
Paper 124-25

Power Indexing: A Guide to Using Indexes Effectively in Nashville Releases
Diane Olson, SAS Institute Inc., Cary, NC

ABSTRACT

In Version 6 of the SAS®System software, there were
performance problems with some index features. This paper
addresses how those problems have been resolved in the
Nashville releases (Version 7 and later releases). It also supplies
guidelines to help you decide when indexes will benefit your
application and increase the performance of your SAS programs.

Questions answered in this paper include:
� What are indexes?
� How do I create an index?
� What are the benefits of an index and when does the SAS

System use indexes to access data?
� What additional resources do indexes use?
� What are the index improvements in Nashville releases?
� Centiles
� More User Control
� APPEND Procedure
� Expanded WHERE Optimization
� MSGLEVEL=I
� When will an index help me the most?
� How can I tune my use of indexes?

INTRODUCTION

Indexes can boost your application's performance time under
certain circumstances. However, inappropriate use of indexes
can actually degrade performance. Armed with the information
below, you can decide if your application can take advantage of
the SAS index facility in Nashville releases. The new features
and performance enhancements of both indexes and the
APPEND procedure, as well as potential pitfalls, are discussed.

WHAT IS AN INDEX?

Much like a book’s index allows you to locate a particular subject
quickly, a data file’s index allows observations with specific
values to be accessed quickly. An index is an inverted tree
structure that stores values of key variables in ascending order.
A key variable is a variable designated when the index is created.
The index includes information as to the location of the key
variable’s values within observations in the data file. So, instead
of reading through a data file to find a particular value of a
variable or variables, an index identifies the exact location of
those observations.

Modifying, deleting, or adding observations to a data file
automatically updates the index or indexes associated with that
data file. An index is a performance-tuning tool, and conserves
some resources at the expense of others.

CREATING AN INDEX

An index can be created on an existing data file or when creating
a data file. Either compressed or uncompressed data files may
be indexed. You can create one index or multiple indexes on a
single data file.

There are several ways to create an index. You can use the
DATA step, the DATASETS, SQL, or IML procedures, the SAS
Explorer, Screen Control Language (SCL), or the
SAS/Warehouse Administrator™ software. Here are three

examples of creating the same index on a data set. The first
example, using the DATA step, creates the index as the data file
is being created:

data frogs (index=(toxicity));
input species $ color $ location $

habitat $ toxicity $ endangered $;
datalines;

bullfrog green East boggy medium yes
river olive South swamps high no
sheep brown Texas pasture none no
…
;

The following DATASETS procedure creates the index on an
existing data file:

proc datasets nolist;
modify frogs;

index create toxicity;
run;

Finally, the following SQL procedure creates the index on an
existing data file:

proc sql;
create index toxicity on frogs(toxicity);

For more information on the DATA step, see the SAS Language
Reference: Dictionary. For more information on PROC
DATASETS and PROC SQL, see the SAS Procedures Guide.

A simple index is defined on one variable’s values. The
examples above create a simple index. You can also create one
index for two or more variables; this is called a composite index.
While the name of the simple index is that of the variable, you
must specify a unique name for the composite index. The name
cannot be the same as any of the data file’s variables or indexes,
and must comply with SAS naming conventions. Here are SAS
code snippets to show how composite indexes may be created:

From the DATA step:

data frogs (index= (lethal_locales=
(toxicity location)));

From PROC DATASETS:

index create lethal_locales = (toxicity
location);

From PROC SQL:

create index lethal_locales on
frogs(toxicity,location);

Note that the SQL procedure requires a comma to separate the
key variables.

BENEFITS FROM INDEXES

Now you know how to create indexes on your data files, but how
can the SAS System use them to benefit you? The SAS System
may use an index when processing the following:

Data Warehousing

� WHERE expression
� KEY= in the SET and MODIFY DATA step statements
� SCL table lookup
� SQL join queries
� BY processing

Those applications that use any of these statements to process
small subsets of data from large data files may reduce the subset
extraction time using indexes. While the BY statement does not
subset data, BY statement processing can use indexes for its
sorted order.

THE WHERE EXPRESSION

A WHERE expression restricts processing on a data file to a
subset of the observations. Using an index and a WHERE
expression together is called “optimizing the WHERE
expression”. See the conditions below for WHERE conditions
that can be optimized:

Table 1.1 WHERE Conditions That Can Be Optimized

Condition Examples
comparison operators, which
include the EQ operator;
directional comparisons like
less than or greater than; and
the IN operator

where empnum eq 3374;

where empnum < 2000;

where state in ('NC','TX')';

comparison operators with
NOT

where empnum ^= 3374;

where x not in (5, 10);
comparison operators with the
colon modifier

where lastname gt: 'Sm';

CONTAINS operator where lastname contains 'Sm';

fully-bounded range conditions
specifying both an upper and
loser limit, which includes the
BETWEEN-AND operator

where 1<x<10;

where empnum between 500
and 1000;

pattern-matching operators
LIKE and NOT LIKE

where firstname like
'%Rob_%';

IS NULL or IS MISSING
operator

Where name is null;

where idnum is missing;
TRIM function where trim(state) = 'Texas';

WHERE SUBSTR(variable,
position, length)='string';
when the following conditions
are met:
position is equal to 1, length is
less than or equal to the length
of variable, and length is equal
to the length of string

where substr(name,1,3)='Mac'
and (city='Charleston' or
city='Atlanta');

When processing the WHERE expression, the SAS System
decides whether to use the index or to read the data file
sequentially. First, the SAS System identifies the available
indexes for use with the WHERE expression, if that expression
can be optimized. A composite index may be used for WHERE
expression optimization only when the first key variable is a
variable in the WHERE expression.

For example, with the following WHERE expression, the simple
index LOCATION could be used for optimization:

where= (location in (‘Antarctica’, ‘Alaska’,
'Siberia’))

However, the composite index of variables TOXICITY and
LOCATION could not be used because LOCATION is not the first
key variable in the composite index.
After the available indexes are identified, the SAS System
estimates the number of observations qualified by each of those
indexes. The index that selects the smallest subset of
observations is chosen, and resources required to use the index
are compared against the resources required to process the data
file sequentially. Factors in computing whether to use the index
include:

� size of the subset of observations identified by the index
relative to the data file size

� data file value order (that is, sorted in ascending index value
order or not)

� data file page size
� number of allocated buffers
� cost of uncompressing data file for a sequential read

Continuing to use the FROGS data file with the simple indexes
LOCATION and TOXICITY and the composite index
LETHAL_LOCALES with the WHERE expression

where=(toxicity= ‘high’ and
location=’South’)

both TOXICITY and LETHAL_LOCALES qualify for use with the
WHERE expression. LETHAL_LOCALES is chosen for resource
usage comparison with sequential access, as it identifies a
smaller subset of observations that can optimize the WHERE
expression.

As a general rule, the SAS System uses an index if it estimates
the WHERE expression will select one-third or fewer of the data
file’s observations. However, if the number of qualified
observations is less than 3% of the data file’s observations, the
index is automatically used; no resource usage comparison is
done.

Compound optimization of the WHERE expression is achieved by
taking advantage of all the variables in the index by carefully
constructing your WHERE expression. Often only the first
variable of a composite index is used to optimize a WHERE
expression. Even if the composite index is defined with more key
variables than are used in the WHERE expression, the composite
index can still be used for optimization as long as the first key
variable of the composite index is in the WHERE expression. In
our example, if we have a composite index using TOXICITY and
SPECIES, the index would still qualify for use in optimizing our
WHERE expression even though the variable LOCATION is not a
key variable in that index.

THE KEY= INDEX OPTION

The MODIFY and SET statements provide the KEY=index option,
which allows you to specify an index to access particular
observations based on the indexed values.

For the MODIFY statement, you use the KEY=option to name an
index defined on the data set that is being modified. You can
then specify a lookup value from a secondary data source. That
data source (typically a SAS data set named in a SET statement
or an external file read by an INPUT statement) provides a like-
named variable, which is then used as a key to search the master
data file to locate the observation. Once the observation is
located, you can modify it as needed.

For example, if you had an additional data file, ENDANGERED,
which contained the variables SPECIES and

Data Warehousing

NEW_ENDANGERED, we would index the FROGS data file by
the variable SPECIES. To update the FROGS variable
ENDANGERED, we could simply use the following code:

data frogs;
set endangered;
modify frogs key=species;
if _iorc_=0 then do;

endangered = new_endangered;
replace;

end;
else _error_=0;

run;

The SPECIES index is used to locate an observation in the
FROGS data file having the same value as an observation read
from the ENDANGERED data file. When the same SPECIES
value is found, the value of ENDANGERED is replaced with the
value of NEW_ENDANGERED. The automatic variable _IORC_
contains the return code for each I/O operation that the MODIFY
statement attempts to perform.

With the SET statement, the KEY= option also provides non-
sequential access to the data file's observations based on the key
variable(s). This access supports the concept of table lookup
from an additional data source.

For example, if we want to produce a data file containing our
FROGS information along with POPULATION from a different
data file:

data book_of_frogs;
set frogs;
set pop_frogs key=species;

run;

The DATA step reads the primary data file, FROGS, and a lookup
data file, POP_FROGS. It uses the index SPECIES to read
POP_FROGS non-sequentially, by looking for a match between
the SPECIES value in each data file. The result is to create
BOOK_OF_FROGS with the variables from FROGS, plus the
variable POPULATION when the values of SPECIES for the two
data files are equal.

For more information, see the SET and MERGE statements in
SAS Language Reference: Dictionary.

SETKEY IN SCL

SETKEY in SAS Component Language (SCL) defines an index
key for retrieving rows from a SAS data file. It establishes a set
of criteria for reading observations by comparing the value of the
columns from the SDV (SCL Data Vector) to the key value in the
rows.

For more information, see SETKEY in SAS Component
Language: Reference.

OTHER USES OF INDEXES

If a data file is indexed, BY processing of the key variable(s) is
allowed without having to sort the data. When you specify the BY
statement, if the file is not sorted on that variable, the SAS
System automatically looks for an index to use. If it exists, the
observations are retrieved using the index. However, using the
index instead of sorting the data file may not be more efficient. In
general, the use of an index for BY processing is for convenience
and not performance.

Indexes may also be used for some internal SQL optimization,
but you cannot directly request it. SQL will automatically use the
index in cases where it will speed performance.

LAW OF CONSERVATION

The Law of Conservation of Energy states that energy is neither
lost nor gained, but simply changes from one form to another.
The same is true with indexes; some resources are consumed at
the expense of others. The use of indexes is a balancing act -
deciding what additional resources you can give up in order to get
the performance benefits. CPU usage, I/O, memory and disk
space are all affected when using indexes.

Consider how sequential access and index (direct) access work
to find an observation. With sequential access, the SAS System
reads a page from disk into memory. All of the observations on
that page are processed. This reading and processing continues
until the end of the file. With an index, the SAS System
determines the location of the next observation using the index,
reads a new page if necessary finds the observation on the page
and uses it. This continues for each value of the index that
satisfies the subset criteria (a WHERE expression, for example).

With the index, the SAS System reads only the observations that
match the subset criteria. The cost for an individual observation
read for an index is higher, because the sequential access reads
the page only once and then processes each observation.
However, with the index, the SAS System does not read the
observations that do not meet the subset criteria. If the index
selects a large portion of the observations, the increased cost of
using the index eats away at the savings from the decreased
number of reads.

When describing the index read above, note that the new page is
read only if necessary. If it is already in memory, a new page
read is not done. Therefore, if the data file is sorted in ascending
order by the key variable(s), performance of statements using the
index will be better, as fewer reads will be required.

The creation of an index, as well as maintaining the index when
the data file is modified, require additional CPU usage.

The number of I/O operations required to read a subset of data
may also increase with an index; the more random the data, the
more I/O operations required to read the subset via an index.
Maintaining the ascending value order of key variables will result
in fewer I/O operations. In a worst case scenario, if the
ascending order of the value’s observations were located on
multiple pages on disk, an I/O operation would be necessary for
each observation.

To create and use an index requires more memory and disk
space than sequential access of the observations. The index is
stored on disk, either as a separate file or as a part of the data
file, depending on your operating environment.

INDEX IMPROVEMENTS

There were quite a few changes and enhancements made in the
Nashville releases to improve performance and give you more
control when using indexes.

CENTILES

Version 6 index optimization assumed a uniform distribution of
data between the minimum and maximum key variable values,
causing the subset estimation for WHERE expressions to be
erroneous if your data were distributed differently. For example, if
your data included social security number as a key variable,
estimation would be correct, since the data would be uniformly
distributed. On the other hand, if your key variable was salary
information having a bell-shaped distribution, the subset

Data Warehousing

estimation would overestimate the subset of observations at the
lowest and highest salaries, but underestimate the middle salary
range subset.

In Nashville releases, accuracy of estimating the subset size has
improved significantly with the use of additional data statistics
called cumulative percentiles, or centiles. The information
provided by centiles represents the distribution of values in an
index. Previously, only the maximum and minimum values were
kept in the index. In the Nashville releases, twenty-one centiles
are kept: 0, 5, 10,…, 95, 100 percentiles, where 0 percentile is
the minimum value of the data, 20% of the data is less than the
value held in the 20 percentile, 50 percentile is the median value,
and 100 percentile is the maximum value. By default, centile
information is not updated after every data file change, although
you can specify that the update be done. You can also specify
that the centile data be updated when the file is closed or when a
certain percent of the values for the key variable(s) have been
changed. The default is 5%. You can also specify that the
centile values never be updated. See the INDEX CENTILES
statement and the UPDATECENTILES option in the PROC
DATASETS documentation in the SAS Procedures Guide.

MORE USER CONTROL

In Version 6, indexes were used to optimize a WHERE
expression when the SAS System determined it would be more
efficient than sequential access. In some cases, it was wrong,
but you could not change the behavior. In other cases, perhaps
you would want the SAS System to use the index whether or not
the index was determined to be the most efficient. The
IDXWHERE= and IDXNAME= data set options have been added
in the Nashville releases to allow you control over these
situations.

IDXWHERE=YES tells the SAS System to decide which index is
the best for optimizing a WHERE expression, disregarding the
possibility that a sequential search might be more resource
efficient. IDXWHERE=NO tells the SAS System to ignore all
indexes and satisfy the conditions of a WHERE expression by
sequentially searching the file.

The SAS System automatically chooses which index to use after
determining the size of the data subset of each index. Previously
there was no method to specify which index should be used.
IDXNAME= gives you the option to tell the SAS System which
index to use. This option provides another performance gain in
that you can first allow the SAS System to determine which index
is the most efficient, then specify that index name with
IDXNAME=. From that point on, the SAS System no longer uses
resources to decide whether to use an index. It also no longer
needs to determine which index to use, freeing those resources.
(See MSGLEVEL=I later in this paper for tips on determining
which index the SAS System is using.)

THE APPEND PROCEDURE

In Version 6, the APPEND procedure updated the index of a data
file as new observations were added, creating slow performance,
most especially for large data files. As a stopgap measure,
people resorted to removing the index, appending data, and then
adding the index to the file once again. In Nashville releases,
part of PROC APPEND was rewritten so that the index is not
updated until all the new observations have been added. Then
the key variable(s) are internally sorted, and the data is inserted
into the index in ascending order. The data file itself is not
sorted.

You will see the performance boost with no change to your SAS
application code. The change is transparent, unless there are
errors. The most common error will be violations of the UNIQUE
option. If you are using the UNIQUE option on your index to

assure unique values, and a non-unique value is detected, the
APPEND procedure does not detect this error until after the data
has been appended. In that case, the observation is deleted.
However, you cannot know which of the duplicated value’s
observations will be deleted. If this is a concern, you may use
the APPENDVER=V6 option, which tells the SAS System to use
the Version 6 PROC APPEND method of updating the index; this
also results in Version 6 performance.

Note that sorting your data before appending will reduce the index
update overhead. (See MSGLEVEL=I later in this paper for more
APPEND information.)

EXPANDED WHERE OPTIMIZATION

As noted earlier in Table 1.1, cases where WHERE expressions
can be optimized have expanded in the Nashville releases.
Please see that table for detailed information.

DETERMINING IF INDEXES WILL HELP YOU

There are no hard and fast rules for deciding if indexes will
improve your application’s performance. If you follow these
guidelines, however, you should be able to make an informed
decision:

� If your data file is small, sequential processing is usually just
as fast or faster. If your page count (available from the
CONTENTS procedure) is less than three pages, do not use
an index; it will degrade your performance.

� Consider the cost of the index if the data file is frequently
changed. An index is automatically updated when the data
file is updated, requiring additional resources.

� If the subset of data for the index is not small, it may require
more resources to access the data than sequential access.
Conversely, when you intend to retrieve a small subset of
observations from a large data file, an index will most likely
be more efficient. The smaller the subset, the greater the
performance gains.

� Consider your data access needs. An index must be used
often in order to make up for the resources consumed when
creating and maintaining it.

� Do not use more indexes than you actually need. Find the
most discriminating variables in commonly used queries and
use them as your key variables.

TUNING INDEX USE

Once you have determined that using an index is beneficial to
your application, you can tune your index usage. Be sure to
select key variables according to which variables you use in
queries. Remember that as your subset gets smaller, your index
performance gains get larger.

The following table is to be used as a rule of thumb, and not as
an absolute. Performance gains are very data dependent.

Table 1.2 Estimating Performance from Subset Size

Percentage of
Observations

Performance
Gains

1-10 excellent
11-25 good
26-50 marginal
51-100 poor

When creating an index to process a WHERE expression, do not
create one index to try to satisfy all queries. If there are several

Data Warehousing

variables that appear in the queries, the queries may get better
performance with simple indexes on the most discriminating of
the variables. For better index performance, sort your data file
into ascending order on the key variable before you index the
data file. If appending data to the indexed file, sort the data you
are appending before executing the APPEND procedure. The
more sorted your key variable data is, the better your index
performance. Note that you cannot sort an indexed data file
without losing the index; optimally, you should sort the data
before creating an index.

Consider replacing an IF statement that subsets, but does not
use indexes, with a WHERE expression. Be careful with the
change, as the two statements are processed differently.

Consider using WHERE expressions in the FSEDIT procedure
instead of the SEARCH and FIND expressions, which do not use
indexes.

THE MSGLEVEL=I OPTION

The MSGLEVEL= system option can also help tune your index
use, as well as giving you information about your APPEND
process. Simply set the option value to I, instead of the default
N. If an index is being used, the name of the index will be printed
to the log. If an index is not used, but one exists that could
optimize the WHERE expression, a message will be printed to
the log suggesting what to change in order to use the index. For
example, the log message may suggest that you sort your data or
increase the number of your memory buffers:

INFO: Index TOXICITY not used. Sorting into index order may
help.
INFO: Index LOCATION not used. Increasing bufno to 2 may
help.

MSGLEVEL=I also records information from the APPEND
procedure. If the fast append process is used, you will get a note
to the SAS log stating so. If, however, the SAS System could not
use the fast append code, that fact will be noted in the log, as
well as the reason. Possible reasons include no member-level
locking available, the existence of referential integrity constraints,
the use of Cross Environment Data Access (CEDA), or a
WHERE expression present on the BASE data file.

CONCLUSION

The indexing facility has changed to make it more efficient to use
in the Nashville releases. Performance improvements were also
included in these changes. There are many factors to consider
when determining whether indexes can speed your data access.
If you are querying large data files for small subsets of
observations, indexes will increase your performance. Other
situations require that you weigh the resources used to create
and maintain the index against the increased access time. When
used properly, an index is a performance-tuning tool that helps
you get the best possible performance for your SAS applications.

REFERENCES

SAS Institute Inc. (1999), SAS Language Reference: Concepts,
Cary, NC.

Beatrous, Steve and Armstrong, Karen (1991), "Effective Use of
Indexes in the SAS� System", Proceedings of the Sixteenth
Annual SAS Users Group International Conference, 605-614.

ACKNOWLEDGMENTS

Thanks to very diligent reviewers: Deanna Warner, Jim Craig,
Lisa Brown, Steve Beatrous, James Holman, Jane Stroupe and
Meg Pounds.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Diane Olson
SAS Institute Inc.
SAS Campus Drive
Cary NC 27513
Work Phone: 919-677-8000 press 1-4924
Fax: 919-677-4444
Email: Diane.Olson@sas.com

Data Warehousing

	CD Table of Contents

	124-25: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
	124-25citeb: ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

