-Fu is
your best friend. Simply go to your favorite search engine and type in the ques‐
tion, problem, or error you’re coming across—more than likely you’ll find your
answer on a Stack Overflow page.

Pandas on PyVideo
From PyCon to SciPy to PyData, many conferences have featured tutorials from
Pandas developers and power users. The PyCon tutorials in particular tend to be
given by very well-vetted presenters.

My hope is that, by using these resources, combined with the walk-through given in
this chapter, you’ll be poised to use Pandas to tackle any data analysis problem you
come across!
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CHAPTER 4

Visualization with Matplotlib

We’ll now take an in-depth look at the Matplotlib tool for visualization in Python.
Matplotlib is a multiplatform data visualization library built on NumPy arrays, and
designed to work with the broader SciPy stack. It was conceived by John Hunter in
2002, originally as a patch to IPython for enabling interactive MATLAB-style plotting
via gnuplot from the IPython command line. IPython’s creator, Fernando Perez, was
at the time scrambling to finish his PhD, and let John know he wouldn’t have time to
review the patch for several months. John took this as a cue to set out on his own, and
the Matplotlib package was born, with version 0.1 released in 2003. It received an
early boost when it was adopted as the plotting package of choice of the Space Tele‐
scope Science Institute (the folks behind the Hubble Telescope), which financially
supported Matplotlib’s development and greatly expanded its capabilities.

One of Matplotlib’s most important features is its ability to play well with many oper‐
ating systems and graphics backends. Matplotlib supports dozens of backends and
output types, which means you can count on it to work regardless of which operating
system you are using or which output format you wish. This cross-platform,
everything-to-everyone approach has been one of the great strengths of Matplotlib. It
has led to a large userbase, which in turn has led to an active developer base and Mat‐
plotlib’s powerful tools and ubiquity within the scientific Python world.

In recent years, however, the interface and style of Matplotlib have begun to show
their age. Newer tools like ggplot and ggvis in the R language, along with web visuali‐
zation toolkits based on D3js and HTML5 canvas, often make Matplotlib feel clunky
and old-fashioned. Still, I’m of the opinion that we cannot ignore Matplotlib’s
strength as a well-tested, cross-platform graphics engine. Recent Matplotlib versions
make it relatively easy to set new global plotting styles (see “Customizing Matplotlib:
Configurations and Stylesheets” on page 282), and people have been developing new
packages that build on its powerful internals to drive Matplotlib via cleaner, more
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modern APIs—for example, Seaborn (discussed in “Visualization with Seaborn” on
page 311), ggplot, HoloViews, Altair, and even Pandas itself can be used as wrappers
around Matplotlib’s API. Even with wrappers like these, it is still often useful to dive
into Matplotlib’s syntax to adjust the final plot output. For this reason, I believe that
Matplotlib itself will remain a vital piece of the data visualization stack, even if new
tools mean the community gradually moves away from using the Matplotlib API
directly.

General Matplotlib Tips
Before we dive into the details of creating visualizations with Matplotlib, there are a
few useful things you should know about using the package.

Importing matplotlib
Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will
use some standard shorthands for Matplotlib imports:

In[1]: import matplotlib as mpl
       import matplotlib.pyplot as plt

The plt interface is what we will use most often, as we’ll see throughout this chapter.

Setting Styles
We will use the plt.style directive to choose appropriate aesthetic styles for our fig‐
ures. Here we will set the classic style, which ensures that the plots we create use the
classic Matplotlib style:

In[2]: plt.style.use('classic')

Throughout this section, we will adjust this style as needed. Note that the stylesheets
used here are supported as of Matplotlib version 1.5; if you are using an earlier ver‐
sion of Matplotlib, only the default style is available. For more information on style‐
sheets, see “Customizing Matplotlib: Configurations and Stylesheets” on page 282.

show() or No show()? How to Display Your Plots
A visualization you can’t see won’t be of much use, but just how you view your Mat‐
plotlib plots depends on the context. The best use of Matplotlib differs depending on
how you are using it; roughly, the three applicable contexts are using Matplotlib in a
script, in an IPython terminal, or in an IPython notebook.
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Plotting from a script

If you are using Matplotlib from within a script, the function plt.show() is your
friend. plt.show() starts an event loop, looks for all currently active figure objects,
and opens one or more interactive windows that display your figure or figures.

So, for example, you may have a file called myplot.py containing the following:

# ------- file: myplot.py ------
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))

plt.show()

You can then run this script from the command-line prompt, which will result in a
window opening with your figure displayed:

$ python myplot.py

The plt.show() command does a lot under the hood, as it must interact with your
system’s interactive graphical backend. The details of this operation can vary greatly
from system to system and even installation to installation, but Matplotlib does its
best to hide all these details from you.

One thing to be aware of: the plt.show() command should be used only once per
Python session, and is most often seen at the very end of the script. Multiple show()
commands can lead to unpredictable backend-dependent behavior, and should
mostly be avoided.

Plotting from an IPython shell
It can be very convenient to use Matplotlib interactively within an IPython shell (see
Chapter 1). IPython is built to work well with Matplotlib if you specify Matplotlib
mode. To enable this mode, you can use the %matplotlib magic command after start‐
ing ipython:

In [1]: %matplotlib
Using matplotlib backend: TkAgg

In [2]: import matplotlib.pyplot as plt

At this point, any plt plot command will cause a figure window to open, and further
commands can be run to update the plot. Some changes (such as modifying proper‐
ties of lines that are already drawn) will not draw automatically; to force an update,
use plt.draw(). Using plt.show() in Matplotlib mode is not required.
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Plotting from an IPython notebook
The IPython notebook is a browser-based interactive data analysis tool that can com‐
bine narrative, code, graphics, HTML elements, and much more into a single exe‐
cutable document (see Chapter 1).

Plotting interactively within an IPython notebook can be done with the %matplotlib
command, and works in a similar way to the IPython shell. In the IPython notebook,
you also have the option of embedding graphics directly in the notebook, with two
possible options:

• %matplotlib notebook will lead to interactive plots embedded within the
notebook

• %matplotlib inline will lead to static images of your plot embedded in the
notebook

For this book, we will generally opt for %matplotlib inline:

In[3]: %matplotlib inline

After you run this command (it needs to be done only once per kernel/session), any
cell within the notebook that creates a plot will embed a PNG image of the resulting
graphic (Figure 4-1):

In[4]: import numpy as np
       x = np.linspace(0, 10, 100)

       fig = plt.figure()
       plt.plot(x, np.sin(x), '-')
       plt.plot(x, np.cos(x), '--');

Figure 4-1. Basic plotting example
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Saving Figures to File
One nice feature of Matplotlib is the ability to save figures in a wide variety of for‐
mats. You can save a figure using the savefig() command. For example, to save the
previous figure as a PNG file, you can run this:

In[5]: fig.savefig('my_figure.png')

We now have a file called my_figure.png in the current working directory:

In[6]: !ls -lh my_figure.png

-rw-r--r--  1 jakevdp  staff    16K Aug 11 10:59 my_figure.png

To confirm that it contains what we think it contains, let’s use the IPython Image
object to display the contents of this file (Figure 4-2):

In[7]: from IPython.display import Image
       Image('my_figure.png')

Figure 4-2. PNG rendering of the basic plot

In savefig(), the file format is inferred from the extension of the given filename.
Depending on what backends you have installed, many different file formats are
available. You can find the list of supported file types for your system by using the
following method of the figure canvas object:

In[8]: fig.canvas.get_supported_filetypes()

Out[8]: {'eps': 'Encapsulated Postscript',
         'jpeg': 'Joint Photographic Experts Group',
         'jpg': 'Joint Photographic Experts Group',
         'pdf': 'Portable Document Format',
         'pgf': 'PGF code for LaTeX',
         'png': 'Portable Network Graphics',
         'ps': 'Postscript',
         'raw': 'Raw RGBA bitmap',
         'rgba': 'Raw RGBA bitmap',
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         'svg': 'Scalable Vector Graphics',
         'svgz': 'Scalable Vector Graphics',
         'tif': 'Tagged Image File Format',
         'tiff': 'Tagged Image File Format'}

Note that when saving your figure, it’s not necessary to use plt.show() or related
commands discussed earlier.

Two Interfaces for the Price of One
A potentially confusing feature of Matplotlib is its dual interfaces: a convenient
MATLAB-style state-based interface, and a more powerful object-oriented interface.
We’ll quickly highlight the differences between the two here.

MATLAB-style interface
Matplotlib was originally written as a Python alternative for MATLAB users, and
much of its syntax reflects that fact. The MATLAB-style tools are contained in the
pyplot (plt) interface. For example, the following code will probably look quite
familiar to MATLAB users (Figure 4-3):

In[9]: plt.figure()  # create a plot figure

       # create the first of two panels and set current axis
       plt.subplot(2, 1, 1) # (rows, columns, panel number)
       plt.plot(x, np.sin(x))

       # create the second panel and set current axis
       plt.subplot(2, 1, 2)
       plt.plot(x, np.cos(x));

Figure 4-3. Subplots using the MATLAB-style interface

It’s important to note that this interface is stateful: it keeps track of the “current” figure
and axes, which are where all plt commands are applied. You can get a reference to
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these using the plt.gcf() (get current figure) and plt.gca() (get current axes)
routines.

While this stateful interface is fast and convenient for simple plots, it is easy to run
into problems. For example, once the second panel is created, how can we go back
and add something to the first? This is possible within the MATLAB-style interface,
but a bit clunky. Fortunately, there is a better way.

Object-oriented interface
The object-oriented interface is available for these more complicated situations, and
for when you want more control over your figure. Rather than depending on some
notion of an “active” figure or axes, in the object-oriented interface the plotting func‐
tions are methods of explicit Figure and Axes objects. To re-create the previous plot
using this style of plotting, you might do the following (Figure 4-4):

In[10]: # First create a grid of plots
        # ax will be an array of two Axes objects
        fig, ax = plt.subplots(2)

        # Call plot() method on the appropriate object
        ax[0].plot(x, np.sin(x))
        ax[1].plot(x, np.cos(x));

Figure 4-4. Subplots using the object-oriented interface

For more simple plots, the choice of which style to use is largely a matter of prefer‐
ence, but the object-oriented approach can become a necessity as plots become more
complicated. Throughout this chapter, we will switch between the MATLAB-style
and object-oriented interfaces, depending on what is most convenient. In most cases,
the difference is as small as switching plt.plot() to ax.plot(), but there are a few
gotchas that we will highlight as they come up in the following sections.
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Simple Line Plots
Perhaps the simplest of all plots is the visualization of a single function y = f x . Here
we will take a first look at creating a simple plot of this type. As with all the following
sections, we’ll start by setting up the notebook for plotting and importing the func‐
tions we will use:

In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-whitegrid')
       import numpy as np

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest
form, a figure and axes can be created as follows (Figure 4-5):

In[2]: fig = plt.figure()
       ax = plt.axes()

Figure 4-5. An empty gridded axes

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a
single container that contains all the objects representing axes, graphics, text, and
labels. The axes (an instance of the class plt.Axes) is what we see above: a bounding
box with ticks and labels, which will eventually contain the plot elements that make
up our visualization. Throughout this book, we’ll commonly use the variable name
fig to refer to a figure instance, and ax to refer to an axes instance or group of axes
instances.

Once we have created an axes, we can use the ax.plot function to plot some data.
Let’s start with a simple sinusoid (Figure 4-6):

In[3]: fig = plt.figure()
       ax = plt.axes()

       x = np.linspace(0, 10, 1000)
       ax.plot(x, np.sin(x));
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Figure 4-6. A simple sinusoid

Alternatively, we can use the pylab interface and let the figure and axes be created for
us in the background (Figure 4-7; see “Two Interfaces for the Price of One” on page
222 for a discussion of these two interfaces):

In[4]: plt.plot(x, np.sin(x));

Figure 4-7. A simple sinusoid via the object-oriented interface

If we want to create a single figure with multiple lines, we can simply call the plot
function multiple times (Figure 4-8):

In[5]: plt.plot(x, np.sin(x))
       plt.plot(x, np.cos(x));
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Figure 4-8. Over-plotting multiple lines

That’s all there is to plotting simple functions in Matplotlib! We’ll now dive into some
more details about how to control the appearance of the axes and lines.

Adjusting the Plot: Line Colors and Styles
The first adjustment you might wish to make to a plot is to control the line colors and
styles. The plt.plot() function takes additional arguments that can be used to spec‐
ify these. To adjust the color, you can use the color keyword, which accepts a string
argument representing virtually any imaginable color. The color can be specified in a
variety of ways (Figure 4-9):

In[6]:
plt.plot(x, np.sin(x - 0), color='blue')        # specify color by name
plt.plot(x, np.sin(x - 1), color='g')           # short color code (rgbcmyk)
plt.plot(x, np.sin(x - 2), color='0.75')        # Grayscale between 0 and 1
plt.plot(x, np.sin(x - 3), color='#FFDD44')     # Hex code (RRGGBB from 00 to FF)
plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1
plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported

Figure 4-9. Controlling the color of plot elements
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If no color is specified, Matplotlib will automatically cycle through a set of default
colors for multiple lines.

Similarly, you can adjust the line style using the linestyle keyword (Figure 4-10):

In[7]: plt.plot(x, x + 0, linestyle='solid')
       plt.plot(x, x + 1, linestyle='dashed')
       plt.plot(x, x + 2, linestyle='dashdot')
       plt.plot(x, x + 3, linestyle='dotted');

       # For short, you can use the following codes:
       plt.plot(x, x + 4, linestyle='-')  # solid
       plt.plot(x, x + 5, linestyle='--') # dashed
       plt.plot(x, x + 6, linestyle='-.') # dashdot
       plt.plot(x, x + 7, linestyle=':');  # dotted

Figure 4-10. Example of various line styles

If you would like to be extremely terse, these linestyle and color codes can be com‐
bined into a single nonkeyword argument to the plt.plot() function (Figure 4-11):

In[8]: plt.plot(x, x + 0, '-g')  # solid green
       plt.plot(x, x + 1, '--c') # dashed cyan
       plt.plot(x, x + 2, '-.k') # dashdot black
       plt.plot(x, x + 3, ':r');  # dotted red
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Figure 4-11. Controlling colors and styles with the shorthand syntax

These single-character color codes reflect the standard abbreviations in the RGB
(Red/Green/Blue) and CMYK (Cyan/Magenta/Yellow/blacK) color systems, com‐
monly used for digital color graphics.

There are many other keyword arguments that can be used to fine-tune the appear‐
ance of the plot; for more details, I’d suggest viewing the docstring of the plt.plot()
function using IPython’s help tools (see “Help and Documentation in IPython” on
page 3).

Adjusting the Plot: Axes Limits
Matplotlib does a decent job of choosing default axes limits for your plot, but some‐
times it’s nice to have finer control. The most basic way to adjust axis limits is to use
the plt.xlim() and plt.ylim() methods (Figure 4-12):

In[9]: plt.plot(x, np.sin(x))

       plt.xlim(-1, 11)
       plt.ylim(-1.5, 1.5);

Figure 4-12. Example of setting axis limits
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If for some reason you’d like either axis to be displayed in reverse, you can simply
reverse the order of the arguments (Figure 4-13):

In[10]: plt.plot(x, np.sin(x))

        plt.xlim(10, 0)
        plt.ylim(1.2, -1.2);

Figure 4-13. Example of reversing the y-axis

A useful related method is plt.axis() (note here the potential confusion between
axes with an e, and axis with an i). The plt.axis() method allows you to set the x
and y limits with a single call, by passing a list that specifies [xmin, xmax, ymin,
ymax] (Figure 4-14):

In[11]: plt.plot(x, np.sin(x))
        plt.axis([-1, 11, -1.5, 1.5]);

Figure 4-14. Setting the axis limits with plt.axis

The plt.axis() method goes even beyond this, allowing you to do things like auto‐
matically tighten the bounds around the current plot (Figure 4-15):

In[12]: plt.plot(x, np.sin(x))
        plt.axis('tight');
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Figure 4-15. Example of a “tight” layout

It allows even higher-level specifications, such as ensuring an equal aspect ratio so
that on your screen, one unit in x is equal to one unit in y (Figure 4-16):

In[13]: plt.plot(x, np.sin(x))
        plt.axis('equal');

Figure 4-16. Example of an “equal” layout, with units matched to the output resolution

For more information on axis limits and the other capabilities of the plt.axis()
method, refer to the plt.axis() docstring.

Labeling Plots
As the last piece of this section, we’ll briefly look at the labeling of plots: titles, axis
labels, and simple legends.

Titles and axis labels are the simplest such labels—there are methods that can be used
to quickly set them (Figure 4-17):

In[14]: plt.plot(x, np.sin(x))
        plt.title("A Sine Curve")
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        plt.xlabel("x")
        plt.ylabel("sin(x)");

Figure 4-17. Examples of axis labels and title

You can adjust the position, size, and style of these labels using optional arguments to
the function. For more information, see the Matplotlib documentation and the doc‐
strings of each of these functions.

When multiple lines are being shown within a single axes, it can be useful to create a
plot legend that labels each line type. Again, Matplotlib has a built-in way of quickly
creating such a legend. It is done via the (you guessed it) plt.legend() method.
Though there are several valid ways of using this, I find it easiest to specify the label
of each line using the label keyword of the plot function (Figure 4-18):

In[15]: plt.plot(x, np.sin(x), '-g', label='sin(x)')
        plt.plot(x, np.cos(x), ':b', label='cos(x)')
        plt.axis('equal')

        plt.legend();

Figure 4-18. Plot legend example

Simple Line Plots | 231



As you can see, the plt.legend() function keeps track of the line style and color, and
matches these with the correct label. More information on specifying and formatting
plot legends can be found in the plt.legend() docstring; additionally, we will cover
some more advanced legend options in “Customizing Plot Legends” on page 249.

Matplotlib Gotchas
While most plt functions translate directly to ax methods (such as plt.plot() →
ax.plot(), plt.legend() → ax.legend(), etc.), this is not the case for all com‐
mands. In particular, functions to set limits, labels, and titles are slightly modified.
For transitioning between MATLAB-style functions and object-oriented methods,
make the following changes:

• plt.xlabel() → ax.set_xlabel()
• plt.ylabel() → ax.set_ylabel()
• plt.xlim() → ax.set_xlim()
• plt.ylim() → ax.set_ylim()
• plt.title() → ax.set_title()

In the object-oriented interface to plotting, rather than calling these functions indi‐
vidually, it is often more convenient to use the ax.set() method to set all these prop‐
erties at once (Figure 4-19):

In[16]: ax = plt.axes()
        ax.plot(x, np.sin(x))
        ax.set(xlim=(0, 10), ylim=(-2, 2),
               xlabel='x', ylabel='sin(x)',
               title='A Simple Plot');

Figure 4-19. Example of using ax.set to set multiple properties at once
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Simple Scatter Plots
Another commonly used plot type is the simple scatter plot, a close cousin of the line
plot. Instead of points being joined by line segments, here the points are represented
individually with a dot, circle, or other shape. We’ll start by setting up the notebook
for plotting and importing the functions we will use:

In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-whitegrid')
       import numpy as np

Scatter Plots with plt.plot
In the previous section, we looked at plt.plot/ax.plot to produce line plots. It turns
out that this same function can produce scatter plots as well (Figure 4-20):

In[2]: x = np.linspace(0, 10, 30)
       y = np.sin(x)

       plt.plot(x, y, 'o', color='black');

Figure 4-20. Scatter plot example

The third argument in the function call is a character that represents the type of sym‐
bol used for the plotting. Just as you can specify options such as '-' and '--' to con‐
trol the line style, the marker style has its own set of short string codes. The full list of
available symbols can be seen in the documentation of plt.plot, or in Matplotlib’s
online documentation. Most of the possibilities are fairly intuitive, and we’ll show a
number of the more common ones here (Figure 4-21):

In[3]: rng = np.random.RandomState(0)
       for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']:
           plt.plot(rng.rand(5), rng.rand(5), marker,
                    label="marker='{0}'".format(marker))
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       plt.legend(numpoints=1)
       plt.xlim(0, 1.8);

Figure 4-21. Demonstration of point numbers

For even more possibilities, these character codes can be used together with line and
color codes to plot points along with a line connecting them (Figure 4-22):

In[4]: plt.plot(x, y, '-ok');   # line (-), circle marker (o), black (k)

Figure 4-22. Combining line and point markers

Additional keyword arguments to plt.plot specify a wide range of properties of the
lines and markers (Figure 4-23):

In[5]: plt.plot(x, y, '-p', color='gray',
                markersize=15, linewidth=4,
                markerfacecolor='white',
                markeredgecolor='gray',
                markeredgewidth=2)
       plt.ylim(-1.2, 1.2);
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Figure 4-23. Customizing line and point numbers

This type of flexibility in the plt.plot function allows for a wide variety of possible
visualization options. For a full description of the options available, refer to the
plt.plot documentation.

Scatter Plots with plt.scatter
A second, more powerful method of creating scatter plots is the plt.scatter func‐
tion, which can be used very similarly to the plt.plot function (Figure 4-24):

In[6]: plt.scatter(x, y, marker='o');

Figure 4-24. A simple scatter plot

The primary difference of plt.scatter from plt.plot is that it can be used to create
scatter plots where the properties of each individual point (size, face color, edge color,
etc.) can be individually controlled or mapped to data.

Let’s show this by creating a random scatter plot with points of many colors and sizes.
In order to better see the overlapping results, we’ll also use the alpha keyword to
adjust the transparency level (Figure 4-25):
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In[7]: rng = np.random.RandomState(0)
       x = rng.randn(100)
       y = rng.randn(100)
       colors = rng.rand(100)
       sizes = 1000 * rng.rand(100)

       plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
                   cmap='viridis')
       plt.colorbar();  # show color scale

Figure 4-25. Changing size, color, and transparency in scatter points

Notice that the color argument is automatically mapped to a color scale (shown here
by the colorbar() command), and the size argument is given in pixels. In this way,
the color and size of points can be used to convey information in the visualization, in
order to illustrate multidimensional data.

For example, we might use the Iris data from Scikit-Learn, where each sample is one
of three types of flowers that has had the size of its petals and sepals carefully meas‐
ured (Figure 4-26):

In[8]: from sklearn.datasets import load_iris
       iris = load_iris()
       features = iris.data.T

       plt.scatter(features[0], features[1], alpha=0.2,
                   s=100*features[3], c=iris.target, cmap='viridis')
       plt.xlabel(iris.feature_names[0])
       plt.ylabel(iris.feature_names[1]);
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Figure 4-26. Using point properties to encode features of the Iris data

We can see that this scatter plot has given us the ability to simultaneously explore
four different dimensions of the data: the (x, y) location of each point corresponds to
the sepal length and width, the size of the point is related to the petal width, and the
color is related to the particular species of flower. Multicolor and multifeature scatter
plots like this can be useful for both exploration and presentation of data.

plot Versus scatter: A Note on Efficiency
Aside from the different features available in plt.plot and plt.scatter, why might
you choose to use one over the other? While it doesn’t matter as much for small
amounts of data, as datasets get larger than a few thousand points, plt.plot can be
noticeably more efficient than plt.scatter. The reason is that plt.scatter has the
capability to render a different size and/or color for each point, so the renderer must
do the extra work of constructing each point individually. In plt.plot, on the other
hand, the points are always essentially clones of each other, so the work of determin‐
ing the appearance of the points is done only once for the entire set of data. For large
datasets, the difference between these two can lead to vastly different performance,
and for this reason, plt.plot should be preferred over plt.scatter for large
datasets.

Visualizing Errors
For any scientific measurement, accurate accounting for errors is nearly as important,
if not more important, than accurate reporting of the number itself. For example,
imagine that I am using some astrophysical observations to estimate the Hubble Con‐
stant, the local measurement of the expansion rate of the universe. I know that the
current literature suggests a value of around 71 (km/s)/Mpc, and I measure a value of
74 (km/s)/Mpc with my method. Are the values consistent? The only correct answer,
given this information, is this: there is no way to know.
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Suppose I augment this information with reported uncertainties: the current litera‐
ture suggests a value of around 71 ± 2.5 (km/s)/Mpc, and my method has measured a
value of 74 ± 5 (km/s)/Mpc. Now are the values consistent? That is a question that
can be quantitatively answered.

In visualization of data and results, showing these errors effectively can make a plot
convey much more complete information.

Basic Errorbars
A basic errorbar can be created with a single Matplotlib function call (Figure 4-27):

In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-whitegrid')
       import numpy as np

In[2]: x = np.linspace(0, 10, 50)
       dy = 0.8
       y = np.sin(x) + dy * np.random.randn(50)

       plt.errorbar(x, y, yerr=dy, fmt='.k');

Figure 4-27. An errorbar example

Here the fmt is a format code controlling the appearance of lines and points, and has
the same syntax as the shorthand used in plt.plot, outlined in “Simple Line Plots”
on page 224 and “Simple Scatter Plots” on page 233.

In addition to these basic options, the errorbar function has many options to fine-
tune the outputs. Using these additional options you can easily customize the aesthet‐
ics of your errorbar plot. I often find it helpful, especially in crowded plots, to make
the errorbars lighter than the points themselves (Figure 4-28):

In[3]: plt.errorbar(x, y, yerr=dy, fmt='o', color='black',
                    ecolor='lightgray', elinewidth=3, capsize=0);
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Figure 4-28. Customizing errorbars

In addition to these options, you can also specify horizontal errorbars (xerr), one-
sided errorbars, and many other variants. For more information on the options avail‐
able, refer to the docstring of plt.errorbar.

Continuous Errors
In some situations it is desirable to show errorbars on continuous quantities. Though
Matplotlib does not have a built-in convenience routine for this type of application,
it’s relatively easy to combine primitives like plt.plot and plt.fill_between for a
useful result.

Here we’ll perform a simple Gaussian process regression (GPR), using the Scikit-Learn
API (see “Introducing Scikit-Learn” on page 343 for details). This is a method of fit‐
ting a very flexible nonparametric function to data with a continuous measure of the
uncertainty. We won’t delve into the details of Gaussian process regression at this
point, but will focus instead on how you might visualize such a continuous error
measurement:

In[4]: from sklearn.gaussian_process import GaussianProcess

       # define the model and draw some data
       model = lambda x: x * np.sin(x)
       xdata = np.array([1, 3, 5, 6, 8])
       ydata = model(xdata)

       # Compute the Gaussian process fit
       gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1E-1,
                            random_start=100)
       gp.fit(xdata[:, np.newaxis], ydata)

       xfit = np.linspace(0, 10, 1000)
       yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True)
       dyfit = 2 * np.sqrt(MSE)  # 2*sigma ~ 95% confidence region
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We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We
could pass these to the plt.errorbar function as above, but we don’t really want to
plot 1,000 points with 1,000 errorbars. Instead, we can use the plt.fill_between
function with a light color to visualize this continuous error (Figure 4-29):

In[5]: # Visualize the result
       plt.plot(xdata, ydata, 'or')
       plt.plot(xfit, yfit, '-', color='gray')

       plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,
                        color='gray', alpha=0.2)
       plt.xlim(0, 10);

Figure 4-29. Representing continuous uncertainty with filled regions

Note what we’ve done here with the fill_between function: we pass an x value, then
the lower y-bound, then the upper y-bound, and the result is that the area between
these regions is filled.

The resulting figure gives a very intuitive view into what the Gaussian process regres‐
sion algorithm is doing: in regions near a measured data point, the model is strongly
constrained and this is reflected in the small model errors. In regions far from a
measured data point, the model is not strongly constrained, and the model errors
increase.

For more information on the options available in plt.fill_between() (and the
closely related plt.fill() function), see the function docstring or the Matplotlib
documentation.

Finally, if this seems a bit too low level for your taste, refer to “Visualization with Sea‐
born” on page 311, where we discuss the Seaborn package, which has a more stream‐
lined API for visualizing this type of continuous errorbar.
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Density and Contour Plots
Sometimes it is useful to display three-dimensional data in two dimensions using
contours or color-coded regions. There are three Matplotlib functions that can be
helpful for this task: plt.contour for contour plots, plt.contourf for filled contour
plots, and plt.imshow for showing images. This section looks at several examples of
using these. We’ll start by setting up the notebook for plotting and importing the
functions we will use:

In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-white')
       import numpy as np

Visualizing a Three-Dimensional Function
We’ll start by demonstrating a contour plot using a function z = f x, y , using the fol‐
lowing particular choice for f  (we’ve seen this before in “Computation on Arrays:
Broadcasting” on page 63, when we used it as a motivating example for array
broadcasting):

In[2]: def f(x, y):
           return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

A contour plot can be created with the plt.contour function. It takes three argu‐
ments: a grid of x values, a grid of y values, and a grid of z values. The x and y values
represent positions on the plot, and the z values will be represented by the contour
levels. Perhaps the most straightforward way to prepare such data is to use the
np.meshgrid function, which builds two-dimensional grids from one-dimensional
arrays:

In[3]: x = np.linspace(0, 5, 50)
       y = np.linspace(0, 5, 40)

       X, Y = np.meshgrid(x, y)
       Z = f(X, Y)

Now let’s look at this with a standard line-only contour plot (Figure 4-30):

In[4]: plt.contour(X, Y, Z, colors='black');
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Figure 4-30. Visualizing three-dimensional data with contours

Notice that by default when a single color is used, negative values are represented by
dashed lines, and positive values by solid lines. Alternatively, you can color-code the
lines by specifying a colormap with the cmap argument. Here, we’ll also specify that
we want more lines to be drawn—20 equally spaced intervals within the data range
(Figure 4-31):

In[5]: plt.contour(X, Y, Z, 20, cmap='RdGy');

Figure 4-31. Visualizing three-dimensional data with colored contours

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for
centered data. Matplotlib has a wide range of colormaps available, which you can
easily browse in IPython by doing a tab completion on the plt.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting.
We can change this by switching to a filled contour plot using the plt.contourf()
function (notice the f at the end), which uses largely the same syntax as plt.con
tour().
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Additionally, we’ll add a plt.colorbar() command, which automatically creates an
additional axis with labeled color information for the plot (Figure 4-32):

In[6]: plt.contourf(X, Y, Z, 20, cmap='RdGy')
       plt.colorbar();

Figure 4-32. Visualizing three-dimensional data with filled contours

The colorbar makes it clear that the black regions are “peaks,” while the red regions
are “valleys.”

One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps
are discrete rather than continuous, which is not always what is desired. You could
remedy this by setting the number of contours to a very high number, but this results
in a rather inefficient plot: Matplotlib must render a new polygon for each step in the
level. A better way to handle this is to use the plt.imshow() function, which inter‐
prets a two-dimensional grid of data as an image.

Figure 4-33 shows the result of the following code:

In[7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
                  cmap='RdGy')
       plt.colorbar()
       plt.axis(aspect='image');

There are a few potential gotchas with imshow(), however:

• plt.imshow() doesn’t accept an x and y grid, so you must manually specify the
extent [xmin, xmax, ymin, ymax] of the image on the plot.

• plt.imshow() by default follows the standard image array definition where the
origin is in the upper left, not in the lower left as in most contour plots. This
must be changed when showing gridded data.
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• plt.imshow() will automatically adjust the axis aspect ratio to match the input
data; you can change this by setting, for example, plt.axis(aspect='image') to
make x and y units match.

Figure 4-33. Representing three-dimensional data as an image

Finally, it can sometimes be useful to combine contour plots and image plots. For
example, to create the effect shown in Figure 4-34, we’ll use a partially transparent
background image (with transparency set via the alpha parameter) and over-plot
contours with labels on the contours themselves (using the plt.clabel() function):

In[8]: contours = plt.contour(X, Y, Z, 3, colors='black')
       plt.clabel(contours, inline=True, fontsize=8)

       plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
                  cmap='RdGy', alpha=0.5)
       plt.colorbar();

Figure 4-34. Labeled contours on top of an image

The combination of these three functions—plt.contour, plt.contourf, and
plt.imshow—gives nearly limitless possibilities for displaying this sort of three-
dimensional data within a two-dimensional plot. For more information on the
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options available in these functions, refer to their docstrings. If you are interested in
three-dimensional visualizations of this type of data, see “Three-Dimensional Plot‐
ting in Matplotlib” on page 290.

Histograms, Binnings, and Density
A simple histogram can be a great first step in understanding a dataset. Earlier, we
saw a preview of Matplotlib’s histogram function (see “Comparisons, Masks, and
Boolean Logic” on page 70), which creates a basic histogram in one line, once the
normal boilerplate imports are done (Figure 4-35):

In[1]: %matplotlib inline
       import numpy as np
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-white')

       data = np.random.randn(1000)

In[2]: plt.hist(data);

Figure 4-35. A simple histogram

The hist() function has many options to tune both the calculation and the display;
here’s an example of a more customized histogram (Figure 4-36):

In[3]: plt.hist(data, bins=30, normed=True, alpha=0.5,
                histtype='stepfilled', color='steelblue',
                edgecolor='none');
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Figure 4-36. A customized histogram

The plt.hist docstring has more information on other customization options avail‐
able. I find this combination of histtype='stepfilled' along with some transpar‐
ency alpha to be very useful when comparing histograms of several distributions
(Figure 4-37):

In[4]: x1 = np.random.normal(0, 0.8, 1000)
       x2 = np.random.normal(-2, 1, 1000)
       x3 = np.random.normal(3, 2, 1000)

       kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40)

       plt.hist(x1, **kwargs)
       plt.hist(x2, **kwargs)
       plt.hist(x3, **kwargs);

Figure 4-37. Over-plotting multiple histograms

If you would like to simply compute the histogram (that is, count the number of
points in a given bin) and not display it, the np.histogram() function is available:
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In[5]: counts, bin_edges = np.histogram(data, bins=5)
       print(counts)

[ 12 190 468 301  29]

Two-Dimensional Histograms and Binnings
Just as we create histograms in one dimension by dividing the number line into bins,
we can also create histograms in two dimensions by dividing points among two-
dimensional bins. We’ll take a brief look at several ways to do this here. We’ll start by
defining some data—an x and y array drawn from a multivariate Gaussian
distribution:

In[6]: mean = [0, 0]
       cov = [[1, 1], [1, 2]]
       x, y = np.random.multivariate_normal(mean, cov, 10000).T

plt.hist2d: Two-dimensional histogram
One straightforward way to plot a two-dimensional histogram is to use Matplotlib’s
plt.hist2d function (Figure 4-38):

In[12]: plt.hist2d(x, y, bins=30, cmap='Blues')
        cb = plt.colorbar()
        cb.set_label('counts in bin')

Figure 4-38. A two-dimensional histogram with plt.hist2d

Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot
and the binning, which are nicely outlined in the function docstring. Further, just as
plt.hist has a counterpart in np.histogram, plt.hist2d has a counterpart in
np.histogram2d, which can be used as follows:

In[8]: counts, xedges, yedges = np.histogram2d(x, y, bins=30)

For the generalization of this histogram binning in dimensions higher than two, see
the np.histogramdd function.
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plt.hexbin: Hexagonal binnings
The two-dimensional histogram creates a tessellation of squares across the axes.
Another natural shape for such a tessellation is the regular hexagon. For this purpose,
Matplotlib provides the plt.hexbin routine, which represents a two-dimensional
dataset binned within a grid of hexagons (Figure 4-39):

In[9]: plt.hexbin(x, y, gridsize=30, cmap='Blues')
       cb = plt.colorbar(label='count in bin')

Figure 4-39. A two-dimensional histogram with plt.hexbin

plt.hexbin has a number of interesting options, including the ability to specify
weights for each point, and to change the output in each bin to any NumPy aggregate
(mean of weights, standard deviation of weights, etc.).

Kernel density estimation
Another common method of evaluating densities in multiple dimensions is kernel
density estimation (KDE). This will be discussed more fully in “In-Depth: Kernel
Density Estimation” on page 491, but for now we’ll simply mention that KDE can be
thought of as a way to “smear out” the points in space and add up the result to obtain
a smooth function. One extremely quick and simple KDE implementation exists in
the scipy.stats package. Here is a quick example of using the KDE on this data
(Figure 4-40):

In[10]: from scipy.stats import gaussian_kde

        # fit an array of size [Ndim, Nsamples]
        data = np.vstack([x, y])
        kde = gaussian_kde(data)

        # evaluate on a regular grid
        xgrid = np.linspace(-3.5, 3.5, 40)
        ygrid = np.linspace(-6, 6, 40)
        Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)
        Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))
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        # Plot the result as an image
        plt.imshow(Z.reshape(Xgrid.shape),
                   origin='lower', aspect='auto',
                   extent=[-3.5, 3.5, -6, 6],
                   cmap='Blues')
        cb = plt.colorbar()
        cb.set_label("density")

Figure 4-40. A kernel density representation of a distribution

KDE has a smoothing length that effectively slides the knob between detail and
smoothness (one example of the ubiquitous bias–variance trade-off). The literature
on choosing an appropriate smoothing length is vast: gaussian_kde uses a rule of
thumb to attempt to find a nearly optimal smoothing length for the input data.

Other KDE implementations are available within the SciPy ecosystem, each with its
own various strengths and weaknesses; see, for example, sklearn.neighbors.Kernel
Density and statsmodels.nonparametric.kernel_density.KDEMultivariate. For
visualizations based on KDE, using Matplotlib tends to be overly verbose. The Sea‐
born library, discussed in “Visualization with Seaborn” on page 311, provides a much
more terse API for creating KDE-based visualizations.

Customizing Plot Legends
Plot legends give meaning to a visualization, assigning labels to the various plot ele‐
ments. We previously saw how to create a simple legend; here we’ll take a look at cus‐
tomizing the placement and aesthetics of the legend in Matplotlib.

The simplest legend can be created with the plt.legend() command, which auto‐
matically creates a legend for any labeled plot elements (Figure 4-41):

In[1]: import matplotlib.pyplot as plt
       plt.style.use('classic')
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In[2]: %matplotlib inline
       import numpy as np

In[3]: x = np.linspace(0, 10, 1000)
       fig, ax = plt.subplots()
       ax.plot(x, np.sin(x), '-b', label='Sine')
       ax.plot(x, np.cos(x), '--r', label='Cosine')
       ax.axis('equal')
       leg = ax.legend();

Figure 4-41. A default plot legend

But there are many ways we might want to customize such a legend. For example, we
can specify the location and turn off the frame (Figure 4-42):

In[4]: ax.legend(loc='upper left', frameon=False)
       fig

Figure 4-42. A customized plot legend

We can use the ncol command to specify the number of columns in the legend
(Figure 4-43):

In[5]: ax.legend(frameon=False, loc='lower center', ncol=2)
       fig

250 | Chapter 4: Visualization with Matplotlib



Figure 4-43. A two-column plot legend

We can use a rounded box (fancybox) or add a shadow, change the transparency
(alpha value) of the frame, or change the padding around the text (Figure 4-44):

In[6]: ax.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1)
       fig

Figure 4-44. A fancybox plot legend

For more information on available legend options, see the plt.legend docstring.

Choosing Elements for the Legend
As we’ve already seen, the legend includes all labeled elements by default. If this is not
what is desired, we can fine-tune which elements and labels appear in the legend by
using the objects returned by plot commands. The plt.plot() command is able to
create multiple lines at once, and returns a list of created line instances. Passing any of
these to plt.legend() will tell it which to identify, along with the labels we’d like to
specify (Figure 4-45):

In[7]: y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
       lines = plt.plot(x, y)
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       # lines is a list of plt.Line2D instances
       plt.legend(lines[:2], ['first', 'second']);

Figure 4-45. Customization of legend elements

I generally find in practice that it is clearer to use the first method, applying labels to
the plot elements you’d like to show on the legend (Figure 4-46):

In[8]: plt.plot(x, y[:, 0], label='first')
       plt.plot(x, y[:, 1], label='second')
       plt.plot(x, y[:, 2:])
       plt.legend(framealpha=1, frameon=True);

Figure 4-46. Alternative method of customizing legend elements

Notice that by default, the legend ignores all elements without a label attribute set.

Legend for Size of Points
Sometimes the legend defaults are not sufficient for the given visualization. For exam‐
ple, perhaps you’re using the size of points to mark certain features of the data, and
want to create a legend reflecting this. Here is an example where we’ll use the size of
points to indicate populations of California cities. We’d like a legend that specifies the
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scale of the sizes of the points, and we’ll accomplish this by plotting some labeled data
with no entries (Figure 4-47):

In[9]: import pandas as pd
       cities = pd.read_csv('data/california_cities.csv')

       # Extract the data we're interested in
       lat, lon = cities['latd'], cities['longd']
       population, area = cities['population_total'], cities['area_total_km2']

       # Scatter the points, using size and color but no label
       plt.scatter(lon, lat, label=None,
                   c=np.log10(population), cmap='viridis',
                   s=area, linewidth=0, alpha=0.5)
       plt.axis(aspect='equal')
       plt.xlabel('longitude')
       plt.ylabel('latitude')
       plt.colorbar(label='log$_{10}$(population)')
       plt.clim(3, 7)

       # Here we create a legend:
       # we'll plot empty lists with the desired size and label
       for area in [100, 300, 500]:
           plt.scatter([], [], c='k', alpha=0.3, s=area,
                       label=str(area) + ' km$^2$')
       plt.legend(scatterpoints=1, frameon=False,
                  labelspacing=1, title='City Area')

       plt.title('California Cities: Area and Population');

Figure 4-47. Location, geographic size, and population of California cities

The legend will always reference some object that is on the plot, so if we’d like to dis‐
play a particular shape we need to plot it. In this case, the objects we want (gray cir‐
cles) are not on the plot, so we fake them by plotting empty lists. Notice too that the
legend only lists plot elements that have a label specified.
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By plotting empty lists, we create labeled plot objects that are picked up by the legend,
and now our legend tells us some useful information. This strategy can be useful for
creating more sophisticated visualizations.

Finally, note that for geographic data like this, it would be clearer if we could show
state boundaries or other map-specific elements. For this, an excellent choice of tool
is Matplotlib’s Basemap add-on toolkit, which we’ll explore in “Geographic Data with
Basemap” on page 298.

Multiple Legends
Sometimes when designing a plot you’d like to add multiple legends to the same axes.
Unfortunately, Matplotlib does not make this easy: via the standard legend interface,
it is only possible to create a single legend for the entire plot. If you try to create a
second legend using plt.legend() or ax.legend(), it will simply override the first
one. We can work around this by creating a new legend artist from scratch, and then
using the lower-level ax.add_artist() method to manually add the second artist to
the plot (Figure 4-48):

In[10]: fig, ax = plt.subplots()

       lines = []
       styles = ['-', '--', '-.', ':']
       x = np.linspace(0, 10, 1000)

       for i in range(4):
           lines += ax.plot(x, np.sin(x - i * np.pi / 2),
                            styles[i], color='black')
       ax.axis('equal')

       # specify the lines and labels of the first legend
       ax.legend(lines[:2], ['line A', 'line B'],
                 loc='upper right', frameon=False)

       # Create the second legend and add the artist manually.
       from matplotlib.legend import Legend
       leg = Legend(ax, lines[2:], ['line C', 'line D'],
                    loc='lower right', frameon=False)
       ax.add_artist(leg);
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Figure 4-48. A split plot legend

This is a peek into the low-level artist objects that compose any Matplotlib plot. If you
examine the source code of ax.legend() (recall that you can do this within the IPy‐
thon notebook using ax.legend??) you’ll see that the function simply consists of
some logic to create a suitable Legend artist, which is then saved in the legend_
attribute and added to the figure when the plot is drawn.

Customizing Colorbars
Plot legends identify discrete labels of discrete points. For continuous labels based on
the color of points, lines, or regions, a labeled colorbar can be a great tool. In Mat‐
plotlib, a colorbar is a separate axes that can provide a key for the meaning of colors
in a plot. Because the book is printed in black and white, this section has an accompa‐
nying online appendix where you can view the figures in full color (https://
github.com/jakevdp/PythonDataScienceHandbook). We’ll start by setting up the note‐
book for plotting and importing the functions we will use:

In[1]: import matplotlib.pyplot as plt
       plt.style.use('classic')

In[2]: %matplotlib inline
       import numpy as np

As we have seen several times throughout this section, the simplest colorbar can be
created with the plt.colorbar function (Figure 4-49):

In[3]: x = np.linspace(0, 10, 1000)
       I = np.sin(x) * np.cos(x[:, np.newaxis])

       plt.imshow(I)
       plt.colorbar();
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Figure 4-49. A simple colorbar legend

We’ll now discuss a few ideas for customizing these colorbars and using them effec‐
tively in various situations.

Customizing Colorbars
We can specify the colormap using the cmap argument to the plotting function that is
creating the visualization (Figure 4-50):

In[4]: plt.imshow(I, cmap='gray');

Figure 4-50. A grayscale colormap

All the available colormaps are in the plt.cm namespace; using IPython’s tab-
completion feature will give you a full list of built-in possibilities:

plt.cm.<TAB>

But being able to choose a colormap is just the first step: more important is how to
decide among the possibilities! The choice turns out to be much more subtle than you
might initially expect.

256 | Chapter 4: Visualization with Matplotlib



Choosing the colormap
A full treatment of color choice within visualization is beyond the scope of this book,
but for entertaining reading on this subject and others, see the article “Ten Simple
Rules for Better Figures”. Matplotlib’s online documentation also has an interesting
discussion of colormap choice.

Broadly, you should be aware of three different categories of colormaps:

Sequential colormaps
These consist of one continuous sequence of colors (e.g., binary or viridis).

Divergent colormaps
These usually contain two distinct colors, which show positive and negative devi‐
ations from a mean (e.g., RdBu or PuOr).

Qualitative colormaps
These mix colors with no particular sequence (e.g., rainbow or jet).

The jet colormap, which was the default in Matplotlib prior to version 2.0, is an
example of a qualitative colormap. Its status as the default was quite unfortunate,
because qualitative maps are often a poor choice for representing quantitative data.
Among the problems is the fact that qualitative maps usually do not display any uni‐
form progression in brightness as the scale increases.

We can see this by converting the jet colorbar into black and white (Figure 4-51):

In[5]:
from matplotlib.colors import LinearSegmentedColormap

def grayscale_cmap(cmap):
    """Return a grayscale version of the given colormap"""
    cmap = plt.cm.get_cmap(cmap)
    colors = cmap(np.arange(cmap.N))

    # convert RGBA to perceived grayscale luminance
    # cf. http://alienryderflex.com/hsp.html
    RGB_weight = [0.299, 0.587, 0.114]
    luminance = np.sqrt(np.dot(colors[:, :3] ** 2, RGB_weight))
    colors[:, :3] = luminance[:, np.newaxis]

    return LinearSegmentedColormap.from_list(cmap.name + "_gray", colors, cmap.N)

def view_colormap(cmap):
    """Plot a colormap with its grayscale equivalent"""
    cmap = plt.cm.get_cmap(cmap)
    colors = cmap(np.arange(cmap.N))

    cmap = grayscale_cmap(cmap)
    grayscale = cmap(np.arange(cmap.N))
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    fig, ax = plt.subplots(2, figsize=(6, 2),
                           subplot_kw=dict(xticks=[], yticks=[]))
    ax[0].imshow([colors], extent=[0, 10, 0, 1])
    ax[1].imshow([grayscale], extent=[0, 10, 0, 1])

In[6]: view_colormap('jet')

Figure 4-51. The jet colormap and its uneven luminance scale

Notice the bright stripes in the grayscale image. Even in full color, this uneven bright‐
ness means that the eye will be drawn to certain portions of the color range, which
will potentially emphasize unimportant parts of the dataset. It’s better to use a color‐
map such as viridis (the default as of Matplotlib 2.0), which is specifically construc‐
ted to have an even brightness variation across the range. Thus, it not only plays well
with our color perception, but also will translate well to grayscale printing
(Figure 4-52):

In[7]: view_colormap('viridis')

Figure 4-52. The viridis colormap and its even luminance scale

If you favor rainbow schemes, another good option for continuous data is the
cubehelix colormap (Figure 4-53):

In[8]: view_colormap('cubehelix')

Figure 4-53. The cubehelix colormap and its luminance

For other situations, such as showing positive and negative deviations from some
mean, dual-color colorbars such as RdBu (short for Red-Blue) can be useful. However,

258 | Chapter 4: Visualization with Matplotlib



as you can see in Figure 4-54, it’s important to note that the positive-negative infor‐
mation will be lost upon translation to grayscale!

In[9]: view_colormap('RdBu')

Figure 4-54. The RdBu (Red-Blue) colormap and its luminance

We’ll see examples of using some of these color maps as we continue.

There are a large number of colormaps available in Matplotlib; to see a list of them,
you can use IPython to explore the plt.cm submodule. For a more principled
approach to colors in Python, you can refer to the tools and documentation within
the Seaborn library (see “Visualization with Seaborn” on page 311).

Color limits and extensions
Matplotlib allows for a large range of colorbar customization. The colorbar itself is
simply an instance of plt.Axes, so all of the axes and tick formatting tricks we’ve
learned are applicable. The colorbar has some interesting flexibility; for example, we
can narrow the color limits and indicate the out-of-bounds values with a triangular
arrow at the top and bottom by setting the extend property. This might come in
handy, for example, if you’re displaying an image that is subject to noise
(Figure 4-55):

In[10]: # make noise in 1% of the image pixels
        speckles = (np.random.random(I.shape) < 0.01)
        I[speckles] = np.random.normal(0, 3, np.count_nonzero(speckles))

        plt.figure(figsize=(10, 3.5))

        plt.subplot(1, 2, 1)
        plt.imshow(I, cmap='RdBu')
        plt.colorbar()

        plt.subplot(1, 2, 2)
        plt.imshow(I, cmap='RdBu')
        plt.colorbar(extend='both')
        plt.clim(-1, 1);
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Figure 4-55. Specifying colormap extensions

Notice that in the left panel, the default color limits respond to the noisy pixels, and
the range of the noise completely washes out the pattern we are interested in. In the
right panel, we manually set the color limits, and add extensions to indicate values
that are above or below those limits. The result is a much more useful visualization of
our data.

Discrete colorbars
Colormaps are by default continuous, but sometimes you’d like to represent discrete
values. The easiest way to do this is to use the plt.cm.get_cmap() function, and pass
the name of a suitable colormap along with the number of desired bins (Figure 4-56):

In[11]: plt.imshow(I, cmap=plt.cm.get_cmap('Blues', 6))
        plt.colorbar()
        plt.clim(-1, 1);

Figure 4-56. A discretized colormap

The discrete version of a colormap can be used just like any other colormap.
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Example: Handwritten Digits
For an example of where this might be useful, let’s look at an interesting visualization
of some handwritten digits data. This data is included in Scikit-Learn, and consists of
nearly 2,000 8×8 thumbnails showing various handwritten digits.

For now, let’s start by downloading the digits data and visualizing several of the exam‐
ple images with plt.imshow() (Figure 4-57):

In[12]: # load images of the digits 0 through 5 and visualize several of them
        from sklearn.datasets import load_digits
        digits = load_digits(n_class=6)

        fig, ax = plt.subplots(8, 8, figsize=(6, 6))
        for i, axi in enumerate(ax.flat):
            axi.imshow(digits.images[i], cmap='binary')
            axi.set(xticks=[], yticks=[])

Figure 4-57. Sample of handwritten digit data

Because each digit is defined by the hue of its 64 pixels, we can consider each digit to
be a point lying in 64-dimensional space: each dimension represents the brightness of
one pixel. But visualizing relationships in such high-dimensional spaces can be
extremely difficult. One way to approach this is to use a dimensionality reduction
technique such as manifold learning to reduce the dimensionality of the data while
maintaining the relationships of interest. Dimensionality reduction is an example of
unsupervised machine learning, and we will discuss it in more detail in “What Is
Machine Learning?” on page 332.

Deferring the discussion of these details, let’s take a look at a two-dimensional mani‐
fold learning projection of this digits data (see “In-Depth: Manifold Learning” on
page 445 for details):
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In[13]: # project the digits into 2 dimensions using IsoMap
        from sklearn.manifold import Isomap
        iso = Isomap(n_components=2)
        projection = iso.fit_transform(digits.data)

We’ll use our discrete colormap to view the results, setting the ticks and clim to
improve the aesthetics of the resulting colorbar (Figure 4-58):

In[14]: # plot the results
        plt.scatter(projection[:, 0], projection[:, 1], lw=0.1,
                    c=digits.target, cmap=plt.cm.get_cmap('cubehelix', 6))
        plt.colorbar(ticks=range(6), label='digit value')
        plt.clim(-0.5, 5.5)

Figure 4-58. Manifold embedding of handwritten digit pixels

The projection also gives us some interesting insights on the relationships within the
dataset: for example, the ranges of 5 and 3 nearly overlap in this projection, indicating
that some handwritten fives and threes are difficult to distinguish, and therefore
more likely to be confused by an automated classification algorithm. Other values,
like 0 and 1, are more distantly separated, and therefore much less likely to be con‐
fused. This observation agrees with our intuition, because 5 and 3 look much more
similar than do 0 and 1.

We’ll return to manifold learning and digit classification in Chapter 5.

Multiple Subplots
Sometimes it is helpful to compare different views of data side by side. To this end,
Matplotlib has the concept of subplots: groups of smaller axes that can exist together
within a single figure. These subplots might be insets, grids of plots, or other more
complicated layouts. In this section, we’ll explore four routines for creating subplots
in Matplotlib. We’ll start by setting up the notebook for plotting and importing the
functions we will use:
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In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-white')
       import numpy as np

plt.axes: Subplots by Hand
The most basic method of creating an axes is to use the plt.axes function. As we’ve
seen previously, by default this creates a standard axes object that fills the entire fig‐
ure. plt.axes also takes an optional argument that is a list of four numbers in the
figure coordinate system. These numbers represent [bottom, left, width,

height] in the figure coordinate system, which ranges from 0 at the bottom left of the
figure to 1 at the top right of the figure.

For example, we might create an inset axes at the top-right corner of another axes by
setting the x and y position to 0.65 (that is, starting at 65% of the width and 65% of
the height of the figure) and the x and y extents to 0.2 (that is, the size of the axes is
20% of the width and 20% of the height of the figure). Figure 4-59 shows the result of
this code:

In[2]: ax1 = plt.axes()  # standard axes
       ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])

Figure 4-59. Example of an inset axes

The equivalent of this command within the object-oriented interface is
fig.add_axes(). Let’s use this to create two vertically stacked axes (Figure 4-60):

In[3]: fig = plt.figure()
       ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4],
                          xticklabels=[], ylim=(-1.2, 1.2))
       ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4],
                          ylim=(-1.2, 1.2))

       x = np.linspace(0, 10)
       ax1.plot(np.sin(x))
       ax2.plot(np.cos(x));
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Figure 4-60. Vertically stacked axes example

We now have two axes (the top with no tick labels) that are just touching: the bottom
of the upper panel (at position 0.5) matches the top of the lower panel (at position 0.1
+ 0.4).

plt.subplot: Simple Grids of Subplots
Aligned columns or rows of subplots are a common enough need that Matplotlib has
several convenience routines that make them easy to create. The lowest level of these
is plt.subplot(), which creates a single subplot within a grid. As you can see, this
command takes three integer arguments—the number of rows, the number of col‐
umns, and the index of the plot to be created in this scheme, which runs from the
upper left to the bottom right (Figure 4-61):

In[4]: for i in range(1, 7):
           plt.subplot(2, 3, i)
           plt.text(0.5, 0.5, str((2, 3, i)),
                    fontsize=18, ha='center')

Figure 4-61. A plt.subplot() example
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The command plt.subplots_adjust can be used to adjust the spacing between
these plots. The following code (the result of which is shown in Figure 4-62) uses the
equivalent object-oriented command, fig.add_subplot():

In[5]: fig = plt.figure()
       fig.subplots_adjust(hspace=0.4, wspace=0.4)
       for i in range(1, 7):
           ax = fig.add_subplot(2, 3, i)
           ax.text(0.5, 0.5, str((2, 3, i)),
                  fontsize=18, ha='center')

Figure 4-62. plt.subplot() with adjusted margins

We’ve used the hspace and wspace arguments of plt.subplots_adjust, which spec‐
ify the spacing along the height and width of the figure, in units of the subplot size (in
this case, the space is 40% of the subplot width and height).

plt.subplots: The Whole Grid in One Go
The approach just described can become quite tedious when you’re creating a large
grid of subplots, especially if you’d like to hide the x- and y-axis labels on the inner
plots. For this purpose, plt.subplots() is the easier tool to use (note the s at the end
of subplots). Rather than creating a single subplot, this function creates a full grid of
subplots in a single line, returning them in a NumPy array. The arguments are the
number of rows and number of columns, along with optional keywords sharex and
sharey, which allow you to specify the relationships between different axes.

Here we’ll create a 2×3 grid of subplots, where all axes in the same row share their
y-axis scale, and all axes in the same column share their x-axis scale (Figure 4-63):

In[6]: fig, ax = plt.subplots(2, 3, sharex='col', sharey='row')
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Figure 4-63. Shared x and y axis in plt.subplots()

Note that by specifying sharex and sharey, we’ve automatically removed inner labels
on the grid to make the plot cleaner. The resulting grid of axes instances is returned
within a NumPy array, allowing for convenient specification of the desired axes using
standard array indexing notation (Figure 4-64):

In[7]: # axes are in a two-dimensional array, indexed by [row, col]
       for i in range(2):
           for j in range(3):
               ax[i, j].text(0.5, 0.5, str((i, j)),
                             fontsize=18, ha='center')
       fig

Figure 4-64. Identifying plots in a subplot grid

In comparison to plt.subplot(), plt.subplots() is more consistent with Python’s
conventional 0-based indexing.

plt.GridSpec: More Complicated Arrangements
To go beyond a regular grid to subplots that span multiple rows and columns,
plt.GridSpec() is the best tool. The plt.GridSpec() object does not create a plot by
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itself; it is simply a convenient interface that is recognized by the plt.subplot()
command. For example, a gridspec for a grid of two rows and three columns with
some specified width and height space looks like this:

In[8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)

From this we can specify subplot locations and extents using the familiar Python slic‐
ing syntax (Figure 4-65):

In[9]: plt.subplot(grid[0, 0])
       plt.subplot(grid[0, 1:])
       plt.subplot(grid[1, :2])
       plt.subplot(grid[1, 2]);

Figure 4-65. Irregular subplots with plt.GridSpec

This type of flexible grid alignment has a wide range of uses. I most often use it when
creating multi-axes histogram plots like the one shown here (Figure 4-66):

In[10]: # Create some normally distributed data
        mean = [0, 0]
        cov = [[1, 1], [1, 2]]
        x, y = np.random.multivariate_normal(mean, cov, 3000).T

        # Set up the axes with gridspec
        fig = plt.figure(figsize=(6, 6))
        grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)
        main_ax = fig.add_subplot(grid[:-1, 1:])
        y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=main_ax)
        x_hist = fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax)

        # scatter points on the main axes
        main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2)

        # histogram on the attached axes
        x_hist.hist(x, 40, histtype='stepfilled',
                    orientation='vertical', color='gray')
        x_hist.invert_yaxis()
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        y_hist.hist(y, 40, histtype='stepfilled',
                    orientation='horizontal', color='gray')
        y_hist.invert_xaxis()

Figure 4-66. Visualizing multidimensional distributions with plt.GridSpec

This type of distribution plotted alongside its margins is common enough that it has
its own plotting API in the Seaborn package; see “Visualization with Seaborn” on
page 311 for more details.

Text and Annotation
Creating a good visualization involves guiding the reader so that the figure tells a
story. In some cases, this story can be told in an entirely visual manner, without the
need for added text, but in others, small textual cues and labels are necessary. Perhaps
the most basic types of annotations you will use are axes labels and titles, but the
options go beyond this. Let’s take a look at some data and how we might visualize and
annotate it to help convey interesting information. We’ll start by setting up the note‐
book for plotting and importing the functions we will use:

In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       import matplotlib as mpl
       plt.style.use('seaborn-whitegrid')
       import numpy as np
       import pandas as pd
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Example: Effect of Holidays on US Births
Let’s return to some data we worked with earlier in “Example: Birthrate Data” on page
174, where we generated a plot of average births over the course of the calendar year;
as already mentioned, this data can be downloaded at https://raw.githubusercon
tent.com/jakevdp/data-CDCbirths/master/births.csv.

We’ll start with the same cleaning procedure we used there, and plot the results
(Figure 4-67):

In[2]:
births = pd.read_csv('births.csv')

quartiles = np.percentile(births['births'], [25, 50, 75])
mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0])
births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')

births['day'] = births['day'].astype(int)

births.index = pd.to_datetime(10000 * births.year +
                              100 * births.month +
                              births.day, format='%Y%m%d')
births_by_date = births.pivot_table('births',
                                    [births.index.month, births.index.day])
births_by_date.index = [pd.datetime(2012, month, day)
                        for (month, day) in births_by_date.index]

In[3]: fig, ax = plt.subplots(figsize=(12, 4))
       births_by_date.plot(ax=ax);

Figure 4-67. Average daily births by date

When we’re communicating data like this, it is often useful to annotate certain fea‐
tures of the plot to draw the reader’s attention. This can be done manually with the
plt.text/ax.text command, which will place text at a particular x/y value
(Figure 4-68):
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In[4]: fig, ax = plt.subplots(figsize=(12, 4))
       births_by_date.plot(ax=ax)

       # Add labels to the plot
       style = dict(size=10, color='gray')

       ax.text('2012-1-1', 3950, "New Year's Day", **style)
       ax.text('2012-7-4', 4250, "Independence Day", ha='center', **style)
       ax.text('2012-9-4', 4850, "Labor Day", ha='center', **style)
       ax.text('2012-10-31', 4600, "Halloween", ha='right', **style)
       ax.text('2012-11-25', 4450, "Thanksgiving", ha='center', **style)
       ax.text('2012-12-25', 3850, "Christmas ", ha='right', **style)

       # Label the axes
       ax.set(title='USA births by day of year (1969-1988)',
              ylabel='average daily births')

       # Format the x axis with centered month labels
       ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
       ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15))
       ax.xaxis.set_major_formatter(plt.NullFormatter())
       ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));

Figure 4-68. Annotated average daily births by date

The ax.text method takes an x position, a y position, a string, and then optional key‐
words specifying the color, size, style, alignment, and other properties of the text.
Here we used ha='right' and ha='center', where ha is short for horizonal align‐
ment. See the docstring of plt.text() and of mpl.text.Text() for more information
on available options.

Transforms and Text Position
In the previous example, we anchored our text annotations to data locations. Some‐
times it’s preferable to anchor the text to a position on the axes or figure, independent
of the data. In Matplotlib, we do this by modifying the transform.
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Any graphics display framework needs some scheme for translating between coordi‐
nate systems. For example, a data point at x, y = 1, 1  needs to somehow be repre‐
sented at a certain location on the figure, which in turn needs to be represented in
pixels on the screen. Mathematically, such coordinate transformations are relatively
straightforward, and Matplotlib has a well-developed set of tools that it uses inter‐
nally to perform them (the tools can be explored in the matplotlib.transforms sub‐
module).

The average user rarely needs to worry about the details of these transforms, but it is
helpful knowledge to have when considering the placement of text on a figure. There
are three predefined transforms that can be useful in this situation:

ax.transData

Transform associated with data coordinates

ax.transAxes

Transform associated with the axes (in units of axes dimensions)

fig.transFigure

Transform associated with the figure (in units of figure dimensions)

Here let’s look at an example of drawing text at various locations using these trans‐
forms (Figure 4-69):

In[5]: fig, ax = plt.subplots(facecolor='lightgray')
       ax.axis([0, 10, 0, 10])

       # transform=ax.transData is the default, but we'll specify it anyway
       ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData)
       ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)
       ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);

Figure 4-69. Comparing Matplotlib’s coordinate systems
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Note that by default, the text is aligned above and to the left of the specified coordi‐
nates; here the “.” at the beginning of each string will approximately mark the given
coordinate location.

The transData coordinates give the usual data coordinates associated with the x- and
y-axis labels. The transAxes coordinates give the location from the bottom-left cor‐
ner of the axes (here the white box) as a fraction of the axes size. The transFigure
coordinates are similar, but specify the position from the bottom left of the figure
(here the gray box) as a fraction of the figure size.

Notice now that if we change the axes limits, it is only the transData coordinates that
will be affected, while the others remain stationary (Figure 4-70):

In[6]: ax.set_xlim(0, 2)
       ax.set_ylim(-6, 6)
       fig

Figure 4-70. Comparing Matplotlib’s coordinate systems

You can see this behavior more clearly by changing the axes limits interactively; if you
are executing this code in a notebook, you can make that happen by changing %mat
plotlib inline to %matplotlib notebook and using each plot’s menu to interact
with the plot.

Arrows and Annotation
Along with tick marks and text, another useful annotation mark is the simple arrow.

Drawing arrows in Matplotlib is often much harder than you might hope. While
there is a plt.arrow() function available, I wouldn’t suggest using it; the arrows it
creates are SVG objects that will be subject to the varying aspect ratio of your plots,
and the result is rarely what the user intended. Instead, I’d suggest using the plt.anno
tate() function. This function creates some text and an arrow, and the arrows can be
very flexibly specified.

272 | Chapter 4: Visualization with Matplotlib



Here we’ll use annotate with several of its options (Figure 4-71):

In[7]: %matplotlib inline

       fig, ax = plt.subplots()

       x = np.linspace(0, 20, 1000)
       ax.plot(x, np.cos(x))
       ax.axis('equal')

       ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),
                   arrowprops=dict(facecolor='black', shrink=0.05))

       ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),
                   arrowprops=dict(arrowstyle="->",
                                   connectionstyle="angle3,angleA=0,angleB=-90"));

Figure 4-71. Annotation examples

The arrow style is controlled through the arrowprops dictionary, which has numer‐
ous options available. These options are fairly well documented in Matplotlib’s online
documentation, so rather than repeating them here I’ll quickly show some of the pos‐
sibilities. Let’s demonstrate several of the possible options using the birthrate plot
from before (Figure 4-72):

In[8]:
fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

# Add labels to the plot
ax.annotate("New Year's Day", xy=('2012-1-1', 4100),  xycoords='data',
            xytext=(50, -30), textcoords='offset points',
            arrowprops=dict(arrowstyle="->",
                            connectionstyle="arc3,rad=-0.2"))

ax.annotate("Independence Day", xy=('2012-7-4', 4250),  xycoords='data',
            bbox=dict(boxstyle="round", fc="none", ec="gray"),
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            xytext=(10, -40), textcoords='offset points', ha='center',
            arrowprops=dict(arrowstyle="->"))

ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data', ha='center',
            xytext=(0, -20), textcoords='offset points')
ax.annotate('', xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850),
            xycoords='data', textcoords='data',
            arrowprops={'arrowstyle': '|-|,widthA=0.2,widthB=0.2', })

ax.annotate('Halloween', xy=('2012-10-31', 4600),  xycoords='data',
            xytext=(-80, -40), textcoords='offset points',
            arrowprops=dict(arrowstyle="fancy",
                            fc="0.6", ec="none",
                            connectionstyle="angle3,angleA=0,angleB=-90"))

ax.annotate('Thanksgiving', xy=('2012-11-25', 4500),  xycoords='data',
            xytext=(-120, -60), textcoords='offset points',
            bbox=dict(boxstyle="round4,pad=.5", fc="0.9"),
            arrowprops=dict(arrowstyle="->",
                            connectionstyle="angle,angleA=0,angleB=80,rad=20"))

ax.annotate('Christmas', xy=('2012-12-25', 3850),  xycoords='data',
             xytext=(-30, 0), textcoords='offset points',
             size=13, ha='right', va="center",
             bbox=dict(boxstyle="round", alpha=0.1),
             arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1));

# Label the axes
ax.set(title='USA births by day of year (1969-1988)',
       ylabel='average daily births')

# Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));

ax.set_ylim(3600, 5400);
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Figure 4-72. Annotated average birth rates by day

You’ll notice that the specifications of the arrows and text boxes are very detailed: this
gives you the power to create nearly any arrow style you wish. Unfortunately, it also
means that these sorts of features often must be manually tweaked, a process that can
be very time-consuming when one is producing publication-quality graphics! Finally,
I’ll note that the preceding mix of styles is by no means best practice for presenting
data, but rather included as a demonstration of some of the available options.

More discussion and examples of available arrow and annotation styles can be found
in the Matplotlib gallery, in particular http://matplotlib.org/examples/pylab_examples/
annotation_demo2.html.

Customizing Ticks
Matplotlib’s default tick locators and formatters are designed to be generally sufficient
in many common situations, but are in no way optimal for every plot. This section
will give several examples of adjusting the tick locations and formatting for the par‐
ticular plot type you’re interested in.

Before we go into examples, it will be best for us to understand further the object
hierarchy of Matplotlib plots. Matplotlib aims to have a Python object representing
everything that appears on the plot: for example, recall that the figure is the bound‐
ing box within which plot elements appear. Each Matplotlib object can also act as a
container of sub-objects; for example, each figure can contain one or more axes
objects, each of which in turn contain other objects representing plot contents.

The tick marks are no exception. Each axes has attributes xaxis and yaxis, which in
turn have attributes that contain all the properties of the lines, ticks, and labels that
make up the axes.
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Major and Minor Ticks
Within each axis, there is the concept of a major tick mark and a minor tick mark. As
the names would imply, major ticks are usually bigger or more pronounced, while
minor ticks are usually smaller. By default, Matplotlib rarely makes use of minor
ticks, but one place you can see them is within logarithmic plots (Figure 4-73):

In[1]: %matplotlib inline
       import matplotlib.pyplot as plt
       plt.style.use('seaborn-whitegrid')
       import numpy as np

In[2]: ax = plt.axes(xscale='log', yscale='log')

Figure 4-73. Example of logarithmic scales and labels

We see here that each major tick shows a large tick mark and a label, while each
minor tick shows a smaller tick mark with no label.

We can customize these tick properties—that is, locations and labels—by setting the
formatter and locator objects of each axis. Let’s examine these for the x axis of the
plot just shown:

In[3]: print(ax.xaxis.get_major_locator())
       print(ax.xaxis.get_minor_locator())

<matplotlib.ticker.LogLocator object at 0x107530cc0>
<matplotlib.ticker.LogLocator object at 0x107530198>

In[4]: print(ax.xaxis.get_major_formatter())
       print(ax.xaxis.get_minor_formatter())

<matplotlib.ticker.LogFormatterMathtext object at 0x107512780>
<matplotlib.ticker.NullFormatter object at 0x10752dc18>

We see that both major and minor tick labels have their locations specified by a
LogLocator (which makes sense for a logarithmic plot). Minor ticks, though, have
their labels formatted by a NullFormatter; this says that no labels will be shown.
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We’ll now show a few examples of setting these locators and formatters for various
plots.

Hiding Ticks or Labels
Perhaps the most common tick/label formatting operation is the act of hiding ticks or
labels. We can do this using plt.NullLocator() and plt.NullFormatter(), as
shown here (Figure 4-74):

In[5]: ax = plt.axes()
       ax.plot(np.random.rand(50))

       ax.yaxis.set_major_locator(plt.NullLocator())
       ax.xaxis.set_major_formatter(plt.NullFormatter())

Figure 4-74. Plot with hidden tick labels (x-axis) and hidden ticks (y-axis)

Notice that we’ve removed the labels (but kept the ticks/gridlines) from the x axis,
and removed the ticks (and thus the labels as well) from the y axis. Having no ticks at
all can be useful in many situations—for example, when you want to show a grid of
images. For instance, consider Figure 4-75, which includes images of different faces,
an example often used in supervised machine learning problems (for more informa‐
tion, see “In-Depth: Support Vector Machines” on page 405):

In[6]: fig, ax = plt.subplots(5, 5, figsize=(5, 5))
       fig.subplots_adjust(hspace=0, wspace=0)

       # Get some face data from scikit-learn
       from sklearn.datasets import fetch_olivetti_faces
       faces = fetch_olivetti_faces().images

       for i in range(5):
           for j in range(5):
               ax[i, j].xaxis.set_major_locator(plt.NullLocator())
               ax[i, j].yaxis.set_major_locator(plt.NullLocator())
               ax[i, j].imshow(faces[10 * i + j], cmap="bone")
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Figure 4-75. Hiding ticks within image plots

Notice that each image has its own axes, and we’ve set the locators to null because the
tick values (pixel number in this case) do not convey relevant information for this
particular visualization.

Reducing or Increasing the Number of Ticks
One common problem with the default settings is that smaller subplots can end up
with crowded labels. We can see this in the plot grid shown in Figure 4-76:

In[7]: fig, ax = plt.subplots(4, 4, sharex=True, sharey=True)

Figure 4-76. A default plot with crowded ticks

Particularly for the x ticks, the numbers nearly overlap, making them quite difficult to
decipher. We can fix this with the plt.MaxNLocator(), which allows us to specify the
maximum number of ticks that will be displayed. Given this maximum number, Mat‐
plotlib will use internal logic to choose the particular tick locations (Figure 4-77):
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In[8]: # For every axis, set the x and y major locator
       for axi in ax.flat:
           axi.xaxis.set_major_locator(plt.MaxNLocator(3))
           axi.yaxis.set_major_locator(plt.MaxNLocator(3))
       fig

Figure 4-77. Customizing the number of ticks

This makes things much cleaner. If you want even more control over the locations of
regularly spaced ticks, you might also use plt.MultipleLocator, which we’ll discuss
in the following section.

Fancy Tick Formats
Matplotlib’s default tick formatting can leave a lot to be desired; it works well as a
broad default, but sometimes you’d like to do something more. Consider the plot
shown in Figure 4-78, a sine and a cosine:

In[9]: # Plot a sine and cosine curve
       fig, ax = plt.subplots()
       x = np.linspace(0, 3 * np.pi, 1000)
       ax.plot(x, np.sin(x), lw=3, label='Sine')
       ax.plot(x, np.cos(x), lw=3, label='Cosine')

       # Set up grid, legend, and limits
       ax.grid(True)
       ax.legend(frameon=False)
       ax.axis('equal')
       ax.set_xlim(0, 3 * np.pi);
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Figure 4-78. A default plot with integer ticks

There are a couple changes we might like to make. First, it’s more natural for this data
to space the ticks and grid lines in multiples of π. We can do this by setting a Multi
pleLocator, which locates ticks at a multiple of the number you provide. For good
measure, we’ll add both major and minor ticks in multiples of π/4 (Figure 4-79):

In[10]: ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
        ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
        fig

Figure 4-79. Ticks at multiples of pi/2

But now these tick labels look a little bit silly: we can see that they are multiples of π,
but the decimal representation does not immediately convey this. To fix this, we can
change the tick formatter. There’s no built-in formatter for what we want to do, so
we’ll instead use plt.FuncFormatter, which accepts a user-defined function giving
fine-grained control over the tick outputs (Figure 4-80):

In[11]: def format_func(value, tick_number):
            # find number of multiples of pi/2
            N = int(np.round(2 * value / np.pi))
            if N == 0:
                return "0"
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            elif N == 1:
                return r"$\pi/2$"
            elif N == 2:
                return r"$\pi$"
            elif N % 2 > 0:
                return r"${0}\pi/2$".format(N)
            else:
                return r"${0}\pi$".format(N // 2)

        ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
        fig

Figure 4-80. Ticks with custom labels

This is much better! Notice that we’ve made use of Matplotlib’s LaTeX support, speci‐
fied by enclosing the string within dollar signs. This is very convenient for display of
mathematical symbols and formulae; in this case, "$\pi$" is rendered as the Greek
character π.

The plt.FuncFormatter() offers extremely fine-grained control over the appearance
of your plot ticks, and comes in very handy when you’re preparing plots for presenta‐
tion or publication.

Summary of Formatters and Locators
We’ve mentioned a couple of the available formatters and locators. We’ll conclude this
section by briefly listing all the built-in locator and formatter options. For more
information on any of these, refer to the docstrings or to the Matplotlib online docu‐
mentation. Each of the following is available in the plt namespace:

Locator class Description

NullLocator No ticks

FixedLocator Tick locations are fixed

IndexLocator Locator for index plots (e.g., where x = range(len(y)))
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Locator class Description

LinearLocator Evenly spaced ticks from min to max

LogLocator Logarithmically ticks from min to max

MultipleLocator Ticks and range are a multiple of base

MaxNLocator Finds up to a max number of ticks at nice locations

AutoLocator (Default) MaxNLocator with simple defaults

AutoMinorLocator Locator for minor ticks

Formatter class Description

NullFormatter No labels on the ticks

IndexFormatter Set the strings from a list of labels

FixedFormatter Set the strings manually for the labels

FuncFormatter User-defined function sets the labels

FormatStrFormatter Use a format string for each value

ScalarFormatter (Default) Formatter for scalar values

LogFormatter Default formatter for log axes

We’ll see additional examples of these throughout the remainder of the book.

Customizing Matplotlib: Configurations and Stylesheets
Matplotlib’s default plot settings are often the subject of complaint among its users.
While much is slated to change in the 2.0 Matplotlib release, the ability to customize
default settings helps bring the package in line with your own aesthetic preferences.

Here we’ll walk through some of Matplotlib’s runtime configuration (rc) options, and
take a look at the newer stylesheets feature, which contains some nice sets of default
configurations.

Plot Customization by Hand
Throughout this chapter, we’ve seen how it is possible to tweak individual plot set‐
tings to end up with something that looks a little bit nicer than the default. It’s possi‐
ble to do these customizations for each individual plot. For example, here is a fairly
drab default histogram (Figure 4-81):

In[1]: import matplotlib.pyplot as plt
       plt.style.use('classic')
       import numpy as np

       %matplotlib inline
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