

Paper RF-12-2014

USING SAS HASH OBJECTS TO CUT DOWN PROCESSING TIME

Girish Narayandas, Optum, Eden Prairie, MN

ABSTRACT

Hash tables are in existence since SAS 9 version and are part of data step programming. The

hash application and syntax style is rather different from the regular SAS data step

programming and often programmers shy away from using this great feature. The hash object

is a great option for lookups when using unsorted data that can fit into memory. Hash object

provides an efficient and convenient mechanism for quick data storage and retrieval. SAS HASH

use can achieve great I/O efficiencies and enormous time savings when merging tables with the

DATA Step.

INTRODUCTION

Hash Table is a lookup table that is designed to efficiently store non-contiguous keys (ids,
account numbers, codes, etc.) that may have wide gaps in their alphabetic and numeric
sequences. SAS provides two pre-defined component objects for use in a DATA step: the hash
object and the hash iterator object. These objects basically enable you to rapidly store, search,
and retrieve data based on lookup keys efficiently there by cutting down the run time.

The DATA step component object interface enables you to create and manipulate these
component objects by using statements, attributes, and methods. You use the DATA step
object dot notation to access the component object's attributes and methods

The component object is established by the DECLARE statement in the SAS DATA step.

 DECLARE HASH PROV (DATASET: ‘LIB.PROV’, HASHEXP:20);

The name of the object is followed by DATASET: and optional constructor statements such as
ORDERED, HASHEXP. ‘Ordered’ determines how the key variables are to be ordered in the hash
table. Before I attempt to explain HASHEXP attribute, let’s understand how SAS HASH
processing occurs in very simple terms:

– When the object is declared, it creates a key per value
– Hash keys are evenly distributed into hash slots so that each slot contains as few key-

value pairs as possible
– When an item is looked up, its key is hashed to find the appropriate slot.
– Then, the slot is searched for the right key-value pair

HASHEXP is an indicator of how to allocate memory and distribute the hash items in memory.
Simple rule is that, the larger the hash table, the larger the value HASHEXP should be assigned.
The maximum size for HASHEXP is 20 (Eberhardt et al 2010). Finding out an efficient value for
HASHEXP: is dependent on multiple factors. This is an exponent so a value of 10 results in

210=1,024 buckets or slots. The default size is 8 (28=256). For a million items HASHEXP = 9 or 10;
512 to 1024 slots) should provide good performance (Carpenter et al 2012 & SAS
Documentation).

For a more thorough explanation of HASHEXP and the hash memory model see Dorfman et al
2008, Eberhardt et al 2010 and Carpenter et al 2012. This paper is not intended to be complete
SAS HASH reference guide, nor is an attempt to thoroughly explain the deeper mechanism of
how SAS HASH tables work. The intention is provide a quick starter guide with some basic
examples in an attempt to attract SAS beginners and SAS users who haven’t had a chance to
use HASH tables to start exploring SAS HASH tables.

SYNTAX AND EXAMPLES

Hash tables are objects, so you call methods to use them. The syntax of calling a method is to
put the name of the hash table, then a dot (.), then the method you want to use. Following the
method is a set of parentheses in which you put the specifications for the method. You will see
this kind of syntax in the statement below:

EXAMPLE 1: Joining two datasets with a simple key

DATA MBR_PROV;

 IF 1=2 THEN SET LIB.MBR LIB.PROV;

 IF _N_ = 1 THEN DO;

 DECLARE HASH PROV(DATASET: ‘LIB.PROV’);

 PROV.DEFINEKEY (‘PROV_ID’);

 PROV.DEFINEDATA (‘PROV_NAME’, ‘PROV_STATE’);

 PROV.DEFINDONE;

 END;

 SET LIB.MBR;

 IF PROV.FIND(KEY:PROV_ID) = 0 THEN OUTPUT;

RUN;

Here is a simple example where we are merging a member and a provider table using a prov_id
key and bring in prov_name and prov_state fields into the MBR_PROV dataset that is being
created. To join table using hash objects there are FOUR basic steps to follow:

Member_ID Prov_ID GRP_ID GRP_CATEGORY

MBR0001 PR001 GRP01 GCAT1

MBR0002 PR002 GRP01 GCAT3

MBR0003 PR003 GRP03 GCAT2

MBR0004 PR001 GRP02 GCAT2

MBR0005 PR002 GRP01 GCAT3

MBR0006 PR004 GRP02 GCAT1

MBR0007 PR002 GRP01 GCAT2

Members Table

Prov_ID Prov_Name Prov_State

PR001 Scarborough Clinic WA

PR002 Atlantic Health ME

PR003 Fairway Clinics NH

PR004 Camden Clinic VA

Provider Table

STEP 1: The DATA, SET and RUN statements are part of basic data step programming
components in SAS that any SAS programmer is familiar with. We are merging LIB.MBR and
LIB.PROV and creating a MBR_PROV dataset. LIB.MBR is being used as the base dataset because
we want all the fields from the base dataset (usually the larger dataset of the two or more
datasets that are used). Since hash tables use memory, smaller dataset is used to build hash
table to avoid running into possible memory issues.

DATA MBR_PROV;

 IF 1=2 THEN SET LIB.MBR LIB.PROV;

 IF _N_ = 1 THEN DO;

 DECLARE HASH PROV(DATASET: ‘LIB.PROV’);

 PROV.DEFINEKEY (‘PROV_ID’);

 PROV.DEFINEDATA (‘PROV_NAME’, ‘PROV_STATE’);

 PROV.DEFINDONE;

 END;

 SET LIB.MBR;

 IF PROV.FIND(KEY:PROV_ID) = 0 THEN OUTPUT;

RUN;

STEP 2: HASH processing needs to know about the data fields and their properties in a hash
table before they can be used. Data field properties could be defined using a length and format
statements, however a more efficient way would be use a SET statement as shown below. The
SET statement will be read at compilation, data variable properties in the datasets will be
extracted, but the statement will never actually execute due to the obviously false statement “if
1=2” condition.

DATA MBR_PROV;

 IF 1=2 THEN SET LIB.MBR LIB.PROV;

 IF _N_ = 1 THEN DO;

 DECLARE HASH PROV(DATASET: ‘LIB.PROV’);

 PROV.DEFINEKEY (‘PROV_ID’);

 PROV.DEFINEDATA (‘PROV_NAME’, ‘PROV_STATE’);

 PROV.DEFINDONE;

 END;

 SET LIB.MBR;

 IF PROV.FIND(KEY:PROV_ID) = 0 THEN OUTPUT;

RUN;

STEP 3: In this step, the DECLARE statement is used to name and instantiate the object, i.e. we
are defining a HASH named PROV and stating what dataset need to be loaded into the memory.
PROV.DEFINEKEY (‘PROV_ID’) defines the unique key variable(s) that will be used to join
with other tables. PROV.DEFINEDATA (‘PROV_NAME’, ‘PROV_STATE’) denotes the data
fields we want to have available for use in memory. PROV.DEFINDONE is part of the HASH
syntax that closes the hash argument.

DATA MBR_PROV;

 IF 1=2 THEN SET LIB.MBR LIB.PROV;

 IF _N_ = 1 THEN DO;

 DECLARE HASH PROV(DATASET: ‘LIB.PROV’);

 PROV.DEFINEKEY (‘PROV_ID’);

 PROV.DEFINEDATA (‘PROV_NAME’, ‘PROV_STATE’);

 PROV.DEFINDONE;

 END;

 SET LIB.MBR;

 IF PROV.FIND(KEY:PROV_ID) = 0 THEN OUTPUT;

RUN;

STEP 4: We are almost there, This is the final step where the DATA step is reading observations
from the LIB.MBR table and using key fields specified, PROV_ID to join to the has table. Now,
the SAS process attempts to find matching pairs between MBR and PROV tables using the data
field specified in the DEFINEKEY; PROV_ID. The ‘IF’ condition in this statement will result in an
INNER JOIN. Therefore, only matching records between the two tables will be written to the
output dataset.

DATA MBR_PROV;

 IF 1=2 THEN SET LIB.MBR LIB.PROV;

 IF _N_ = 1 THEN DO;

 DECLARE HASH PROV(DATASET: ‘LIB.PROV’);

 PROV.DEFINEKEY (‘PROV_ID’);

 PROV.DEFINEDATA (‘PROV_NAME’, ‘PROV_STATE’);

 PROV.DEFINDONE;

 END;

 SET LIB.MBR;

 IF PROV.FIND(KEY:PROV_ID) = 0 THEN OUTPUT;

RUN;

Resulting dataset:

EXAMPLE 2: Joining THREE datasets with composite keys:

The second example is really an enhancement to the first example that illustrates joining three
datasets and using composite keys (more than one key field). It involves adding a second key
field to the GRP table. In the first example we needed to pick up PROV_NAME and PROV_STATE

Member_ID Prov_ID GRP_ID GRP_CATEGORY Prov_Name Prov_State

MBR0001 PR001 GRP01 GCAT1 Scarborough Clinic WA

MBR0002 PR002 GRP01 GCAT3 Atlantic Health ME

MBR0003 PR003 GRP03 GCAT2 Fairway Clinics NH

MBR0004 PR001 GRP02 GCAT2 Scarborough Clinic WA

MBR0005 PR002 GRP01 GCAT3 Atlantic Health ME

MBR0006 PR004 GRP02 GCAT1 Camden Clinic VA

MBR0007 PR002 GRP01 GCAT2 Atlantic Health ME

based on the value of PROV_ID. Depending on table size and number of data fields used, the
SORT procedure can be quite expensive in terms of I/O efficiencies plus adding to the overall
jobs run time. Hash tables allow us to avoid sorting the two or potentially more dataset which
can eat up resources with the real time large datasets. In this example, we are adding a Group
(GRP) table and using two keys GRP_CATEGORY and GRP_ID and bring in GRP_NAME in to the
output table, MBR_PROV_GRP.

DATA MBR_PROV_GRP;

 IF 1=2 THEN SET SASUSER.MBR SASUSER.PROV SASUSER.GRP;

 IF _N_ = 1 THEN DO;

 DECLARE HASH PROV(DATASET: 'SASUSER.PROV');

 PROV.DEFINEKEY ('PROV_ID');

 PROV.DEFINEDATA ('PROV_NAME', 'PROV_STATE');

 PROV.DEFINEDONE ();

 DECLARE HASH GRP(DATASET: 'SASUSER.GRP');

 GRP.DEFINEKEY ('GRP_CATEGORY', 'GRP_ID');

 GRP.DEFINEDATA ('GRP_NAME');

 GRP.DEFINEDONE ();

 END;

 SET SASUSER.MBR;

 IF (PROV.FIND(KEY: PROV_ID) = 0)

 AND (GRP.FIND (KEY:GRP_CATEGORY, KEY:GRP_ID)= 0) THEN OUTPUT;

RUN;

Member_ID Prov_ID GRP_ID GRP_CATEGORY

MBR0001 PR001 GRP01 GCAT1

MBR0002 PR002 GRP01 GCAT3

MBR0003 PR003 GRP03 GCAT2

MBR0004 PR001 GRP02 GCAT2

MBR0005 PR002 GRP01 GCAT3

MBR0006 PR004 GRP02 GCAT1

MBR0007 PR002 GRP01 GCAT2

Members Table

GRP_CATEGORY GRP_ID GRP_NAME

GCAT1 GRP01 NORTH WEST AAA

GCAT1 GRP02 NORTH WEST BBB

GCAT2 GRP01 SOUTH WEST AAA

GCAT2 GRP02 SOUTH WEST BBB

GCAT3 GRP01 EASTERN AAA

GCAT3 GRP02 EASTERN BBB

GCAT3 GRP03 EASTERN CCC

Group Table

Prov_ID Prov_Name Prov_State

PR001 Scarborough Clinic WA

PR002 Atlantic Health ME

PR003 Fairway Clinics NH

PR004 Camden Clinic VA

Provider Table

Resulting dataset:

FURTHER READING

This is just the beginning of HASH tables; the goal of the paper was to introduce SAS HASH to

the beginners as well as experienced SAS programmers who haven’t had the chance to explore

into SAS HASH. The paper provides couple of basic examples that SAS users can take and start

using them in their settings and take advantage of its efficiency and other advantages.

SORT Data using HASH: The hash object is instantiated in the (example 3, marked 1 in the

orange box) with the HASH name: GSORT. The hash object is defined to contain the table

SASUSER.PROV and will be ordered using the key variable(s) in ascending order. The use of

DATASET: constructor method should suffice to load the entire table into the hash object. The

‘ORDERED’ constructor is an optional statement that can be used to specify the order of

sorting. Values (‘a’, ‘ascending’, ‘yes’, ‘y’) for ascending order and (‘descending’, ‘d’, ‘n’, ‘no’) for

descending order.

 DECLARE HASH GSORT(DATASET: 'SASUSER.GRP', ORDERED:'A');

OTHER METHODS: ADD, DELETE, REMOVE, REPLACE, OUTPUT

DEFINEKEY, DEINE DATA, DEFINEDONE and FIND methods are the most popular HASH methods,

however there are additional methods available in the SAS HASH objects that are worth

mentioning such as ADD, DELETE, REMOVE, REPLACE. The ‘ADD’ method is useful when

additional key and data values need to be added on the fly to the hash object. ‘DELETE’ method

simply deletes a hash table from the memory. ‘REMOVE’ allows to remove a data line

associated with a define key mentioned in the hash table. ‘REPLACE’ helps to replace the data

values associated with a particular define key stated in the hash. ‘OUTPUT’ method helps to

write the HASH table to a reusable SAS dataset and to the specified library.

Below code example shows the usage of the above discussed HASH methods. They are shown

in the example 3 (block marked 2 in the orange box). ‘BEFORE‘ and ‘AFTER’ data is also shown

after the code section to illustrate the additional HASH methods.

Member_ID Prov_ID GRP_ID GRP_CATEGORY Prov_Name Prov_State GRP_NAME

MBR0001 PR001 GRP01 GCAT1 Scarborough Clinic WA NORTH WEST AAA

MBR0002 PR002 GRP01 GCAT3 Atlantic Health ME EASTERN AAA

MBR0004 PR001 GRP02 GCAT2 Scarborough Clinic WA SOUTH WEST BBB

MBR0005 PR002 GRP01 GCAT3 Atlantic Health ME EASTERN AAA

MBR0006 PR004 GRP02 GCAT1 Camden Clinic VA NORTH WEST BBB

MBR0007 PR002 GRP01 GCAT2 Atlantic Health ME SOUTH WEST AAA

EXAMPLE 3: SORTING and ADDITIONAL HASH METHODS

DATA _NULL_;

 IF 1=2 THEN SET SASUSER.PROV SASUSER.GRP;

 IF _N_ = 1 THEN DO;

 DECLARE HASH GSORT(DATASET: 'SASUSER.GRP', ORDERED:'A');

 GSORT.DEFINEKEY ('GRP_NAME');

 GSORT.DEFINEDATA ('GRP_NAME','GRP_CATEGORY', 'GRP_ID');

 GSORT.DEFINEDONE ();

 GSORT.OUTPUT (DATASET:'GRP_SORTED');

 DECLARE HASH PSORT(DATASET: 'SASUSER.PROV', ORDERED:'D');

 PSORT.DEFINEKEY ('PROV_STATE');

 PSORT.DEFINEDATA ('PROV_STATE','PROV_NAME', 'PROV_ID');

 PSORT.DEFINEDONE ();

 PSORT.ADD (KEY: 'AL',DATA:'AL',DATA:'BUSCH HEALTH', DATA:'PR005');

 PSORT.REMOVE (KEY:'WA');

 PSORT.REPLACE (KEY: 'NH', DATA:'NY',DATA:'FAIRWAY CLINICS',DATA:'PR003');

 PSORT.OUTPUT (DATASET:'PROV_SORTED');

 PSORT.DELETE();

 END;

 SET SASUSER.PROV END=EOF SASUSER.GRP;

RUN;

SORTING DATA EXAMPLE

ADD, DELETE, REMOVE & REPLACE

GRP_CATEGORY GRP_ID GRP_NAME

GCAT1 GRP01 NORTH WEST AAA

GCAT1 GRP02 NORTH WEST BBB

GCAT2 GRP01 SOUTH WEST AAA

GCAT2 GRP02 SOUTH WEST BBB

GCAT3 GRP01 EASTERN AAA

GCAT3 GRP02 EASTERN BBB

GCAT3 GRP03 EASTERN CCC

BEFORE

GRP_NAME GRP_CATEGORY GRP_ID

EASTERN AAA GCAT3 GRP01

EASTERN BBB GCAT3 GRP02

EASTERN CCC GCAT3 GRP03

NORTH WEST AAA GCAT1 GRP01

NORTH WEST BBB GCAT1 GRP02

SOUTH WEST AAA GCAT2 GRP01

SOUTH WEST BBB GCAT2 GRP02

AFTER

Prov_ID Prov_Name Prov_State

PR001 Scarborough Clinic WA

PR002 Atlantic Health ME

PR003 Fairway Clinics NH

PR004 Camden Clinic VA

BEFORE

Prov_State Prov_Name Prov_ID

VA Camden Clinic PR004

NY FAIRWAY CLINICS PR003

ME Atlantic Health PR002

AL BUSCH HEALTH PR005

AFTER

1

2

One of the ‘errors’ we may come across is a duplicate key value. By default the SAS hash object
keeps the first value it encounters by default. In certain situations, if one wants to keep the last
value of a key REPLACE method: could be used.
Prior to SAS 9.2, there was no way to have multiple items with the same key; we will see an
example later on how to maintain multiple items with the same key. Logically one would expect
a lookup table to have unique key values; however, since the hash object can be used for more
than a simple lookup table it needs a mechanism to deal with duplicates. If you prefer to load
your hash object by specifying a DATASET: tag, you can also specify if you want the first or last
occurrence kept. By default we get the first occurrence. If we want the last occurrence we can
use the DUPLICATE: tag:

 DECLARE HASH GSORT(DATASET: 'SASUSER.GRP', DUPLICATE:'REPLACE');

ADVANTAGES AND LIMITATIONS

Advantages:

a. An alternative to any PROC SQL JOIN or DATA step MERGE that runs faster especially when

there is very large dataset and a small dataset involved

b. With HASH, there is no need for preparatory sorting or indexing before joining the table

c. Handles joining multiple tables all in one step even though when they use different key fields

d. Can bring in multiple values from just one lookup operation

e. Guess what, lookup values during hash session can be either numeric or character fields

Limitations:

a. The amount of data that can be loaded into a hash object is the amount of memory available

to the SAS session. So larger the lookup table, additional memory may be required.

b. SAS HASH syntax and terminology is different from the conventional SAS syntax which is

more intuitive, hence can take some getting used to, before one feels comfortable using HASH.

CONCLUSION:

SAS HASH is an underutilized memory based powerful programming tool in the of SAS tool box

collection. This paper introduced the basic elements of SAS HASH; what a hash table means,

general syntax and functioning, advantages of using HASH, and a few simple examples.

Although the processing time for a SAS programming step might depend on several factors, in

my experience, I was able to cut down processing time from hours to minutes using SAS HASH. I

hope SAS users across various industries take full advantage of this programming technique to

cut down on the processing time for various common coding operations that they handle in SAS

such as sorting, table lookup operations, merges etc.

TRADEMARK CITATIONS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies

REFERENCES

Blackwell, John (2010). Find() the power of Hash - How, Why and When to use the SAS® Hash

Object

Carpenter, Art (2012). Carpenter’s Guide to Innovative SAS Techniques textbook (Chapter 3.3,

pages 117 -130)

Dorfman, Paul (2005). "Data Step Hash Objects as Programming Tools," Proceedings of the SAS

Global Forum 2005 (SUGI 30) Conference.

Lafler, Kirk Paul (2011). ‘An Introduction to SAS Hash Programming Techniques,’ Proceedings of

the 2011 South East SAS Users Group (SESUG) Conference

Loren, Judy (2006). "How Do I Love Hash Tables? Let Me Count The Ways!," Proceedings of the

Nineteenth Northeast SAS Users Group Conference.

Data Step Concepts: Using the HASH Object: SAS Documentation

http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#n1b4c

btmb049xtn1vh9x4waiioz4.htm

Warner-Freeman, Jennifer (2007). I cut my processing time by 90% using hash tables - You can

do it too! North East SAS Users Group (NESUG 2007)

AUTHOR INFORMATION

Your comments and questions are valued and encouraged. Contact the author at

Optum Inc

13625 Technology Drive,

Eden Prairie, MN 55344

Phone: 952-974-1928

girish.narayandas@optum.com

www.optum.com

http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#n1b4cbtmb049xtn1vh9x4waiioz4.htm
http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#n1b4cbtmb049xtn1vh9x4waiioz4.htm

