
1

Table Lookup in SAS

Weili Yang, Fang Chen, Liping Zhang, Wenyu Hu
Merck Research Labs, Merck & Co., Inc., Upper Gwynedd, PA

ABSTRACT

Table lookup or searching is a common task performed in SAS. Base SAS® Version 8, as well as earlier
versions, offer many lookup methods such as SET with KEY=, arrays, SQL joins, formats, and MERGE with
a BY statement. SAS Version 9 introduced the DATA Step hash object, which provides additional ways to
perform table lookups without the need for sorting or indexing. This paper analyzes the programming details
of the various table lookup methods and compares the advantages and disadvantages of each approach.
The comparisons shown in this paper will aid programmers in selecting the optimal table lookup method to
use, as dictated by their specific situation.

Keywords: Table Lookup, Set with KEY=, Array, Merge, SQL, Hash, Formats

INTRODUCTION

Searching for a value in one dataset when given a value from another dataset is one of the most frequent
data processing operations. This value is often referred to as a "key". For example, given subject
identification, one could retrieve the patient's demographics or other treatment related information from the
dataset.

Examples of commonly used table lookup methods are:

• Join with PROC SQL
• MERGE with BY statement
• SET statement with KEY= option
• Positional Lookup with _Temporary_ Arrays
• Table Lookup using Formats
• Lookup with Hash Object

Some of these techniques use lookup values stored on disk, while others are designed to provide an in-
memory lookup. In order to identify the best lookup mechanism, the programming details of each technique
will be examined.

JOIN WITH PROC SQL

Using SQL, multiple datasets can be joined without having common variables across all datasets. Datasets
do not have to be sorted or indexed.

Suppose a lookup dataset SV contains subject identification (usubjid), visit number (visitnum), visit date
(svstdtc) and planned study day of visit (visitdy). The master dataset QS has subject identification (usubjid),
visit number (visitnum) and the questions the subject answered at each visit. Example 1 demonstrates how
to use SQL to merge svstdtc and visitdy into dataset QS based on usubjid and visitnum.

Example 1:

proc sql;
 create table qs_sql
 as select qs.usubjid, qs.visitnum, sv.svstdtc as qsvisdtc,
 sv.visitdy as qsvisdy, qs.qstestcd, qs.qstest,
 qs.qsorres, qs.qsstresc, qs.qsstresn
 from sdtm.qs qs left join sdtm.sv sv

Coders' CornerNESUG 2010

2

 on qs.usubjid=sv.usubjid and
 qs.visitnum=sv.visitnum
 ;
quit;

In Example 1 above, the SQL code left join allows every record in the QS dataset to be included in the final
dataset even if no matching usubjid and visitnum is found in SV.

MERGE WITH BY STATEMENT

Match-merging is a commonly used technique to combine observations from two or more datasets when the
values of the BY variables are the same and requires the input datasets to be sorted or have an appropriate
index. Example 2 demonstrates how to use this technique to achieve the same results as in Example 1.

Example 2:

proc sort data=sdtm.sv out=sv;
 by usubjid visitnum;
run;

proc sort data=sdtm.qs out=qs;
 by usubjid visitnum;
run;

data qs_merge;
 merge qs(in=a) sv;
 by usubjid visitnum;
 if a;
 qsvisdtc=svstdtc;
 qsvisdy=visitdy;
run;

The IN= dataset option is used here to include all observations from QS dataset.

SET STATEMENT WITH KEY = OPTION

Lookup operations can be performed using the KEY = option with one or more SET statements if the lookup
dataset is indexed by unique key variables. No sorting or indexing is required on the master dataset. The
composite key can include a combination of variables with either numeric or character types and multiple
values can be returned. Example 3 shows another way to achieve the same result as the previous
examples.

Example 3:

proc sql;
 create index patvis
 on sdtm.sv (usubjid, visitnum);
quit;

data qs;
 length qsvisdtc $19;
 set sdtm.qs;

set sdtm.sv(keep=usubjid visitnum svstdtc visitdy)
key=patvis/unique;

 if _iorc_=0 then do;

Coders' CornerNESUG 2010

3

 qsvisdtc=svstdtc;
 qsvisdy=visitdy;
 end;
 else do;
 error=0;
 qsvisdtc='';
 qsvisdy=.;
 end;
run;

First, PROC SQL is used to create index patvis consisting of usubjid and visitnum. Second the index created
is specified in the KEY= option in the SET statement of the lookup dataset. Note that only the lookup dataset
needs to be indexed. Also note that the order of the datasets specified is important. The master dataset
must be specified first, and the lookup dataset specified second. In order to match each of the duplicate
patient visit records on the dataset QS with its corresponding matching record on the SV lookup dataset, the
UNIQUE option must be specified. The UNIQUE option forces SAS to begin at the top of the lookup table
each time it performs a lookup operation. If _IORC_ returns a value of 0, it indicates that SAS found a
matching observation. To prevent a data error from being written to the log in the event that a match is not
found, _error_ is set to 0.

POSITIONAL LOOKUP WITH _TEMPORARY_ ARRAY

Arrays can be used to perform a table lookup when the values to be returned are positionally identified and
the key is a numeric value.

For example, a demography dataset, DEMO (shown in Figure 1), has the following variables: subjid, weight,
height, age and type. Patients are assigned to types 1-4 based on their age and height. The IDEALWGT
dataset (shown in Figure 2) is the lookup table which contains the ideal weight and height for types 1-4. The
heights listed in the IDEALWGT dataset are even numbers only. For patients with an odd-numbered height,
the next highest level of height is used to get the ideal weight.

Figure 1:

Partial DEMO Dataset

OBS SUBJID AGE HEIGHT WEIGHT TYPE

1 000100001 63 163 61.0 4
2 000100002 31 176 67.7 1
3 000100003 51 178 80.0 3
4 000100004 49 165 74.3 3
5 000100005 22 178 80.1 1
6 000100007 40 167 67.0 2
7 000100008 47 172 62.0 3
8 000100009 28 160 72.9 1

Figure 2:

Partial IDEALWGT Dataset

OBS TYPE1 TYPE2 TYPE3 TYPE4 HEIGHT
1 60 62 64 66 160
2 62 64 69 66 162
3 64 66 68 72 164
4 66 68 72 76 166
5 70 71 76 79 168
6 72 73 78 82 170
7 74 75 79 83 172

Coders' CornerNESUG 2010

4

8 74 76 81 84 174

Example 4:

data wgt_array(keep=subjid weight height age sex type wgtdiff);

 array wgt{160:190, 4} _temporary_;
 if _n_=1 then do i=160 to 190 by 2;
 set idealwgt;
 array tmp{4} type1-type4;
 do j=1 to 4;
 wgt{height, j}=tmp(j);
 end;
 end;

 set demo;
 if mod(height, 2) =1 then hgt_typ=height+1;
 else hgt_typ=height;
 if nmiss(wgt{hgt_typ, type}, weight)=0 then
 wgtdiff=wgt{hgt_typ, type}-weight;
run;

In Example 4, a temporary two-dimensional array is created to hold the suggested weight table. _N_=1 is
used such that the array is only loaded the first time through the DATA step. The index variable i is used so
that the SET statement is executed for each observation in the IDEALWGT dataset. The SET statement on
the primary dataset DEMO computes the difference between patients' weight and ideal weight.

TABLE LOOKUP USING FORMATS

The FORMAT procedure can be used to define tables that store coded values and the corresponding
definitions of the codes. These user-defined formats can be referenced when a table lookup operation is
needed. Formats can be created by listing the value pairs or by generating them from an existing dataset.

In the following example, the DM dataset has subject identification (usubjid), age (age), sex (sex), treatment
(trtp) and treatment start date (rfstdtc). It is of interest to get some subject-related information into dataset
QS in order to perform some efficacy analyses.

Example 5:

data subj;
 keep start label fmtname type hlo;
 retain fmtname '$subj' type 'c';
 set sdtm.dm (rename=(usubjid=start)) end=last;
 label=put(sex, $char2.) || put(age, 3.)
 || put(trtp, $char50.) || put(rfstdtc, char19.);
 output;
 if last then do;
 hlo='O';
 label='';
 output;
 end;
run;

proc format cntlin=subj;
run;

Coders' CornerNESUG 2010

5

data qs_format;
 set qs;
 sex=substr(put(usubjid, $subj.),1, 2);
 age=input(substr(put(usubjid, $subj.),3, 3),3.);
 trtp=substr(put(usubjid, $subj.),6, 50);
 rfstdtc=substr(put(usubjid, $subj.), 56, 19);
run;

In Example 5, a format is created using the lookup dataset DM. Note that hlo='O' is used to allow the capture
of all non-matching usubjid's from the QS. The CNTLIN=option is used to read the data and create the
format. With formats, only one variable can be used for table lookup and only one value is returned. Thus,
multiple PUT functions are required to construct the return value, and the value is later parsed to get
subjects' demographic information.

LOOKUP WITH HASH OBJECT

When using DATA step hash object, neither dataset is required to be sorted or indexed. The key may be
composite and may simultaneously consist of both numeric and character values and multiple data items
can be stored per key.

The following example demonstrates the use of a hash object for table lookup using the same SV and QS
datasets in the previous Example 1-3.

Example 6:

data qs_hash;
 length qsvisdtc $19;
 if _n_=1 then do;
 if 0 then

set sdtm.sv(keep=usubjid visitnum svstdtc visitdy);
 declare hash hh(dataset: "sdtm.sv");
 hh.definekey('usubjid', 'visitnum');
 hh.definedata('svstdtc', 'visitdy');
 hh.definedone();
 end;
 do until (eof2);
 set sdtm.qs end=eof2;
 rc=hh.find(key:usubjid, key:visitnum);
 if rc=0 then do;
 qsvisdtc=svstdtc;
 qsvisdy=visitdy;
 end;
 else do;
 qsvisdtc='';
 qsvisdy=.;
 end;
 output;
 end;
 stop;
run;

The above example first initializes the attributes of hash variables originating from an existing dataset by
using a non-executing SET statement. Next, the composite key consisting of usubjid and visitnum is defined
using DEFINEKEY. As a final step, the data elements svstdtc and visitdy are defined using DEFINEDATA.
Multiple variables can be defined to be either character or numeric. The DEFINEDONE method must be
called to complete the initialization of the hash object. The Find method is used to search for the composite

Coders' CornerNESUG 2010

6

key value of usubjid and visitnum in the dataset QS. If the search is successful, the return code rc is set to 0
and multiple numeric and/or character results can be returned.

Comparison of Lookup Methods

The table below summarizes the pros and cons of the various lookup methods discussed above.

Method Pros Cons
PROC SQL Multiple datasets can be joined

without having common variables in
all datasets

Datasets do not have to be indexed
or sorted

Requires more resources than the
DATA step with the MERGE statement
for simple joins.

Complex business logic is harder to
incorporate into the joins

MERGE With BY Multiple values can be returned

Fast, sequential access of input
datasets

No limit to the size of the table, other
than disk space

Datasets must be sorted or indexed
based on the BY variables

Must have exact match on the key
values

Set with KEY= Only records where a match occurs
are read from the look-up file, thus
processing time is reduced

Multiple values can be returned

Composite key could be used to look
up data

An index on the lookup dataset is
required

Creating and maintaining an index
uses resources

TEMPORARY Arrays Use of multiple values to determine
the array element to be returned

Ability to use a non-sorted and non-
indexed base dataset

Fastest lookup method by using the
key to access the data directly

Does not require exact match to
lookup the data

Memory requirements to load the
entire array

Return of only one single value from
the lookup operation

A contiguous chunk of memory is
requested when the array is declared

FORMATS Fast, binary search through lookup
table

Memory requirements to load the
entire format for the binary search

Use of only one variable for the table
lookup and only one value is returned

Requires more memory than a hash
object

Hash Objects No sorting or index is required

Key and data can be composed of
multiple values of both character and
numeric type

Dynamically grow to fit as many
records that fit into memory

Provides in-memory data storage and
retrieval

Use the key for quick data retrieval

Hash object records must fit into
memory

TEMPORARY array lookup faster
than using a hash object

Coders' CornerNESUG 2010

7

SUMMARY

This paper provides a variety of techniques for managing various table lookup problems. While there are
many solutions to one lookup operation, one method may be more efficient than another depending on the
size of the lookup table. Generally the larger the lookup dataset is in relation to the master table, the more
the problem appears to be a match merge. Hash object is best used when the dataset for the hash table is
relatively small when compared to the master dataset and it fits in memory. However, an array will be faster
than a hash object or format if the Cons listed above can be accommodated. Depending on the size of the
lookup table, many different approaches are possible.

REFERENCES

SAS Programming III: Advanced techniques and efficiencies

Jason Secosky, Janice Bloom (2006) Getting Started with the DATA Step Hash Object

Rob Rohrbough (2007) Table Lookups…You Want Performance?

TRADEMARKS

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Weili Yang Fang Chen Liping Zhang Wenyu Hu
UG 1D-88 UG 1D-88 UG 1CD-44 UG 1D-88
Merck Research Lab Merck Research Lab Merck Research Labs Merck Research Labs
Merck Co., & Inc. Merck Co., & Inc. Merck Co., & Inc Merck Co., & Inc
Upper Gwynedd, PA
19454

Upper Gwynedd, PA
19454

Upper Gwynedd, PA
19454

Upper Gwynedd, PA
19454

(267) 305-5383 (267) 305-6812 (267) 305-7980 (267) 305-6847
Weili_yang@merck.com fang_chen1@merck.com liping_zhang@merck.com wenyu_hu@merck.com

Coders' CornerNESUG 2010

