
1

Paper CC-037

 SAS® Log Summarizer – Finding
 What’s Most Important in the SAS® Log

Milorad Stojanovic
RTI International

Education Surveys Division
RTP, North Carolina

ABSTRACT
Validity of SAS® programs is an important task. Lots of information about the execution of SAS programs
can be found in SAS® Log file. Carefully examination of the SAS log is a mandatory task, but it can be
cumbersome and tedious for very large logs. Log Summarizer is a tool designed to reduce the burden of this
review. It can be used to extract the most important information (ERRORs, WARNINGs, and specific
NOTEs), while preserving section indicators, statement sequence, original line numbers and message text.
Log Summarizer’s output is in RTF format and will provide programmer and/or QA analyst with a condensed
version of the information they are most interested in reviewing.

KEYWORDS: SAS LOG, ERROR, WARNING, NOTE

INTRODUCTION
To do programming jobs correctly we should check the results of our programs. Author points to the papers
by Rick Mitchell (1) and Howard and Gayari (2) as ones everybody should take time to read. Both papers
give excellent guidelines how to validate your results on the more broader basis than only checking SAS
LOG. As users of SAS, analyst, programmers, statisticians and others are keenly interested in the
successful operation of SAS programs, and are generally satisfied to have their programs execute
successfully (resulting in new files, reports or both) while paying no attention to the SAS LOG. Other users,
however, will check the program LOG for ERRORs only. And still others will check all messages in the SAS
LOG. The most thorough and complete check would include checking of results of each step, but it is often a
cumbersome and lengthy process. For example, newly created data sets which end up with 0 observations
and N variables could indicate possible errors in data processing , which could be the first sign that
something went wrong.

In the papers already presented at various SAS User Group (SUG) meeting (see references) authors used a
more or less generalized approach to analyzing SAS LOGs and to extract important information from their
perspective. Mainly they were dealing with ERROR, WARNING and selected NOTE messages. This paper
takes the review a step further, by recommending additional checking for missing BY statements, checking
for data set(s) with 0 observations, and checking for messages that another process was locking the data
set.

DESCRIPTION OF PROGRAM
The goal was to prepare a condensed report structured in several sections with the hierarchy of messages
from the most severe to the simply informative. SAS LOGs were treated as any other text file, with a log file
line size of 200 characters. The SAS logs were searched for three keywords: ERROR, WARNING, and
NOTE. NOTE messages were differentiated, as some of them are purely informational with no significant
value for finding mistakes in program, whereas others could often (but not always) point to some incorrect
behavior of the program during the execution phase. To make intervention in the program code as small as
possible, a “%INCLUDE” statement was used to isolate specific NOTE messages. In this way, maintenance
of the program was much easier. Users are advised to add or remove NOTEs messages and to choose an
appropriate location for report as well as for the input SAS LOG.

It is important to note that it could be a highly dangerous mistake to exclude a “BY” statement in MERGE.
Although the program will seemingly execute successfully, the results could include some ‘bad’ merging of
input data sets. Moreover SAS would not give any ERROR or WARNING message (if you don’t have any
other mistakes in said code), but would only yield three naïve NOTE messages such as the following:

mrappa
Text Box
SESUG Proceedings (c) SESUG, Inc (http://www.sesug.org) The papers contained in the SESUG proceedings are the property of their authors, unless otherwise stated. Do not reprint without permission.
SESUG papers are distributed freely as a courtesy of the Institute for Advanced Analytics (http://analytics.ncsu.edu).

2

“NOTE: There were 3 observations read from the data set WORK.ONE.
NOTE: There were 3 observations read from the data set WORK.TWO.
NOTE: The data set WORK.THREE has 3 observations and 3 variables.“

These seemingly innocuous notes hide a potential disaster. The output will include a new data set in the
output, but merging is now highly problematic. The most important thing to note is that this is not
VISIBLE at all. Consider the following:

Data set ONE Data set TWO No BY statement With BY statement

Obs a b Obs a c Obs a b c Obs a b c

 1 1 15 1 1 115 1 1 15 115 1 1 15 115
 2 2 25 2 2 225 2 2 25 225 2 2 25 225
 3 4 45 3 3 335 3 3 45 335 3 3 . 335
 4 4 45 .

PROGRAM CODE

%let saslog_location = C:\SESUG08\TESTLOG.log;
%let saslog_notes = C:\SESUG08\NOTE_messages.txt ;
%let report_location = C:\SESUG08 ;

%macro SASLOG_Summarizer(saslog_location=, saslog_notes=, report_location=) ;
filename infl "&saslog_location." ;
options ls=80 ps=50 nodate nonumber ;

proc format ;
value Typefm 1 = 'ERROR'
 2 = 'WARNING'
 3 = 'Spec. NOTEs'
 4 = 'NOTE' ;
run ;

data mistakes(keep=type txt line_counter) ;
retain line_Counter 0 ;
length txt $ 190 ;
infile infl lrecl=200 pad ;
input @1 intext $200. ;
line_counter + 1 ;
if index(intext, 'ERROR:')>0 then do ;
 Type = 1 ;
 pos = index(intext, '2E0D'X) ;
 txt = substr(intext, 8, pos - 8) ;
 output ;
end ;
else if index(intext, 'WARNING:')>0 then do ;
 Type = 2 ;
 txt = substr(intext, 10) ;
 output ;
end ;
else if index(intext, 'NOTE:')>0 then do ;
 if index(intext, 'The data set')>0 and
 index(intext, 'has 0 observations')>0 then do ;
 Type = 3 ;
 txt = substr(intext, 6) ;
 output ;
 end ;
end ;
if index(intext, 'NOTE:')>0 then do ;
 %include "&saslog_notes." ;

3

 Type = 4 ;
 txt = substr(intext, 7) ;
 output ;
 end ;
end ;
run ;

* Additional step for checking of missing BY statements in MERGE. ;
data mistakes1(keep=type txt line1) ;
retain line_Counter Merge_flag Data_flag Proc_flag RUN_flag
 Merge_loc Data_loc Proc_loc Run_loc BY_flag 0;
length txt $ 190 ;
infile infl lrecl=200 pad ;
input @1 intext $200. ;
intext = upcase(intext) ;
line_counter + 1 ;
if index(intext, 'NOTE:')=0 and
 index(intext, 'ERROR:')=0 and
 index(intext, 'WARNING:')=0 then do ;
 if index(intext, ' MERGE ')>0 and index(intext, '*')=0 then do ;
 Type = 3 ;
 merge_loc= line_counter ;

 merge_flag = 1 ;
 Data_loc=0; Proc_loc=0; Run_loc=0 ; Proc_flag = 0 ;
 data_flag = 0 ; run_flag = 0 ; by_flag = 0 ;
 end ;
 if merge_flag = 1 then do ;
 if index(intext, ' BY ')>0 then BY_flag = 1 ;
 if index(intext, ' PROC ')>0 then do ;
 Proc_flag = 1 ;
 Proc_loc = line_counter ;
 end ;
 if index(intext, ' DATA ')>0 then do ;
 data_flag = 1 ;
 Data_loc = line_counter ;
 end ;
 if index(intext, ' RUN ;')>0 then do ;
 run_flag = 1 ;
 Run_loc = line_counter ;
 end ;
 if BY_flag=0 and
 (Data_flag=1 or Run_Flag=1 or Proc_Flag=1) and
 (0<=(Line_counter - merge_loc)<=6) then do ;
 type = 3 ;
 txt = 'No BY statement for preceding MERGE statement' ;
 line1 = MERGE_loc ;
 output ;
 merge_flag=0 ; Proc_flag = 0 ; data_flag = 0 ; run_flag = 0 ; by_flag = 0 ;
 data_loc = 0 ; proc_loc = 0 ; merge_loc = 0 ; run_loc = 0 ;
 end ;
 end ;
end ;
run ;

proc sort data=mistakes ;
 by type line_counter ;
run ;

data mistakes ;
set mistakes mistakes1(rename=(line1=line_counter)) ;
by type line_counter ;
run ;

4

ods rtf file="&Report_location\SASLOG_Summarizer.rtf" style=banker ;
proc report data=mistakes nowd split='~' ;
title J=C "Report from SASLOG Summarizer for:" ;
title2 J=C "&saslog_location.";
column type line_counter txt ;
define type / group order=internal f=typefm. 'Type' ;
define line_counter / display f=6. 'Line # in~SAS LOG' ;
define txt / display width=80 /*f=$90.*/ flow 'Original SAS log message' ;
run ;
ods rtf close ;

%mend SASLOG_Summarizer;

%SASLOG_Summarizer(saslog_location=&saslog_location.,
 saslog_notes=&saslog_notes., report_location=&report_location.)

Content of include file could be same like in this file or with different content.

if index(intext, 'Invalid') > 0 or
 index(intext, 'W.D format') > 0 or
 index(intext, 'is uninitialized') > 0 or
 index(intext, 'repeats of BY values') > 0 or
 index(intext, 'Mathematical operations could not') > 0 or
 index(intext, 'Missing values were') > 0 or
 index(intext, 'Division by zero') > 0 or
 index(intext, 'MERGE statement') > 0 or
 index(intext, 'Character values have') > 0 or
 index(intext, 'values have been converted') > 0 or
 index(intext, 'Interactivity disabled with') > 0 or
 index(intext, 'No observation') > 0
 then do ;

Program execution with input of over 17K+ lines (TESTLOG.log) was below 1 (one) second on author’s PC.
With separation of LOG keyword messages into separate file (NOTE_Messages.txt) program / macro gets
enough of flexibility and could be tailored to the need of each user.

EXAMPLE OF REPORT

Report from SASLOG Summarizer for:
C:\SESUG08\TESTLOG.log

Type
Line # in
SAS LOG Original SAS log message

ERROR 17369 File NEW.TEST1.DATA does not exist

17372 No data set open to look up variables

17404 Errors printed on pages 304,305

WARNING 2368 Multiple lengths were specified for the BY variable PR by input data sets.
This may cause unexpected results.

16277 The variable RACE in the DROP, KEEP, or RENAME list has never been
referenced.

16278 The variable SEX in the DROP, KEEP, or RENAME list has never been
referenced.

17374 No data sets qualify for WHERE processing.

5

Type
Line # in
SAS LOG Original SAS log message

Spec. NOTEs 2921 No BY statement for preceding MERGE statement
3789 The data set WORK.TEST2 has 0 observations and 5 variables.

4943 No BY statement for preceding MERGE statement

NOTE 929 Invalid argument to function INPUT at line 3263 column 25.

988 Missing values were generated as a result of performing an operation on
missing values.

991 Mathematical operations could not be performed at the following places.
The results of the operations have been set to

1517 Numeric values have been converted to character values at the places
given by: (Line):(Column).

1519 Character values have been converted to numeric values at the places
given by: (Line):(Column).

4280 No observations in data set WORK.TEST3.

CONCLUSION
With investing of relatively moderate efforts it was possible to get useful reports which directs SAS users to
the most important messages in the SAS LOG and provided an additional tool for QA of SAS programs.
Absolute position of message in SAS LOG gives quick access to the point of possible mistake.

ACKNOWLEDGEMENTS
Author would like to thank James Isaacs and Peter Einaudi from Education Studies Division (RTI) for all their
help, comments, and support in producing this paper.

REFERENCES
1. Mitchell, Rick M., Finding Your Mistakes Before They Find You: A Quality Approach For
 SASProgrammers http://www.nesug.info/Proceedings/nesug06/as/as04.pdf , NESUG 2006

2. Howard Neil, Gayari Michelle, Validation, SAS, and the Systems Development Life Cycle: An
 Oxymoron? http://www.lexjansen.com/pharmasug/2000/dmandvis/dm09.pdf , Pharmasug 2000

3. Truong Sy, Making Code Review Painless,
 http://www.meta-x.com/wuss12_making_code_review_pain.pdf , WUSS 12

4. Smoak Carey G, A Utility Program for Checking SAS Log Files,
 http://www2.sas.com/proceedings/sugi27/p096-27.pdf SUGI 27

5. Gregg Keith M. Gershteyn Yefim, Checking and Tracking SASâ Programs Using SASâ Software,
 http://www.units.muohio.edu/doc/sassystem/sugi25/24/AppDevel/p28-24.pdf SUGI 25

6. Augustine Aaron, Dutta Prasenjit, You’ve Got E-Mail: Automatic Log Checking Via E-mail Notification
 http://www2.sas.com/proceedings/sugi31/128-31.pdf SUGI 31

7. Li Tianshu, A Macro to Report Problematic SAS Log Messages in a Production Environment
 http://www.nesug.org/proceedings/nesug01/cc/cc4008.pdf NESUG 2001

8. Markovitz Heidi, SAS Completion Codes to Make Complex Programs Run Smoothly
 http://analytics.ncsu.edu/sesug/2002/CC07.pdf SESUG 2002

 9. Humphreys Suzanne, %LOGCHECK: a Convenient Tool for Checking Multiple Log Files
 http://www.lexjansen.com/pharmasug/2008/cc/cc02.pdf Pharmasug 2008

6

10. Foley Malachy J., Cutting the SAS® LOG down to size,
 http://analytics.ncsu.edu/sesug/2004/SY05- Foley.pdf SESUG 2004

11. Mason Philip, SASTip77 - Automatic checking of the LOG,
 http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0310d&L=sas-l&P=16971

12. Mark Terjeson,Log file reading program,
 http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0411E&L=sas-l&P=16645

13. Fehd Ronald, Tip: macro LOGSAVE v1,
 http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0110d&L=sas-l&F=&S=&P=8887

14. Sherman Paul, Intelligent SAS Log Manager,
 http://analytics.ncsu.edu/sesug/2007/AD15.pdf SESUG 2007

DISCLAIMER
All opinions and suggestions stated in the paper on how to check and validate SAS LOGs do not necessarily
reflect the opinions and suggestions of RTI International. Use any of commercial products mentioned in
references for checking SAS LOG is the responsibility of the individual user.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Milorad Stojanovic
Education Surveys Division
RTI International
3040 Cornwallis Rd
RTP, NC, 27909
Work Phone : (919) 541-7376
E-mail: milorad@rti.org

TRADEMARK INFORMATION
SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks of
SAS® Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

