NESUG 2006 Hands-On Workshops

Proc SQL versus The Data Step
JoAnn Matthews, Highmark Blue Shield, Pittsburgh, PA

ABSTRACT

Most data within organizations is stored in relational databases. Structured Query Language (SQL) has evolved
as the standard for accessing, updating, and modifying data stored in relational databases. PROC SQL is a
powerful procedure available in SASg that can minimize keystrokes and maximize CPU resources. PROC SQL
syntax looks very similar to SQL and can be used in place of traditional SAS data steps.

In this Hands—On Workshop, PROC SQL will be compared to the traditional data step. First, PROC SQL will be
compared to a simple data step. SELECT coupled with FROM, WHERE, GROUP BY and ORDER BY
statements will be demonstrated. CASE statements will be compared to IF THEN ELSE logic. Summary
functions using SUM, MIN, AVG, MAX and COUNT will be demonstrated. The true power of PROC SQL will be
demonstrated with UNION ALL, UNION DISTINCT and JOINS. Three types of join will be discussed, EQUIJOINS,
based on one common value, INNER JOINS, that discard all rows from the resultant table not having a
corresponding row in the source table, and OUTER JOINS, joins that exclude unmatched data. This workshop
will also be helpful to those who are new to SAS or Display Manager in Version 9.

INTRODUCTION

Given the complex data that is used by many large corporations, most corporations store their data in relational
data base systems or DMBS, such as Oracle, DB2, Access, Teradata tables, or permanent SASg datasets.
Structured Query Language (SQL) is defined is a standard interactive programming language for getting
information from and updating a database. Many database products support SQL commonly called ‘sequel.” SQL
has evolved as the standard for defining, accessing, updating, manipulating and modifying data stored in
relational databases SQL is carefully controlled and standardized by guidelines set up by the American National
Standards Institute (ANSI).

SQL is one of the most commonly used query languages for relational data base management systems (DBMS).
A data base management system (DBMS) is a set of programs used to define, administer and process data in a
database. DBMS programs run on a multitude of platforms including the mainframe, minicomputers and personal
computers. In many instances DBMS's reside on a several platforms within an organization, and contain all three
classes of machine, mainframe, mini and PC. A DBMS that runs on multiple platforms, large and small, is called
‘scalable’. The flow of information within the DBMS is from the user at the keyboard, to the interface, to the
program, through the DBMS, and finally to the database. SQL is a set of user friendly commands that are flexible
and easy to understand. The query is written in syntax that is like English, making it easy to interpret. A query is
a question to the database. The beauty of SQL is that when the data in the database satisfies your query, SQL
retrieves the data in the most efficient way possible. SQL is “nonprocedural’” meaning that you state what you
want, and the DBMS decides how best to retrieve the answer. In contrast, a procedural language, such as
FORTRAN, BASIC, C, or Java, requires that you to write a “procedure” to program what you want and need.

PROC SQL and SAS

SQL married SAS sometime after Version 5. PROC SQL was developed by SAS to make use of some of the
powerful components of SQL. PROC SQL is so similar to SQL that anyone who has programmed using standard
query language will quickly understand the basics. The PROC SQL procedure available in SAS can minimize
keystrokes and maximize CPU resources, particularly when working with very large databases. There are some
subtle differences with naming and security conventions between ANSI SQL statements and the SAS SQL
procedure but these differences are so subtle that the average SAS user need not be concerned about them. For
anyone who has ever used SQL, the syntax of the PROC SQL statement looks similar to standard SQL and can
be used in place of the traditional SAS data step.

When we compare the SQL procedure to the data step, there are some differences that should be taken into
consideration. One big difference is that you do not need to use the run after the procedure. PROC SQL will run
without the run statement. If you include the RUN statement in the PROC SQL, SAS ignores the RUN and will
give you a warning statement.

NESUG 2006

e You do need a QUIT statement at the end of the PROC SQL procedure.

e You can execute a number of SQL steps within the procedure without having to repeat the PROC
SQL statement. This is an advantage when manipulating data. In traditional data step processing,
each step must begin with a procedure.

e In PROC SQL, variables (columns) are separated with commas, not blanks as in a data step.

e The Select statement in PROC SQL outputs the data automatically, so that you do not have to
execute a PROC PRINT statement to see your output.

e One of the most significant differences in the two methods is that when using PROC SQL, the table
does not have to be sorted. When using traditional data step processing, each table must be sorted
before merging. This may not be a major issue when using small datasets, but when using millions of
observations, presorting a dataset can be a major space issue. Using PROC SQL can be a major
advantage when working with large volumes of data.

BASIC SQL SYNTAX

The most common components used in the SQL procedure are: SELECT, UPDATE, DELETE, CREATE, DROP,
INSERT, RESET, VALIDATE, ALTER and DESCRIBE. In alphabetical order, these SQL statements are
described:

ALTER <is used to add, delete or alter columns in a table>
CREATE <is used to create a view or table>

DELETE <is used to delete rows from a table>

DESCRIBE <is used to explain how a view has been defined>
DROP <is used to delete a table or view>

INSERT <is used to add rows to a table>

UPDATE <is used to update a table>

VALIDATE <is used to validate SQL syntax>

DESCRIBE <is used to describe the table>

RESET. <is used to add, change or alter options on the PROC SQL line>

SELECT <is used to generate a report and is the most important statement as it
evaluates the query, formats rows and sends the output to the output window>

Within the SELECT statement there are subcomponents:

SELECT <FIRST AND MOST IMPORTANT COMPONENT - identifies what your query will
contain>

FROM <is used to identify the source table for the query>

WHERE <is used to select specific rows or subset the query>

ORDER BY <is used to define the order of the data>

GROUP BY <is used to group the data>

Let's begin with a table of sleep participants’ demographic information. The name of this table is
mine.demographic and it resides on the c:drive. This table contains 20 observations (rows) and 7 variables
(columns). In order to confirm this data, let's do a PROC CONTENTS in a traditional data step. Go to the program
editor and type the following code, then highlight the code, put your cursor over the run icon, and execute the
code.

Hands-On Workshops

NESUG 2006 Hands-On Workshops

libname mine 'c:\deleteme\how';
proc contents data=mine.demographic;

run;

e
[Fie et view Took Run Schis Weiw e =l8] x|
1~ D (&0 L hme (B XS

E libname mine ‘othceletemsthow = |

“crinniz of Mine

siproc contents daca = mine.demographic:
d ' run;

Demographic Rem_sienp

£l
[cotpust - (Lo | [E] Log - qunttind | [#] sq_sassas =] [#] Editor - Untitiedz * [

Auknsavr complete IS Program Fles|SAS Trtbute|SASIVA Ln 9, Col | &

Marart| |) & &0 D) B @ || Hpee |[Grsas - Hassy | Gycide.. | isis -] [, | RE@® EOOUIRE F ssm

The PROC CONTENTS tells you everything you need to know about your data including the number of
observations, the number of variables, the nhames and characteristics of the variables. PROC CONTENTS is a
robust method to learn characteristics of the dataset. If the data is stored in a permanent dataset, running a
PROC CONTENTS allows the programmer to become familiar with a dataset. And a word of caution, get in the
habit of checking your log every single time you run a bit of code. Checking for errors and warnings is critical.

Now check the log. The LOG window contains valuable information about your session, as well as notes about
the code that you submitted. When doing a PROC CONTENTS, the log only tells you that the procedure ran. The
output has all the stats about the dataset.

T 545 - [Lag - (Untitied) | =lol x|
Dmmmrmm;mmw =l81x|
v Jo=R&8k ' en: OB :0&
B libname mine 'C:de lelesehow ' ; -
ET 0TE : leref HINE was succesxful'lv assigned as follows: J
B eesds
¥ () Cortents: The SA5 System r‘hv; n:u'l Hane I: ‘deleteme how
?‘;l‘) Druc contents datasmine.denographic:
HOTE: PADCEDIRE CONTENTS used:
roal Line 0.10 seconds
cpu tine 9.01 seconds
Ly J_I
Biins: [Eicaoe] | Doss wwm|[Dlios wmren | By i

=3 CrProgram Fles) SAS Inshhuee{SASINE
Wuon| |2 & 40 L) B O || @] Gy [[Fs.. 5| @5 | s | Qe E) | B | S| E| (B @, @QBEIORMPERL

3

B

Now go to the output window. Your output from the PROC CONTENTS should look like this:

NESUG 2006 Hands-On Workshops

=10|x]
Fle Edt Vew Took Schiions Window Hel
| T DR @R ans DB £ 0@
(=TT I s votput - quntitiedy o=l
Reads The 505 Systen 13:07 Mednesday, June 21, 2006 1 af
() Conkerts: The SAS System The COMTENTE Procedure
Nata Seb Mase: NINE DEROGRAPH 1T Demr vt i 70
Henber Typa: DATA Var iablas: 7
Engine: va Ideses : 0
Created: 20:40 Baturday, June 3, 2005 Observation Length: 4B
Last Modified: 20:54 HBaturday, June 3, 2006 Deleted (heervabions: %
Protection: Conpr essed : W
Data Sat Typae: Sorted: L
Label:
aine/Host Infornat
Data Set Poge Size: 4695
Number of Data Bet Pages: |
First Dala Page: 1
Hax Obs per Page: B4
Obs in First Data Page: 25
Humber of Dato Set Repairs: 0
File Mane: e: e
e lovicens Crman boned = H.0F0FMO
Host Created: HIN_FRO
====-filphahetic List of Variables and ALLF ibutes=-===
* Varisble Twpe Len Pos Format Informat Labal
£ AGE Hun 8 34 AGE
? F_MNAME Char T az 7. 7. F_NARME
[Hun B] 10_HO
a4 L_FRE Char H 29 SE. 6. L_HAHE
7 I1ZI0 Char 1 PE T 51! TANDON | ZED
i REL Hun B [REL
s HEX Hum " 16 HEX
4 g
| S
(55 Rlasus o] | [0 Output - (Untitled) [7] Log - (ke | & o - ot * | I
Kpen the Explorer, |3 CoiProgram Pies 545 InsthutelSASVE 3
oo |70 8 &4 D @ || A | B @] W] s |] o] B Gses [eBESSGEIOMUE B om

Notice the top right portion of the output. Observations and Variables are described. In this dataset we have 20
observations (rows) and 7 variables (columns). Observe the bottom of the output where attributes of the variables
are described. Let’s print all the variables using a traditional data step. Go into the program editor, clear the log
and output window, and type the following code, then execute the code by using the submit icon on your toolbar.

libname mine "c:\deleteme\how";
data a;

set mine.demographic;

run;
proc
run;

print data=mine.demographic;

Notice that to see the data, you must run a second procedure, a PROC PRINT.

=lalx
[Fie Edt View Took Sckirs Window Help =18] %]
- EN=NEE B s 80N T
[oplorer 5 Libname ming ‘cildeletemslhou' s |
Conterts of Mine'
“data a:
o o sat mine.demographic:
[Demogreche. Ram_sesp ran:
“iprec print dace*mine.demographic;
run;
- |
|
[Outgat - (urckied) |) g - uremseay | 5 sa_sasesa | 6 e - et = |
Ribwary bas 2 mambar(s). | CilProgram Fles|5As nettutelasive |

stant| |4 @ a4 @ @ || Bpesve. |[assas - Feassy. | Eeisse.. | psas-] @meos.| oSG SBGO DM P ssm

4

NESUG 2006 Hands-On Workshops

You should see the following output.

W S5 - [Output - {Untitled) 1 =10] x|
[Fle Ede Wew Tooks Solions Windww Melp =% x|
- FA0sE @& | DB £ 0@
[Frpleree i | The BAS Byaten 17:45 Fridoy, June 16, 2006 55 =
T Dos ID_ND F_HAME L_NAME REL SEX AGE RANDOMIZED
1 1 Daffy Duck 1 1 56 "
2 2 Daisy Duck H 2 2] H
Dwempaghic Rem_slesps a ES _— Duck £ 2 az H
4 4 Dar la Duck 4] a0 H
5 5 Hickey Fouse 1 i 57 D
[[Hinnie House 2 2 54 [
r ¥ Rary Touse a H an "
B] Mar I Poimn 4 7 L N
] 4 Hannie House 3] 24 H
1 10 Harvin House 3] 22 D
1 11 Mike House 3] 20 [
"’ Lkd Hugys Bunny 1 1 a4 L]
[E] [E [Hunn # F ar H
4 14 Gary Guat 1 1 1 H
I5 15 Josanie Goat 2 2 54 D
1E 16 Jerry Goat 3] 23 [
i 1 o Iy Goat a 1 1 o
" m Hill Hrau 1 1 ar N
19 19 Dorbiora Deav 2 2 45 H
20 20 Terry Deave: 3] 22 [
L] -
& Ronds [|02 utput - uetitied) 5] L - ittt | B s o= | G dtor - iz * | |

I C:WProgram Ples\5A5 Instint el SASS i
Bon] |1 @ w2 9 @ || Eiesvs. [0 -1 | [F5r05r0| Bcise..| cses-b.] [Fevo.| [oBEH/EGOUIMm: S sum

To accomplish the same thing with PROC SQL, we would use the following code with an asterisk in the SELECT
statement to bring in all the rows and columns. Think of the asterisk as a wild card that says “Give me
everything.” Go into the program editor, clear the log and output window, and type the following code, then
execute the code by using the submit icon on your toolbar.

PROC SQL;
Select *
From mine.demographic;
run;
quit;

Notice that if this PROC SQL statement is correct, the output appears automatically in the output window without
having to type proc print. This is one of the differences cited in the section describing differences between PROC

SQL and the data step.

NESUG 2006 Hands-On Workshops

W SAS - [Output - (Untithed)] o) x|
[Fle Edt Vew Tooks Scutons Window el =18 x|
« Hos@aR i en DB s08

(nesults X The SV icrm] 1745 Friday, June 16, 2006 56]
Eu_\ms 10_NO F_NARE L_NANE HEL HEX AGE HANDOM | ZED
= Sk The SAS Srste

i Daffy Duck

Daisy Duck
Donnie Duck

=

?

5
1 3 0 P 3 B B B P
OZZCOODUZZZCOZTZCOZZZE

L 2T
= T P [outpat - quntied) [] Log - (urersed) | G s s ne * | 28 e - ez + | I
[open the Exploer, 2 Ciprogram FllSaS InanasiSase 7

a1 @ w14 B O || Zives|[FEsas [[Fany.| A, | s L] @Dee. | [LEESFEGOURTRS FB cam

Always check the log. Notice that the run statement produced a warning that it had no effect. You do not need a
run statement when using PROC SQL. You do however need a quit; statement. This is another example of two of
the differences cited in the section on differences between PROC SQL and the data step.

W SAS - [Log - (Untitled]) 1 X
ClFe Ed view Toos Sohtiors Window Heb =18]x|
| T DR @R L n DHBU £ 0@
n | E81 1ibnome mi 'Cide Lhow =
m: 4 ITE: Librel :I: - ::ul Iy assigned as Fol lows: J
Eufﬂs Eng ine:
() 50L: The 545 System - Physical Hane: Cildeletens'how
83 PROC SO0
24 Helect ¥
85 From mine.denographic;
06 run
ITE: PAOC SOL stotements are executed immediately; The MM statement has no effect.
L o
NOTE @ Pﬂ(l‘Z‘FIIIII- B aamed :
real time 0.01 secomds
cpu b 0.01 seconds
L _lJ
i Reauds Esplurs Y utpu - (Uinkitied) | [T v - cvtttety 3 sy s+ | |
S Ci\Program Fles|S45 brathute|SAS1H0 4

Fsnt| |0 8 w14 O @ || @] e |[Bs- o] s ps.| @ro Fn S| S)] B [LEGFPTEICHURS s

SUBSETTING THE DATA
Now let's subset the data by defining just those columns that we want using a subsetting WHERE clause. In this
instance, let's extract the sleep participants “WHERE age > 50”.

Using a data step, we would set the table and then do a proc print naming just those variables that we wanted to
see printed. Go into the program editor, clear the log and output window, and type the following code, then
execute the code by using the submit icon on your toolbar.

NESUG 2006 Hands-On Workshops

Data a (keep =1_name sex age) ;
Set mine.demographic;

If age > 50;

Run;

Proc print data=a;

Run;
i
[4] Fie ER Vew Took Run Sokdiem Wik Hely =18] %]
- H0Ed &R sl I X
[omits £ Libname ming ‘cildeletemslhou' s = |
Foesdks
Sdata & (keep = | name sex age):
set mine.demographic:
it age » 502
run:
Siproc print data = a;
run;
|
‘ 2
[catpust - furarisd) |) g - uremseay | 5 sq_sasesa 189 cator - unsitteaz + I
MO 2unes Submitted,) CilProgrm Fles{SAS Mattute|SASI L 14, Col

stant| |4 @ a4 @ @ || Bpesve |[asas- - ey djcidse..| giss .| @ | [SEGR CBGODIM IB smm

You should see the following output.

o
[Fle £t wview Took Scheions window el =18 x
v dp=R8dl:inn- HBuli0e
Results S| The ST System 17:25 Monday. June 19, 2006 2 a|
= Reads Obs L_MAMEC SEX AGE
(5 Print: The SAS System
i Duck 1 56
? Duck 2 =
3 House 1 57
4 House 2 54
5 Guat 1 60
E Goat 2 54
(K1} =
I Resds 2| Cinphover | [output - funtstied) [5] Lo - fuintitiet) | [sa_sws.zs | [&4 et 5+ | S viEwTase: see cema.. | |
=3 CeIProgram Fins|SA5 Iratuts | SASIVA &
Htart| |) @ &0 B B @ || @] Siromno. | Guipon. | Seoea | Spesie,|[Beas - LB S RGEIOBO RS sum

Now let's subset this data using PROC SQL. Go to the Program Editor window, clear the log and type the
following code, then execute the code by using the submit icon on your toolbar.

NESUG 2006 Hands-On Workshops

PROC SQL;
SELECT 1 _name, sex, age
From mine.demographic
Where age > 50;

quit;

=10
@ A Ed Wew Took Pun Sokwkns Window Hel =l®x|

4 CH0EE &0 @y | Dals X0
nevulls i | libname mine 'c:ideleteme)how’ ; =l

Reads
() 501 The 545 Srstem
e

| Ll_l
hess [Gibone]| Dospe-wited | Clion-uotrind | @ 5052 | [iortsas = R VIEWTARE: i Do |
ROTE: 5Lines Submitted. = C:\Program Fles|5A5 InstbutelSASWE Ln10, Col | "

Bsant| |1 8 &) &) B @ || @rwenrn] Diprombo..| Gnipvm...| Dproes... | Besvs. [[Feas- 1= [5G /IGEITHYERS swm

Notice that variables in the SELECT statement in PROC SQL require a comma between them but not at the end
of the select statement. This is another difference between PROC SQL and the data step. Again, unlike the data
step, the PROC SQL statement does not require a run statement. It will produce a message into the log that says
the run statement has no effect if you do include it.

You should see the following output.

W A5 - [Outpet - (Untitled) | N =
(D) Fie | Edt Wew Took Sokthes Window Mo =l®x|
4 DR @R ans DBU £ 0@
nevulls i | The BAS Byaten 17:25 Mondoy, June 19, 2006 3 2|
i ks L_HAME SEX M
= g 5 The 545 Srstem Duck f 56
Duck 2 &4
Monasmr 1 &7
s 2 54
Goat 1 &0
Goat. 2
K|
6 Flasus Evplours |00 Dutput - uetithed) (7] Log - (ki) | 8 solsas.m | 0 irpont s+ |:ﬂvwrm;mm..||
I C:\Program Ples|5A5 Instiute| SASIVE "

Bsan| |1 8 &) &) B @ || Brwenr.] Diprombo..| Gvipum...| Do, | Desvs. [[Foas- - [2E@/BGEITHYERS swm

So far, you will notice that the PROC SQL code does use a few less keystrokes, but the output is similar to the
data step.

8

NESUG 2006 Hands-On Workshops

ORDER BY AND GROUP BY

Let's take the WHERE clause and build upon it. Using the same logic as above, let’'s put some order to our data.
ORDER BY returns rows in ascending order unless you specify DESC, for descending. Let's order persons over
50 in descending order. Notice that instead of using the actual variable name, we can use an alias. The number 1
says give me the variable that is in position 1 on the SELECT statement. This is an example of a relative column
number that is used in substitute for a variable name. A relative column number can be used in the ORDER BY
and GROUP BY statements. Go to the program editor, clear the log and output window, and type the following
code, then execute the code by using the submit icon on your toolbar.

PROC SQL;
SELECT 1_name, sex, age
From mine.demographic
Where age > 50
Order by 1 DESC;
quit;

Your output should look like this.

W 545 - [Dubpust - (Untitied) | =lol x|
[Fie Bt wew Took Sohtins Wi Help =l81x|
o AlDsHE SR L RE e (DR e

|l The A5 Systes 17239 Tuesday, Juw 20, 2006 47 j

Readts
T () S0t The 545 System
% 5 500 The SAS System

NAME HEX ALE

il
LR

1] g
FEemad
[-

lay o

[P Rewds Exghoets ||_"] Oustpust - (Unkitied) [E] g - qunitind) | [#] ey 5= | |
3 C:\Program Fles|SAS Inshhute{SASIVE .
Wutont ||| 2 & 40 L) B O || @] Gye [[ops. @85 | s | BB | Qe | S|)|) B R B@ASOBIOWMYER S 127

You can group the data by the same variable with the GROUP BY statement. The syntax for this would look thus:

PROC SQL;
SELECT 1 _name, sex, age
From mine.demographic
Where age > 50
Order by 1;
Group by 1;
quit;

One word of caution: Do not try to GROUP BY using summarized values. An error message pertaining to non-
aggregate values on the GROUP BY statement can be confusing but says that you have tried to do a group by
with summarized values. This is a common error when first using the GROUP BY.

DISTINCT FUNCTION

The DISTINCT function in the SELECT statement is very powerful. If you have more than one row for a value and
you only want one value returned from your query, use DISTINCT. Let's bring in all the variables in our table to
see how many distinct last names there are in this dataset. In a traditional data step we would have to set the

9

NESUG 2006 Hands-On Workshops

data, sort the data, then subset the data by the sort field, using an IF FIRST. statement, and finally print the data.
Go into the program editor, clear the log and output window, and type the following code, then execute the code
by using the submit icon on your toolbar.

DATA a;
SET MINE.demographic;

PROC SORT;
BY 1_name;

DATA HOWMANY ;
SET a;

BY 1 _name;

IF FIRST.1 name;
RUN;

PROC PRINT DATA=HOWMANY ;
VAR 1 _name;
RUN;

¥ sas - [Editor - Untitledz *] ~=lolx|
[# File Edit View Took Run Solutions ‘Window Help =13 x|
[w1 dpzalan|szaobalzsx0e

[libname mine 'c:ijdelecemelhow! ; =
5 Resuks

-5 Print: The 58S System EIDATA a;

QL: The 5A3 System SET MIME.dewographic:
&) Print: The SAS System EIPROC SORT:

EY 1 name;

EIDATA HOVEANY;
SET a;
EY 1_name:
IF FIRST.1_name;
RUH;

EIPROC PRINT DATA=HOUMANY:
VAR 1_name;
RUN:

g o
& Results Cutput - (Unfitied) | E1tog- wntited) | BB sol_sas.sas* J [# Editor - Untitledz * |

[MOTE: 16 Lines submitted. | S criprogram Files|sas Instituteisasiys |Ln 20, Cal L y

i#listart H e w8 o H HhEsUs... |[EFsAs - [(B85 5y...| B)ciidele..| &8ss .| [@mcros... | [\ 2B WD S8 ewsem

Your output should look like this:

10

NESUG 2006 Hands-On Workshops

W 545 - [Dutput - (Untitled)] o =]
Fie Edt View Tools Solutions ‘Window Help == x|
[T 0= SR e HEw 08
[Results El The SA8 Systenm 17:45 Friday, June 16, 2006 53
& results Obs L_NAME
Print: The SAS System
S0L: The SAS System ! Beaver
2 Bunny
PriNt: The SAS System H Duck
4 Goat
5 Mouse
4 ,
& Results Q] Explorer Output - (Untitled) [E] Log - (Untitled) | [sql_sas.sas* J [Editor - Untitledz * |
[| S citProgram Flleslsas Institctelsasivs | V

i#listart “ e w8 @ H HnEsUs... |[GBSAS - [(5ASSy...| By Ciidele...| Esas -L...| []mcros...

EXACT PR -1 S-SR

With PROC SQL the distinct operator passes the statement directly to the DBMS, not through SAS, so that the
operator checks for duplicate rows. Distinct is a very powerful operator in the PROC SQL statement. Go into the
program editor, clear the log and output window, and type the following code, then execute the code by using the
submit icon on your toolbar.

PROC SQL;
select distinct I _name
from mine.demographic

quit;
SE
[Pl £dt wview Took Run Schkicns Window el =18 x
|+ HbER SR TR B sX0&
| ™ oname mine ciidelerens) bow ; -
= Reads
% (5 504 The SAS Systen PROC SOL:
aclrer distiner |_name
from mine.demographic
quit:
. '
[cntpus - (Ui |) tog - tuntited) | 1 50 sas 505 /& editor - untitied2 + |
INGTE: 4 Lines Submited. IS C:Program Fles|SAS TratkuteSASIE Ln L1, Col | v

Mstoct| |) @ o) Gy B @ || Epesi |[Bsns -1 [5as5r | Gyciven. | dsas 1. | oo, | (LS @R BHOUIMRS S0 sxm

11

NESUG 2006 Hands-On Workshops

Notice that the output appears immediately. Notice also how much less code this query required as compared to
a traditional data step. The beauty of SQL is impressive when the table contains millions of observations, and lots
of distinct values.

=l
[Pl Bt view Touk Schatins wikew Hel =18] x|
| dioesd &0 wm e GBW 208

[esults || The A Systen 17:45 Friday, Jum 16, 2006 60 &
[resdes L _NAME

¥ () SO0t The SAS System

o

| (]
[P Rewds I%! Exghoets I ||_"]n|m|r (Unkitied) [E] g - qunitind) | [£] s _sass5] [#] st - etz + mn...l [

=3 Progeam Flns| 545 Iratkute|SASIVA &

Marart| |) & &0 D) B @ || Hpee |[Gsas 1 assy | Gyciee. | dss-(] oo | LB ES BGOSR SB axnm

PROQ SQL using the SELECT DISTINCT can be used for one or more variables at the same time, and the table
does not have to be presorted. This truly is a powerful difference between traditional data steps and PROC SQL.
In addition, you can use DISTINCT with COUNT to nest the query and count the number of DISTINCT values. Go
into the program editor, clear the log and output window, and type the following code, then execute the code by
using the submit icon on your toolbar.

PROC SQL;
select count (distinct 1 _name)
from mine.demographic

quit;
=10ix
] Fie Bt View Took Run Sohdien Window el TR
v J0sd &R @ DX OS
£ libname mine 'Ci)deleteme)hav' s =
Fendks
- SO The SAS System SFROC SOL:
#1 : The 3A3 System select count [distinct 1 name) a8 unique ids
fro ine.demographic:
qu:

[s - (unittisd) | 5 tog - urarieay || dmey.sns = |

=t Ci|Program Pl SAS Instbute| SAST n i, Cal 1
Wstat| |74 @) 4 B @ || @] Gy [oas aps| aps.| s Qe B B B B oSG SRGEITEBR S am

12

NESUG 2006 Hands-On Workshops

The count function counted the number of distinct last names in the data. Your output should look like this:

=10ix|
[} Fle Edt view Took Sohiwen Windkes Hely mrTE
v J0=@d S0 Bt DB+ O&
[resus AW The SAS Systen 17:39 Tuesday, June 20, 2006 45 =]
EF"‘"\ wnique_ids
E SQL! The SAS System
% ﬂsx The 545 System 5
L 2
o Fiasults Evplorer [2 tutpst - grrcaisienty [g - vty | B ey + | |

=) i |Program Files | 945 Imtiue| SASTVE

e 8 &1L Q@ | @] W fos aps| aps| ws | @r B B B B [E@ARGEICMBR S 2am

CASE STATEMENT
The CASE statement allows you to give meaningful names to variables or created fields in your program. This

would compare to a data step using if then else logic. Note that the value ‘missing’ will be truncated (cut off in
this example) unless you leave spaces for six characters. Let's create meaningful values for the sex variable
using traditional data steps. Go into the program editor, clear the log and output window, and type the following
code, then execute the code by using the submit icon on your toolbar.

Data a;
Set mine.demographic;

If sex = 1 then sex_desc = “Male ’; /* leave two spaces™*/
Else if sex=2 then sex_desc = ‘Female’;
Else sex_desc = ‘missing’;

Proc print data = a;
Var sex sex_desc;

Run;

13

NESUG 2006 Hands-On Workshops

JST=TET|
wmwmvﬂsmwwww NETED|
AdDEFE &R 1o (et XD
:.!.'.".‘t-_ librame mine 'c:ideletesme) how' @ =
B R
% [y 50L: The 545 System “Data ap
L) Pk The 545 System Ser mine.demographic:

12 zex = L then zex_de:
Elze iZ zex=2 then sex
Elze dax_desc = ‘mi.

ZProc print dataa:
Var sex sex_desci
Ruan

g

[Reie || [oupe - pomen | 5] wog - qurassen | [# sa_sssz | [Enor - unaredz + |

Eﬂu-lu
MOTE: 11 Lines Submitted. I C:Program Fles|5A5 rstbutelSASIWE. Ln 16, Col | &

Hstart | 1) @ &) 3 B D || inenss ipnas-(- By | St | apsas- | [Whoes. | [SHER CEGOPDIMR, IB cum

Your output should look like this:

W 5AS - [Dutput - (Untitled)] =] 9]

Fie Edit View Tools Solutions ‘Window Help =121 x|

[T HosR Srl Be- DB 400
£ The SAS System 17:45 Friday, June 16, 2006 62 -
5 Resuks SEX sex_desc

&) 5QL: The 5AS System
() Print: The SAS System

=]
-
@

Male
Female
Female
Male
Male
Female
Female

CUPNNNANN=O @@~ @AW —
N e N e D e P D N e e T T e
=
o
£

e

L« s
@ Resuits 8.1 Expiorer B output - (Untitled) E] Log- (untitled) | B3 sqsasisas J) Editor - Lntitled2 = | |

Log - (Untitled) | criprogram Files\sas Instivtsisasive | 4
mftart @ wlE) B @ | Byess. |[FBsns -t Fsssy.| o] sl S, | (S @E/BGOUIMRS F& anm

Now let's compare the CASE statement using PROC SQL. The following is a simple case statement for our
Disney sleep research data. Notice that the CASE statement requires an END statement. Go into the program
editor, clear the log and output window, and type the following code, then execute the code by using the submit
icon on your toolbar.

PROC SQL;
SELECT sex,
Case When sex eq 1 then "Male
When sex eq 2 then "Female”
Else "Missing®” end as Sex Desc
From mine.demographic;
QUIT;

14

NESUG 2006 Hands-On Workshops

=10/
[@ Fio £dt wew Tooks Run Soltions Window Help ==
- Al SAlr t@e | 2 X008
[Results El libname mine *o:ideletemelhow ; = |
o7 e
b 5L The S5 System FpRoc suL;
SELECT sex,

Case When sex e 1 then "Male
Vhen sex &g ¥ then 'Female'
Elge 'Hissing' eod as Sex Desc

From mine.dsmographic:

QUIT:

L o

[P Resuks [Oyt - itient) | 5] veng - tuiekitienty I & sa_sers.sars | [P ——— 1] Proogras B - (LiaRlesdy I
o CiProgr am Files | 5A5 Iretibutw{SASIYE Ln 13, Cal 1 A

dhstart|| (A @ o) G B @ || Gpervveoct|[Fss - o, Hnesuipa. | dbses (oo | @aarn o | [LEG SRGEITIUE swmn

You should see the following output:

W SAS - [Owtput - (Untitled) | D x|
D e Ed View Tooks Sohtiors Window Heb =% x|
4 CH0sR &R e DR £ 0@
el The BAE Bvatigma) 17:25 Mondoy, June 19, 2006 6 =
EW; SEX Hex_Dess
* E he 545 &
) 5: The 545 System e
2 Female
? Female
1 Hale
1 HMale
2 Female
2 Female
? Female
1 Hale
1 HMale
1 Male
1 Male
? Female
1 Hale
2 Female
1 HMale
1 Male
1 Male
2 Female
1 Male
4 .
) Resus Espiues |2 utput - (Uetitied)] Log - (Unkkled) | s sms.se | 0 irpont s+ |E]»w-m‘mm||
I Program Flesl5AS Insthuasl AT |

Bsan| |1 2 &) 4 B @ || e, |[Gsas o Dl pn. | edss- g | @eanm | [SEE SPGEATHAUR. e

You can create many new variables by combining case statements, and the syntax would look thus:

PROC SQL;
SELECT sex, rel, employ,

Case When sex eq 1 then "Male *
When sex eq 2 then “Female”
Else "Missing®" end as Sex_Desc,

Case When rel eq 1 then "Father *
When rel eq 2 then "Mother *
When rel eq 3 then "Daughter-”
When rel eq 4 then "Son*
Else "Missing®" end as Rel_Desc,

15

NESUG 2006 Hands-On Workshops

Case When employ eq 1 then "Employee
When employ eq 2 then "Dependent”
Else "Missing®™ end as Emp_Desc,

from mine.demographic;

QUIT;

SUMMARY FUNCTIONS

Let's take that code we just created and remove the CASE statement and modify it to calculate the mean age
with a summary function. Notice we are giving the summary statistic an alias so that it has a meaningful label.
We have generated the mean, minimum and maximum but there are lots of other summary functions, including
AVG, MEAN, COUNT, FREQ, MIN, MAX, NMISS, to name a few. Revise the code from our last PROC SQL, then
execute the code by using the submit icon on your toolbar.

PROC SQL;
SELECT mean (age) as average_age,
Min (age) as minimum_age,
Max (age) as maximum_age
From mine.demographic;

QUIT;
=]
] Fle Edt View Took Run Schitions Window Hel =l x|
v dbEE &R ¢ r@me D X O
[Resills] Libisest mine ' €11 deletems) how' ¢
Reads
% () 564 The SAS System PROC S(L:
SELECT mean (mge)l ma average_nge,
Ain (age
Max (mge)
From mine. demographlc;
QUIT:
4 _f_l
) Rk) utp - (L) |) o - iy | disrveysas + |

I\ Priogy s Fies|SAS Instdute|SASYVE L4, €l 1

Wstant|||) & a0 D) @ @ || Bn] s @] GycllFs 9in]] Fu] s das] Sas] G| (LB @A BRGEITMYU RS RS wm

Your output should look like this:

16

NESUG 2006 Hands-On Workshops

=l0)x|
[Fe Edt Wiew Tooks Sohtiors Window Help == =)
b LA = A N R T X
[Results E| The SRS Systom 159 Tussday, June 20, 2006 41 4

o7 e aversge_sge mininum_age naxinun_sge

e[5L The 545 System
s "’ am.55 20 0

4] 2T
P Resds Gl Explres [L2 ot gt - gttty (] Lo - dltitiendy | 8 sy 5o = | |

o CiProgramm Fies'|5A5 Ireliubel SAS\YE

dhstont] | @) 5 9 @ || 2] 25| @) Gycfess. 2e] o] 1] s s s] (LB @BGEIODMUG EH swm

MERGING VERSUS JOINS - The true power of PROC SQL

The true power of the PROC SQL procedure will become apparent when you are merging very large datasets or
combining two datasets with some common variable. Because PROC SQL does not require presorting of the
tables you are joining, computer resources are saved when using joins. There are ways to think about which is
more advantageous, to merge using a data step or join tables using PROC SQL.

ONE TO ONE MERGES

For one to one matching, both the data step and PROC SQL are acceptable and use about the same resources.
Begin by considering a simple SAS program that takes data from two tables and merges both into one final table:
The demographics data set has 20 ID numbers and demographic information about each person. The rem_sleep
dataset also has 20 rem sleep values for the same id’'s. We want all demographic data and all the rem sleep data
to be combined into one table with 20 observations. Go into the program editor, clear the log and output window,
and type the following code, then execute the code by using the submit icon on your toolbar.

DATA A;

SET mine.demographic;
Proc sort;

BY ID_NO;

RUN;

/*this dataset contains one TfTamily"s demographic data and one table with one
observation of rem sleep data per person. */

DATA B;

SET mine.rem_sleep;
Proc sort;

BY ID_NO;

RUN;

/*we want all demographics and all the rem sleep variables in one row for all 20
persons*/

DATA ALL;
MERGE A B;

17

NESUG 2006 Hands-On Workshops

BY 1D_NO;
RUN;

PROC PRINT DATA = ALL;
RUN;

=0/ x|
[Fbe Edk Wew Tods Run Soltions window Help == x|
v F0s@éd @8- 0uiX0&
[Results El libneme mine 'o:ideletemsihow’; =
TP Resuks
B ‘QSQL: The SAS System /*chis data set has 20 ID numbers and demographic information about each personts
51 |5 Prine: The 545 System
SIBATA k:
SET mine.demageaphic:
BY Th_NO:
i

/TEhis dataset contains one family's demographic dats and one table with one obssrvation 0f rem

Slparta b:

SET mine.rem aleep;

BY IF NO:

RUN:

Fvue wane all demogeaphics and all the rem aleep variahles im one row for all 20 peraonaf
SIDATA ALL:

MERGE & B

Y 1D _NO;

BN

CIMBOC PRINT DATA = ALL:
RUH:

'I | o
rents [SUEwive || D oupt ity | E] oy e | (88 sl sas.sms = [et - untitiedz = |

I Ciiprogram FlestSas Instbute\SASIWE Ln 27, Col £

dhstart| () @) B) B @ | Epesi. [[eas-r. Boassy | Eetse. | s 1| @noos. | [GEGSEGOUITR S8

In this example we are doing a one to one merge. That is to say we have one match from each table. We can
merge the two datasets and the resulting final dataset will contain one observation with id_no and the variables
from each dataset.

Submit the code and out output should look like this.

T 545 - [Dubpust - (Untitied) | =0l =|
[Fie Bt wew Took Sohtions Wi Hel =18]x]
v D=8k wn - DELOS
[esults E| The SAS System 17345 briday, Jum 16, 2006 &3
[neadte e MO F_MARE L_NAME REL SEX AE RANDOMLZED W
ekt 1 1 Barr, ik 1 1 56 n #.12
e . v ac : :
9 Pk The 545 Systen H 2 Daisy Duck 2 2 54 N a.81
a a Donn | Dk a 2 a» N T.72
4 4 Dar la Duck 4 1 30 N 6.90
5 5 Hickny [1 1 57 n 7.81
B [Minnie ouse 2 2 54] 7.89
7 7 v Mouse 4 H 20 N 6.3
8 # Mar la ouse 4 2 26 N .83
3 1 Mannie Mouse 3 1 24 N ENT]
10 10 Morvin Mouuser: 3 1 e n #lee
1 1 Mike Mouse 3 1 20] 644
12 12 Ruggs Bunny 1 1 a8 N R.TT
13 13 Beverly Bunmy 2 2 a7 N 9.21
1 1 Gary Goat: 1 1 [N 51R7
15 15 Juannie Goal 2 2 54 o 6.55
16 16 Jerry Gont a 1 23 [090
1w T Jimmye Guat 3 1 21 o 4,23
B 10 Bill Beauer | 1 a7 N ENT
18 13 Borbora Beave » ® a5 N 7045
20 20 Terry Beaver 3 1 22 [933
| (] i
[Resds I%! Esphoser I | L2 output - qunesied) [Z tog - untitind) | [&] sqp_sas.sas] [Erteoe - etz = I |
=3 Progeam Flns| 545 Iratkute|SASIVA &

Mstont |||) & w0 L) B O || B [sas 1o uassy | Gycwie | SBuas -] (e | (LB @S ABOOVITR GB e

18

NESUG 2006 Hands-On Workshops

We can accomplish the same merging of these two datasets with a simple PROC SQL. In this instance we want
to join both tables on a common variable, id_no. An inner join will discard any rows that do not have a
corresponding row in both source tables. In this sample, however there is an equal match for each row, i.e. a
ONE to ONE merge. Go into the program editor, clear the log and output window, and type the following code,
then execute the code by using the submit icon on your toolbar.

PROC SQL;

SELECT *

from mine.demographic, mine.rem_sleep

WHERE demographic.id _no = rem_sleep.id _no;
quit;

=0/ x|

_Eﬁr-k. Edet Wiew Tooks Run Sotions Window Help == x|
" Nl R v@Ew (Hals X008

[Results El libname mine 'o:ideletemsihow’; =

..p Residks
e 500 The Sa5 Spztem
5 50U The SAS Systen

graphic dats set has 20 I bers and demographic informaticn sbout esch person
s slesp dats 20 1d

nt to join two tables by id

rs and 20 REN sleep values

e

SrBoc sgL:
SELECT *
from mine.demographic, mine.cem slesp
VHERE demographic.id no = rem sleep.id no:
quit;

K| ;IJ
&P R ! [ontpu - {Litthenty |] o - kit | [5al s ™ | [Eae - Untithea? =

HOTE: 5 Lines Subnitted. [CiProgram Fies\SAS Instlute|SASIVE. n 14, Col 1 WV

st |) @)8 B @ | B |[Feas -1 [Paassy. | Gyci.| @ss] Ewon. | [LEGS TEGOUIMR S8 rwm

You should see the following in your output window:

=0/ x|
Cyrle Ede Wew Tooks Soldions Window Meb & %]
v Fos &R e DB :208
[Results E| The 9A8 Syatem 1745 Friday, Juoe 16, 2006 64
[Resks ID_ND F_WAME L_NAME REL SEX AGE RANDUN | ZED 10_ND REM _
{5 S0L: The SAS Systen T -
i : v Duck [1 56 N [012
(2 3L+ The:545 Systam 2 Daisy Duck] H w4 N 2 9.81
3 Donnle Duck 3 a 32 N 3 772
4 Darla Duck 4 1 30 N 4 6.9
5 Hickey Mouse 1 1 57 D 5 7.81
6 Minnie Mouse 2 2 54 D 17 ¥.e9
7 Nary Huuse 4] 28 N 7 .33
8 Marla Mouse 4 a 2% N [6§89
9 Mannie Huuse H 1 24 N] 912
10 Harvin Mouse a 1 22 0 10 822
1 Mike Mouse a 1 20 D 1 [
12 Bupgs Bunny 1 1 43 N 12 6.7
13 Oeverly Dunmy H H 47 N 13 921
14 Gary Gual. 1 1 50 N 14 567
dnannie Gnat H a B0 15 .55
16 Jerry Goat a 1 23 D 16 0.90
17 Jimny Goal H 1 2l D 17 9,23
10 DIl Beaver 1 1 47 N 10 04
19 Harbara Buaver] H 45 N 19 7.45
30 Terry Beaver a 1 2 0 20 933
41 20
P Rewas Q] Esplones |2 output - futittedy] Lo - funkited) | [s sas.sae = | 8 Ettcn - iktentz = |
[[Cilprogram Flestsas Insphelsasive | .

mnml - FOEE Xel '_ﬂﬂl’”m j?msw...l _j;ri[d-hl br (l lanmnl [EGe TS U e a6 (:wm.

19

NESUG 2006 Hands-On Workshops

ONE TO MANY MERGES

Like one to one merges, one to many merges can be accomplished either with data steps or an PROC SQL
procedure. So far we have worked with very small datasets. Let's look at a larger dataset that contains multiple
evaluation times for Disney characters who have participated in a sleep study for depression. The dataset is
called mine.demo_diag. It contains all the Disney characters evaluation times and diagnoses. The mine.dx file
contains one value for each of 33 psychiatric diagnoses. What we want to see are only those diagnoses for the
Disney dataset (n=32). Go into the program editor, clear the log and output window, and type the following code,
then execute the code by using the submit icon on your toolbar.

libname mine "c:\deleteme\how";
Data a (keep = id_no f _name 1_name date diag);
Set mine.demo_diag;

proc sort data=a;
By diag;
Run;

proc print data=a;
run;

Data b;
Set mine.dx;

proc sort data=b;
By diag;
run;

proc print data=b;
Run;

Data all;
Merge a b;
By diag;
Run;

Proc print data = all;
Run;

(= -1}
[rde Ede wew Todks Run Sohtions window Help 18] x|

De [T 4 X O8

name dnre diag) @

K| _lj
20 Renits 31 utpus - (Unitted) | £ o - tureriedy |[E disneyosas = |

NOTE: 20 Lines Submitted. 1S Cprooram Flestons Insthutelssve n 33, Col L i

Hstart| | 74 @ W) 5) B @ | @iosen vatthew... | H ol e, |[cpsas - [disney... G ciidentemetbon | L0 @ A E O UEIDEL B v

20

NESUG 2006

In this example we are doing a one to many merge, with many id_no’s in the first dataset but only one value for
each of the diagnosis numbers on the second dataset. We want to merge the datasets and have one diagnosis

description for each row of the demo_diag table or n = 32.

Look at the output. Displayed is the second page of output, and it is messy and incorrect.

W 5AS - [Output - (Untitled)] o [=] 3]
[E3 File Edit View Tools Solutions Window Help =18 x|
T EEECIEEFEEY LI
[Results = The SAS System 09:06 Monday, June 26, 2006 10 |
E F Results Obs ID_NO F_NAME L_NAME Date Diag
5 Print: The 585 System
= Prik: The S5 System 2 12 Buggs Bunny 22FEB2005:00:00:00 200
{5 Print: The 545 System 26 . . 302
27 . . 303
28 5 Mickey House 24AUG2003:00:00: 00 304
29 5 5 305
30 5 5 306
31 . . 307
32 9 Mannie House 12JUN2003:00:00:00 308
23 4 Mary Mouse 12MAY2003: 00:00 309
34 8 Marla House 22MAT2003: 00:00 309
35 8 Marla House 01JUNZ004:00:00:00 308
36 . . 310
7 311
38 32
39 312
40 2313
41 5 314
42 3 Donnie Duck 01SEP2003:00:00:00 315
43 3 Donnie Duck 050CT2004:00:00:00 315
44 . 316
45 3Nz
46 318
Obs desc
24 ANXIETY, DISSOCIATAIVE AND SOMATOFORM DISORDERS
25 PERSONAL | TY D ISORDERS
26 SEXUAL AND GENDER IDENTITY DISORDERS
27 ALCOHOL DEPENDENCE SYNDROME
28 DRUG DEPENDENCE
29 NONDEPENDENT ABUSE OF DRUGS
30 PHYSIOLOGICAL MALFUNCTION ARISING FROM MENTAL FACTORS
31 SPEC|AL SYWPTOMS OR SYNDROMES, NOT ELSEWHERE CLASSIF IED
22 ACUTE REACTION TO STRESS
33 LEPROSY, UNSPECIF IED
34 ADJUSTHENT REACT ION
35 ADJUSTMENT REACTION
26 SPEC |F IC NONPSYCHOTIC HENTﬁL DISORDERS DUE TO BRAIN DAMAGE
37 DEPRESSIVE DISORDER, NOT ELSEWHERE CLASSIFIED
38 DISTURBANCE OF CONDUCT, NOT ELSEWHERE CLASSIFIED
L) %9 DFSSFMINATED DISFASFS DIF TN NTHFR MYCNRACTFRIA Jll
« >
&P Resulie R Explorer Output - (Untitled)) Log - {Unkitied) | [ey s * | |
[|= CiiProgram Filesisas Institutelsasive | y

Hstart || 1] @ w) B) @ @ || @0amn waithen.. | ool esucos. .. |[GFsas - [output .. Gcideictenciton | (B G @ I3 A O UEIDE £ suan

Check the log. We want to see 32 rows of data in our final merge. Unfortunately, what we have is the total of the
two tables. 32 rows from demo_dx and 33 rows from the diagnosis table. The final table contains 52 rows, not 32.

W SAS - [Luy - (Untitled) | (=]
[E] fle Ede wew Todks Schbons Window b 18] %]
| v MA@ e B 408
Resulls d|fE proc sart; =
57 Dy disa:
[Resuks LE rung
_W?‘.‘h!! The SAS System
H-0 Prink: The SAS System TE: Thers were 33 cbservalions resd fron Uie data sel WOHK.H.
i TE: The datn st WIAK.R has 33 chacrvations and 2 varlahles.
) {gp Print: The SAS System NUTE : PRUCEDURE SURT e ;
real tine 0.01 arconds
cpu time 001 seconds
7]
{60 proc print data=b;
61 Hun;
NOTE: There were 03 observations read fron the data set WOMC.D.
TE: PROCEDURE PRINT v -
real tine 0.01 seconds
G i 0.01 secoms
k2
63 Data all;
f1 HMerge o h;
65 Dy disa:
BE BHung
TE: MERGE slalenent has more than one data sel with repsats of BY valuss.
TE: There wnree 32 nhseevatlons read fron the dota set WAK.A.
TE: Thers were 33 cbservalions resd fron Uie dals sel WOHK.H.
TE: The datn st MIAK.ALL has 52 ohservations and & variahies.
0TE: DATH statement used:
real tine 0.00 seconds
cpu time 000 seconds
i
B Proc print data = all;
63 Run:
0TE: There were 52 observations read fron the data set WOMK.LL.
NUTE: PRUCEDUHE PHINT used:
real tine 000 seconds
G i 0.00 secoms
L)] |
& Rlenits) utps - (uniied) |[ET o0 - (untitied) [dreycae | |
NOTE: Lines have been deared. 15 Cilprogram Flesins Insbutelsasis A

mnml | @)G B @ | @t otthe.. | Hinal s, |[psas - oa - (— _i.lr:MMnﬂ‘.Wl PR D] - K] [P T

21

NESUG 2006 Hands-On Workshops

In order to correct the data step, we need to add the IN = option to our merged data. The IN = option creates a
new temporary variable that allows you to select only those observations that are on the data set A. Go back to
the program editor window, and add two more lines of code (in red), then execute.

Data all;

Merge a (in=x) b (in=y);
By diag;

if x;

Run

Check the log and confirm that you have only 32 observations. Now look at the output. The data is clean and the
results are the correct number of rows (n=32).

e
) Fde Eck Wiew Tooks Sohbiors Window Heb == x|
v Fos &R e DB :208
[Results E| The 9A8 Syatem 09306 Murday, June 26, 2006 12 s
&P Resukz s ID_NO F_WAME L_NAME Date Diay
w1 Pt The SAS Srstem
1 13 Deverly Dunny 239EP2003:00:00:00 201
2 1 Dal Ty Duck 11NDVZ003 09 00: 00 239
3 1 Daffy Duck O1DECI004 :00:00:00 230
4 1 Dalfy Duck 15NDVZ005 00 00: 00 239
5 5 Nickey Moaize 128FEP2004 ; 00:00 292
[10 Marw in Mouse 22MY2003:00:00:00 295
v 1 Mike Mot 22APRZ00Y:00:00:00 236
] 1 Mike Mouse 13NAY2004 00 00: 00 20g
] 2 Daisy Duck QIUCTZ003:00:00:00 23r
10] Dar by Duck GAECT004 :00:00:00 aa7
1 10 il Beaver OSMAY2003:00:00:00 297
12 19 Barbara — Heaver OIMATZ003:00:00:00 #3r
13 20 Terry Beaver 12APN2003: 00 00: 00 297
14 12 Hugys Bunny OSMAYZ003:00:00:00 23y
15 4 Darla Duck OEALIGT 00: 00300 200
16 4 Darla Duck 095EP200: 00300 300
1 B Minnie Mg Q4JUL200: 00300 300
10 o Minnie Mouse GIMANZ003: 0050000 300
19 12 Hugys Bunny OSMARZ004 :00:00:00 300
20 12 Rugos Runny BIFFRI00G:00:00:00 200
21 5 Mickey Mouse 24AUG2003:00:00:00 304
22 Fl Marn i Mot 12JUNZ003 09 00: 00 308
2a T Hary House 1ZHAYZ003:00:00:00 303 t—
Obs desc

1
2 DEHENT IS
3 DENENT |AS
4 DEHEHT | AR
5 DAUG- INDUCED HENTAL DISORDCRS
L FCHIZUPHREENIC D ISURDERS
7 EPI1S0DIC HOOD SORDERS
¥ EF 1500 1C AOUD D ISURDERS
9 DELLE INNAL D ISDRDERE
10 DELUS 10MAL D ISORDERS
11 DELUS IUNAL D 1SURDERS
12 DELUS 10MAL D ISORDERS
DELUS IUNAL D 1SURDERS
14 OTHER NONORGAN IC PEYCHNEFS
15 ANXIETY, DISSOCINTAIVE NND SOMATOFORH D ISORDERS
5 ANXIETY, DIRENCIATATUR AMD SIMATIIEORA D ISORDFRS _lj

]
Dot [@lFpkon || [Dostput - uotitiedy E] 1og - oinie | [ey s | |
[[Ciprogram Flestsas Insthuta SASIVE i

dhstort| 1A @ w1 5) B @ | @ cemvathon.. | Hifrd neciiis... |[psas - Toutout .. Gjcidentencipon | (LB @ SGEOUAPERS B s

We can accomplish this same result with a simple PROC SQL and the code is significantly shorter. Go to the
Program Editor, clear the log and output and type the following code: Notice how we are specifically naming the
variables depending on what table they are being queried from — i.e. demo_diag.id_no. (Give me id_no from the
mine.demo_diag table, please).

PROC SQL;

Select demo_diag-id_no,
demo_diag.f _name,
demo_diag.l_name,

demo_diag-date,
demo_diag-diag,
dx.desc

From mine.demo_diag, mine.dx

Where demo_diag.diag = dx.diag;

Quit;

22

NESUG 2006 Hands-On Workshops

=0l

Bre £k vew Tods Fun Sotions Window telp =15 x|
~ DR SR DA (D sX08
lesults E| libneme mine 'o:ideletemsihow’; El
l\?“lﬂ.‘;
{9 S0L: The SAS System CIPRDE SOL:

Select demo diag.id no,
dhemo_ding.f_name,
demo_diag.1_name,
dema_diag.dace,
dema_diag.-ding,
dx.desc

From mine.demo_diag, mine.dx

Vhers demo_diag.disg = dx.disg;

Quit:

| LIJ
P Renis) Output - kit |] uog - okt | disney.sas = |

NOTE: 12 Unes Subritted. T Program FlesiSas InstbteSASIE Rn 19, ol | i

mnml | @ W5 D@ | S oithow...| Hiral s, [upsns - [disner.. G Cieistemaipon [LEl 2 RO U 5 s

Notice the log. It does not display the number of observations. You need to know your data and what
number of observations you would expect, when using PROC SQL.

W SAS - [Log - (Untithed) | =10] %]
[l rbe Ede wew Tods Sohbors Window bbb = TS
«[HosEadimec Dl +08
Ermgine: vE s
BT A Physical Hane: o:'deletenc'how |
R Resks [I[s
i S0L: The SAS 11E PADC BOL;
T S0k The 345 St 117 Select deno disa.id no,
118 deno_diay. T _nase ,
113 deno”diag. 1 _name
120 denu_diay.date,
121 drnn_diag ding,
122 dx.desc
129 From mine.deno_diay, mime.dx
124 Where deno_diag.diag = dw.diag:
125 Wuit:
NOTE: PROCEDURE SOL usmed :
real tine 0.01 seconds
Gp Lime 0.01 secoms
K} S
P Rlenas () Outpud - Lty [T Lo - ittty) oy ™ |
HOTL: Lines have been deared. [Ciprogram Flestsas Insthutsl5ASWE | L

] | @ 1)) B © || @ siemition. | Bmisesics. [l uos (. Bicisemton | (256 8,/ CEOUIARN B s

Note also that this is an example of an inner join. An inner join is the result of variables that are in one table that
have a match in a second table. These are also called equijoins. An equijoin combines tables based on a
common variable in both tables, eliminating the redundant columns.

i.e. Where a.id = b.id

And your output should look like this:

23

NESUG 2006 Hands-On Workshops

W 55 - [Dulput - (Untitied)] (=]
[rie Ede view Tooks Soktions Window Heb _|®] x|
K% MA@ e B +08
| The BAE Bysten G:0F Honday, dune 76, 7006 18 <
[Resuks IN_MO F_NAME L _HAME Dale Dy
¥ (g 50U The SAS Spstem desc

E Minnie House QIMARZ003:00:00: 00 a00

ANXIETY, DISSUCIATAIVE AND SURATUFORA O 1SORDERS

12 Buga: Buniny OSMNAZ004 :00:00: 00 00
ANXIETT, DISEDCIATAIVE AND SONATOFDER DISIHDERS

12 Bugus Huwany EEFEHEQ05:00:00:00 00
ANLIETY, DISSOCIATAHIVE AND SONATOMONN DISONDERS

5 Mickey Mouse FAAIG2O0R:00:00: 00 aoa
DAUG DEPENDENCE

9 Mannie Mouse 12JUNZ003:00:00: 00 208
ALUTE HEACTIUN TO STRESS
7 Mary Mouse 1ZMAYZ003:00:00: 00 109
LEPROSY, [IMEPECIF IFD
B Marla Mouse 2IMATI003:00:00: 00 208
LEPROSY, UNSPEC IF IED
O Marla Mouse G1JUNZ004 10000 00 209
LEPRUST, UNSPECIF IED
7 Mary Mouse 1ZMAYZ003:00:00: 00 109
ADJUSTHENT REACTIDH
B Marla Mouse 2IMATI003:00:00: 00 208
ADJUSTHENT REACT 10N
0 Morla Mouse S1JUNZOO4:00:00: 00 209
ADJUSTHENT REACT IUN
3 Donnie Duck G1SEP2003:00:00: 00 s
SPECIFIC DELAYE IN DEVFLOPHENT
3 Donnie Duck QLUCTZO04:00:00: 00 118
SPECIFIC DELAYS IM DEVCLOPHENT
14 Gary finat 2ADCTZ003:00:00: 00 a1a
HINAPFE IF IFD HFHTAL RFTARDAT 1NN E
L _'l_I
B Nenits Eapars |2 vutput - (untitied) [£] L - (urttled) | [dhsnycns | |
| |9 Cilprogram Flestsas Insthutelsasive .

Hstart| | 7 @ W) 5) B @ | @iosen Matthew... | H ol ... |[cpsas - output .. G ciidelntemethon | L @ A E O UEIDEL B wean

Keep in mind that you can join more than one table at a time. In fact PROC SQL can join up to 32 tables. The
syntax for two tables would look like this:

PROC SQL;

SELECT *

from mine.demographic, mine.rem_sleep

WHERE demographic.id_no = rem_sleep.id_no
and demographic.place = rem_sleep.place;

quit;

While both the data step and PROC SQL can be used for one to many merges, where PROC SQL becomes very
powerful is when accessing huge datasets. When using small datasets, the data step may be just as efficient as
PROC SQL but when accessing huge datasets or large tables with many rows and many columns, PROC SQL is
more powerful and generally uses less resources.

MANY TO MANY MATCHES

Let's use a new rem sleep dataset that contains multiple sleep evaluations for each of our Disney families. The
study is now several years in funding, and every participant was asked to complete a second and third sleep time
to establish average REM times. Some families were able and some were not. We need to merge the two tables
of multiple sleep REM values. This is an example of many to many merge. Use PROC SQL when the merge is a
many to many merge and especially when some data is missing. Go into the program editor, clear the log and
output window, and type the following code, then execute the code by using the submit icon on your toolbar.

libname mine "c:\deleteme\how" ;

Data a (keep = id_no f name 1 _name date diag);
Set mine.demo_diag;

proc sort;
By id_no;
Run;

proc print data=a;
run;

Data b;
Set mine.rem_two;

24

NESUG 2006 Hands-On Workshops

proc sort;

By id_no;

proc print data=b;

Run;

Data all;

Merge a (in=x) b (in=y);
By id_no;

Run;

Proc print data = all;

Run;
=il
[Fle Fde Wew Tods Run Soltions Window Help == x|
v Fbed SR L vEw (el s X0
5L S libname mine 'ciideletemaihow' ;l
Flpata a (keep = id_no I_name | _name date diagl;:
Fet Ldeme_diag:
o
run:
Data b:
St mine,demo_dx:
Siprac b
By ding:
proc print datash
R
Data ally
recas a bi
by diadg,
Hun;
Froc print datsa 11
Bun;
o ;IJ
&P R [ontpu - {Litthenty |] o - kit |Imuj_'\-m..'\-m.' |@F.n.. Usititled? * |
INOTE: 27 Lines Subilled. 1 CifProgr am Fles|5A3 Inslule|SASIVE n 30, Cul 1 w
dhstort| |) 8) 5) B @ | Spenc. [[sas-tea | Gyciaetons | s .| [CE@S GOV, S8 sam

What you get is messy and incorrect. The best way to do a MANY to MANY MATCH is with PROC SQL. This is
particularly true if some of the values are missing, as PROC SQL will adjust for this condition.

Let's do a many to many merge with PROC SQL using the WHERE diag on demo_diag matches diag on
demo_dx. Go into the program editor, clear the log and output window, and type the following code, then
execute the code by using the submit icon on your toolbar.

PROC SQL;

SELECT demo_diag.id _no,
demo_diag.-f _name,
demo_diag.-1_name,
demo_diag.-date,
demo_diag-diag,
demo_dx.desc

From mine.demo_diag, mine.demo_dx

Where demo_diag.diag = demo_dx.diag;

quit;

25

NESUG 2006 Hands-On Workshops

=0/ x|
Bre £k vew Tods Fun Sotions Window telp =12 x|
- F0SE SR L DA (Hal+iX08
[Results E| libneme mine 'o:ideletemsihow’; El
TP Resuks

0L The SAS System SIPROC SQL:
[[SO1: The SA% System Felect dems_diag.id ne,

JE_name,

- 1_nnme,
-dnce,
-ding,
deno_dx . desc

From mine.demo_diad, mine.demo_dx
Vhers demo_diag.diag = demo_dk.diag;

ouit:

| £ Lo - ki | (88 sl sas.sms = | o - untitiez = [

I CIProgram FlesISAS InstibtelSASvD L 16, Col | |

mnml | @ W) D@ |[apeas-rea Eyciddeteme | Gsas - o | Dramns.. | Sescra. | LEGD AT T F

This output is correct with correct diagnoses for each member of the study.

=10l
[rke Bk Wew Tools Sohiiors Window Heb &) =]
- Fos &R e DB :208
[Results F] The 9A8 Syatem 17589 Tussday, Jume 20, 2006 43
[BP Resuks ID_NO F_NAME L_NAME Date Diay
S50L: The SAS System drac
51 S0t The SAS System I Daffy Dusk 11HOVZD03: 00:00: 00 230
DENENT 1A
I Daffy Duck QIDECA004:00:00: 00 290
DEHENT 105
I Daffy Duck 15H0UZ005:00: 00 60 200
DEFENT 1A
5 Mickey House 125CP2004:00:00: 00 292
DRUG= INDUCED MENTAL DI1SURDERS
190 Marvin Mouse ZZMAYZ003:00:00:00 285 |
SCHIZOPHRENIT DISDRDERS
11 Hike Puuse 2ZAPHZ00F:00:00:00 296
EP1SO0IC HOOD DISONDERS
1 Mike Howr: 13MAT2004 :00: 00: 00 298
EPISO0IC HOOD DISORDERS
2 Dalsy Duck AIOCT2003:00:00: 00 207
DELUS |UNAL D | SUHDERS
2 Daisy Duck G4DEC2004:00:00: 00 297
DELUS |UNAL D | SUHDERS
18 Bill Heaver QSMAYZO0F:00:00:00 237
DFLUS I0HAL D ISORDERS
19 Barbara Heaver QINAYZO0F:00:00:00 237
DELUS 10HAL D | SONDERS
20 Terry Beaver 12APR2003:00:00:00 297
DELUS 10HAL DI SONDERS
Buggs Dunny ASHNT2003:00:00: 00 298

12
UTHER NUNURGANIC FEYCHUSES

4 Darla Duck 05AUGZ003 100100 00 200
_I ANXIFTY . DISSICIATA IV AND STIRATIFIRA DISTRDERS
|3 output - untitted) 5] Lo - (itaient) | A et - kitedz = |

(= CIProgram Flesoas Instbute SASIVD &

st () @) &) B @ | @] e [s | s | Gas | e B[By | B | B | [CEGIRGEFTDVES vam

Let’s look at the log.

26

NESUG 2006 Hands-On Workshops

W SAS - Loy - (Untitled) | =10l x|
[l rbe Ede wew Tods Schbors Window beb — &) x|
- I N R L = T X
62 =
resuits E || T —— &
[BP Resuks 69 SELECT demo_diag. id_no,
=5 50L: The SAS Srstem 43 :-'-n_ziﬂe-:_n“n-
b ot The ena_ding. | nane.
L S0t The SA5 System BY de_diag idate,
&8 demo diag.disg,
e _ad e
7o From mine.deno_diag, mine.deno_dx
H Hhere deno disq.diag = deno dx.disa:
it
TE: PROCEDURE SOL used
rual tine 0,28 secumis
pu & ime .00 apconds
ﬂ
P Renits (23 cutpu - Ui ||E] Lo - tumtittend) 6 Euon - Lnititentz = |
I Program FsSISAS Insbha SASiY i) i

st () @ w)) B @ | @] e[s | s | Gs | e | B[By | B | B | [CEGFRGEFTDVES vam

Notice the log for PROC SQL does not confirm the number of observations, as the log does when using the data
step! This can be a real disadvantage of SQL. With the data step you see exactly how many observations were
read in for each data step. Checking the log can help you to be assured that the data you are getting is the data
you really want. With SQL, YOU MUST KNOW YOUR DATA! If not, use only a few observations, using the
INOBS = n option on the PROC SQL statement,

i.e. PROC SQL inobs = 10;

The INOBS = option restricts the number of rows (observations) that PROC SQL will process.
Check the log:

lofx]
[l rbe Ede wew Tods Sohbors Window beb =) %]
v Flos &R e D208

13 dibe e "o e e Lene how =
BT A RoTe . " onanc HINE Fafors ca the mane physieal 1ibrary as SOL_DEMD. H

n? Resuks
- 50L: The SAS System
B [S0 The SAS Syseem

TE: Libral AINE was successlul ly sssigned as Tollows:
ine:
Physical Hane! c!ideletene'how

IS PRAOC BOL:

16 Select deno_diag. id_m,

517 drno_d lag . f_nane,

510 deno_disa. 1 _name,

13 denu_diay dats,

20 deno diaa.diag,

21 e _dx . s

522 From nine.denn_diag, mine.desn_de
521 Mhere deno disa.disg = deno_dx.diag:
24 Uuil;

TC: PAOCEDUNE SOL used
roal Line 0.00 swomds
cpu time 0.00 arconds

4 o
P Planits () outps - (it |[E7 oy - tuntitted) sl _sas.sn * | et - vtz | |

HOTL: Lines have been deared. [program Fleslons Insth eloasive | L

mnml (@ n G D@ | [aFsas-To_ E)Cideoteme |'¢'j=‘nr. (on...l @mnml jeas pa..| [CEGe TAGOUIMe & swm

27

NESUG 2006 Hands-On Workshops

=0l
A rle Ede Wew Tooks Solions Window Mep —1®] %]
v Fos &R e DB :208
[E| The SAS Systen 17:4% Friday, Jum 16, 2006 98«
TP Resuks ID_NU F_NAME L_WAME Date Diay
=5 50L: The SAS Srstem dnae

1145 S0t The SA5 System Hinnis QUMAHZO0F:00:00: 00 300

B i Muwse
AN IETY, DISSOCIATAIVE AND SONATOFORM DISORDERS

12 Buggs Buniny OSMARZ004:00:00: 00 aoo
ANXIETY, DISSOCIATAIVE AND SONATOFOAR DISORDERS

12 Bugas Buniny 2IFEB2005:00:00: 00 300
ANXIETY, DISSUCIATAIVE AND SURATUFDRR D1SURDERS

5 Mickey House 240UG2003:00: 00 00 04
DHUG DEFENDENCE

3 Mannie Mouss 12JUNZ003:00:00:00 08
ACUTE REACTION T0 STRESS
7 Mary Mouse TZRATZO03:00:00: 00 09
LEPROSY . URSPECIF ICD
B Morla House 2IMAYF003:00:00: 00 ane
LEPROSY, UNSPEC IF IED
B Morla House G1JUNZO04:00: 00 00 a9
LEPRUST, UNSPECIF IED
7 Mary House 12ANT2003: 000000 a09
ADJUSTHENT REALT ION
B Marla Mouss 2ZMAYZ003:00:00:00 09
ADJUSTHENT REACTI0H
B Marla Mouss Q1JUNZD04:00:00: 00 09
ADJUSTHENT RCACT 10N
2 Donnie Duck QISEP2003:00:00: 00 a1
SPECIFIC DELAYS IN DEVELOPHENT
3 Donnie Duck 050CT2004:00:00: 00 315
SPECIF IC DELAYS |N DEVELOPHENT
14 Gary Goat 240CT2003:00:00: 00 319
TINSFFIF IR AFNTAL HE TARDAT ION _lj
4
! Remits Q] Eploses |2 output - {untitten)] Lo - fnkited) | [sl _sasusas = | 8 Eton - uikentz = | |
[| \Program FsISAS InstbfelSacivl &

istart| |] @ p) E) B @ | [Feas - [ou. E)Cdseteme |¢.‘§I\E |:0u...| M 3otra bk, | Hjeass pa. | [LEGR "B U e, 5 wum

CARTESIAN PRODUCT

If you join two tables without using the WHERE clause, you will get the product of the two numbers (a Cartesian
product). 20 x 20 = 100. Generally, a Cartesian join is accidental. Usually if you want to join two tables you are
intending to do a concatenation, using SET. An accidental Cartesian, when done on a large table can bring your
system to it's knees. 10,000 rows x 10,000 rows may be more than your system resource allocation will allow.

If your intent is to accomplish a Cartesian product ,this is difficult to do using traditional data step processing. For
example a table with 20 observations in one table, and 20 observations in the other table will result in 400
observations in total. Cartesian products can best be accomplished by the use of PROC SQL. Here is an example
of a Cartesian product but PROC SQL was smart enough to know this isn't what we really want to do, because
we should be using a where statement.

Let's make an intentional programming error. Go to the SAS Editor window, clear the log and type the following
code, then execute the code by using the submit icon on your toolbar.

PROC SQL;
CREATE table all as
SELECT *
from mine.demographic, mine.rem_sleep;
QUIT;

Since id_no appears on both tables, you will see an error message as a result of trying to do a Cartesian product
(a join without a where clause) on two datasets, a many to many merge. Most Cartesian products are accidental
and are resource intensive.

28

NESUG 2006 Hands-On Workshops

¥ SAS - [Log - {Untithed) | =0/ x|
[C] Fde Fe wew Todks Sohbiors Window el == x|
v AlDedE &R R (DR DS
[Resuits 27 -
— A58 panc s ; -
Erests |2 CAENTE table all o
30 BELECT *
221 from mine.denographic, mine.res_slesp;
IOTE: The execution of this query involves performing one or more Cartesian product joins that
Gan ot be optiniced.
MARNIHG: Variabhle ID_NO already exists on file WORK.ALL .
OTE: Table HOAK.ALL created, with 400 rous and 9 columns .
232 QuiT:
HUTE: PRUCEDUHE SUL used:
e r OB seconds
cpu time 0.02 seconds
4 _I_I
&P R [ontpu - {Litthenty R [5al s ™ |r.iu Ukbatz ® I |
[HOTE: Lines huvs been desed. | CiProng am Fies|5A3 Instiute|SASIVE i

hstart| |) @ 0]) B @ | Epea|epas 1. Faassy| Gctsee. | s [@nes. | LEGR AT TR G com

OUTER JOINS

In contract to an inner join, an outer join retrieves records from both tables but only returns those observations
that do not match the first table. When you join two tables, the first one may have rows that don’t have matching
counterparts in the second table. Conversely, the table on the right may have rows that don’t have a match in the
table on the left. If you do an inner join on those tables all the unmatched rows are excluded. There are three
types of outer join, left outer, right outer and full outer join. The syntax is similar to the inner join, except that you
substitute outer for inner. The left outer join preserves unmatched rows from the left table but discards unmatched
rows from the right table. Right outer joins preserves unmatched rows from the right table but discards unmatched
rows from the left table. You can use this on the same tables and get the same result by reversing the order in
which you present the tables in the join: Full outer joins combine the functions of the left outer join and the right
outer join. It retains the unmatched rows from both the left and the right tables.

UNION ALL

Suppose you have three tables that you wish to concatenate. You can use the SET statement in SASg to
concatenate the tables. Or you can use the UNION ALL, as long as all the variables in all the tables are input in
the same position. This type of union creates another table that has everything, all the columns in all the source
tables.

The Disney participants used three separate sleep labs. The data for those three labs needs to be combined into
one table. LAB1 was housed in Magic Kingdom and contains 11 sleep evaluations (rows of data) for the Mouse
family. LAB2 was in Epcot Center and contains 9 sleep evaluations (9 rows) for the Duck family. The third sleep
lab was in Animal Kingdom and contains 12 sleep evaluations for the Bunny, Goat and Beaver families. Using a
traditional data step to concatenate we would use the SET, instead of MERGE. Go into the program editor, clear
the log and output window, and type the following code, then execute the code by using the submit icon on your
toolbar.

libname mine “c:\deleteme\how";

Data a;

Set mine.labl;
proc sort;

By id_no;

Run;

29

NESUG 2006 Hands-On Workshops

proc print data=a;
run;

Data b;
Set mine.lab2;

proc sort;
By id_no;

proc print data=b;
Run;

data c;
set mine.lab3;

proc sort;
by id_no;
run;

proc print data=c;
run;

Data all;
set a b c;
By id_no;
Run;

Proc print data=all;
by id_no;
run;

1ol

[rde Ede wew Todks Run Sohtions window Help _ 18] x|
| v D@ R L R | (fal 4 X0
Resulls C| Ll mine ' C:ldeletems) hov! ; =
B Rosuke bata n:
5 _@w: The 545 System Ser mine. labl:
i}) S0L: The S5 System iproc sort:

Prini: The SAS System B 10 nos

Prink: The 5 System =
1 L ik The SAS Syshem
e L Pt The S System

Hun;

prov print data=a;
run:

sibata h:
Set mane.labi;

Sproc sert:
By id no;

siproe print dntash:
Run:

Slaata o
=zet mine.labd:

prov sorls
by id_no:

Fun:

Slproc print datasc:

run;

Data all:

arc a b o

By id_no:

Bun; x|
Kl I
& Rlenits) utps - (uniied) |] 1o - turitiedy | [caeor - untittedz + |
S Cprogram P05 Insbt e Basiv nzcol £

hstart| |) @] 5 B @ | @an] Ggead [[opeas Shsas | Ghss.| s | Q| Eiwes | (LG SRGEITTBES cwm

Always check the log when running data steps. Let's examine the log.

30

NESUG 2006 Hands-On Workshops

Lol

[l rie Ede view Tools Sohdions Window b =18 x|
- Fos A &0 e DB :208
[Resuits 174 proc sork; F
AR B i
TP Resuks 176 run;
1 {5 Peiki The SAS Sratem
rine: The 4 System NOTE: There were 12 abservations read fron the data set WOMK.C.
i i TE: The data set HURK.C has 12 sbservations amd 19 var isbles.
EHEW Prik: The SAS Sysem TE: PROCEDURE SORT used:
Prinit: The SAS Sipstem rual Line 0.00 secomls
Prink: The SA5 System cpu Eime 0.00 seconds
1 55 Peiki The SAS Sratem
Print: The SAS System 77
L Priit: The SAS Srstem 178 proc print datasc;
178 run;

TE: Thers were 12 ubservakions resd fron the data set WURK.C.
TC: PRAOCEDUNE PRINT used:

roal Line 0.00 swomds

cpu time 0.00 arconds

181 Data all;
1B2 =nt a b o;
103 By id_no:
184 Run;

TE: There were 11 observablions read fron the data set WOHK ﬂ
TE: There were 9 ochacsrvations read from the data set UWDRK.B

TC: There were 12 observations read from the data set WONK.C.
TE: The data sel HURK.ALL has 32 observalions amd 10 variables.
TE: DATH statement used!

roal Line 0.01 swconmds
cpu time 0.01 arconds
165
1BE Proc print data=all;
1B7 by id_nn;
188 run:

NOTE: There were 32 observations read fron the data set WORK.ALL.
HUTE . PRUCEDUHE PHINT wsed:
real tine 0.01 seconds

cou time 0.01 secands =

" of

P Renis () output - i) |[E] Lo - tumtitien [dmrmy.sm | |
| Iproarm Fheskon Insth et Sasivy T "

mnml - FOEE Xel '_ﬂN.I .!l]s..l ‘:‘“Ii“.j_s_ gl‘]f..l =01 ﬂlldﬁl e.iﬁl [E@ G EIOA el i zam

Observe the number of observations in the final table ALL. We would expect to see 32 observations, 11 from A, 9
from B, and 12 from C. Look at the output window and observe that the final dataset appears clean and

1ol
[rie Ede view Tooks Soktions Window Heb |8 x|
| v e SR L e (B 208
[Ercplorer | The GAR Gyaten 17:88 Tunaday, June 70, 7006 83 =
ConterianiMire’ 10_H0-1
]
Nh= F_NAMF L_NAMF tinme Date RFL BFX AGE Days Cost
Dy Cevmrographic
1 Daffy Duck 1 TINDV2003:00:00:00 1 1 5B 3 1500
2 Daffy Duck 2 OIDEC2004 : 00:00:00 1 1 57 3 1500
3 Dafry Dk a 1SNIVZ 005 : 00 00: 00 1 1 B H 1000
Dema_dag Dema_dx 1D HO=2
Fval_
- Obs F_NniC L_NAMC tine Date REL SEX NGE Days Cost
4 Daisy Duck 1 O30CT2003:00:00:00 2 2 94 3 1500
Dl s 5 Daisy Duck 2 Q4DECZ004:00:00:00 H H 55] 1500
Lab1 Labe Fual_
Obs F_NAHC L_NAMC tine Date REL SEX NGE Days Cost
= == 13 Donnie Duck 1 OISEP2003:00:00:00 3 2 a2 2 1000
E m i Donnie Duck 2 Q5UCTZ004:00:00:00 3 2 EEd 4 1000
Lab3 Feram_shoepy
10_N0=4
Fval_
E Obs F_NAHC L_NAMC tine Date REL SEX NGE Days Cost
Rem_be o Darla Duck 1 BSAUGZ00D :00:00:00 4 1 I 3 1500
k] Dar la Duck 2 QHSEFZ004:00:00:00 4 1 € 3 1500
ID_N0=5
Eval_
Obs F_NAHC L_NAMC tine Date REL SEX NGE Days Cost
10 Hickey Mouse 1 24ALG2003:00:00:00 1 1 57 3 1500
11 Mickes Hoose # | PRFP2004 0000 00 1 1 sR 5 1500 2
_1i ¥
St oitoon || B ommue-(untied) 2] Log- (ke | Aty | |
S Cprogram P05 Insbt e Basiv Il "

mnml e s & s@ | 2w 3] Chli“I .| o] F] aes] s AT U] = Taler. [PR)

Now let's use a UNION ALL in PROC SQL. One quick and dirty way to do a UNION ALL is to simply use the
asterisk function that says “Give me all the variables”. This works beautifully if both tables have the exact same
format. If the tables are union compatible, i.e share the same format, the resultant table would be all the rows in
the first table, plus all the rows from the second table. Go into the program editor, clear the log and output
window, and type the following code, then execute the code by using the submit icon on your toolbar.

31

NESUG 2006 Hands-On Workshops

libname mine "C:\deleteme\how";
PROC SQL;

CREATE table all AS
SELECT * From mine.labl

UNION ALL
Select * from mine.lab2;
UNION ALL
Select * from mine.lab3;
quit;
W SAS - [disney.sas] 1ol
_Eﬂlkmmlmkmmn\wdmlhb =18 x|
| v DS @R L hde | fleisX08
splure L] Libosre mine 'C:hdeletemsihow s
Corterts of Mine'
SIpRac SQL:

Cenm CREATE table all A%
SELECT ¥ From mine. lapl

A
UHION ALL
E w Zelect * from mine, labl;

Demographc Demo_disg guit:
Deson_dx Dirrey_dhugs
l\(I.d)
L .\h I.'h
Ren s e w0
=
K| i
Bt oyt || Dowss- et |- g | [disney-sas = I
S Cprogram P05 Insbt e Basiv nia, co 4

dhstort| | (A @ o) B B @ | Ew] s @0 Gycfess. 2| Siof] S| s s [E] (LB @S RGEFODMYER B com

Always check your log. Make sure that the row counts are what you expect.

32

NESUG 2006 Hands-On Workshops

=101 x|
[C]Fe Edt Wew Tooks Sohiors ‘Window Help I ES)
o e &R e BB 2 DE
[Explorer ({20 libnase nine "C:ideletensihow’ ; -
S AlRore: Librof HINE wes succsssfully asioned se follovs: =
= Physical Name: C:hdeletens’how
. . F2PHOC 1
A [23 =
24 CREATE table all A5
25 SFLECT * From mine. labl
w m 26 UNIDN ALL
3 d 27 Select * fron mine.lab2;
emograghic Dein_dag TE: Table WORK .ALL created, with 20 rows and 10 columns.
20 quit:
- TE: PROCEDURE SOL used:
m real Line 0.01 soconds
d d Gpu time 2.901 seconds
Demo_dx Derey_drags
bx Labl
Lat? Labid
Roen_siowgs Bnen_bves
L] 2
S Revds . Exploes) o - (uneiiendy |[ETtoa - tuntiticay [dovey 525 |

=) CiProgram Fles|SAS Insituce|SAS| Y

st | 0] @ &)) & @ || 2] Z1s| B Gycl[Fs 210 o] F) sas| eas] eas| G| LB @AROEICBAURED 2om

If on the other hand, the tables are not union compatible, you can use the UNION ALL and explicitly define the
variables that you wish to concatenate. Explicitly listing the columns that you want rather than relying on the *
shorthand is usually a good idea. It is quite possible that even though the tables were union compatible when you
first ran the query, when running the query later, one of the tables could have been modified. The resultant tables
are no longer union compatible. Explicit definition is always safer.

Let's do a join with explicitly defining the variables. Go into the program editor, clear the log and output window,
and type the following code, then execute the code by using the submit icon on your toolbar.

libname mine "C:\deleteme\how" ;
PROC SQL;

CREATE table mine.all AS
(C

Select id_no, f name, I _name, eval _time, date, rel, sex, age, days, cost
from mine.labl

UNION ALL
Select id_no, f _name, 1I_name, eval_time, date, rel, sex, age, days, cost
from mine.lab2

UNION ALL
Select id no, f name, 1 _name, eval _time, date, rel, sex, age, days, cost
from mine.lab3
]);
quit;

33

NESUG 2006 Hands-On Workshops

=l

Pirke ek view Tods Run Soltions Window el =lalx
- N0 A @R L 2@Be (HaliX08

E| libnawe mine '\ deletenslhow ; =
Corterts of Mine'

SIPRDE EQL;

=
]

CREATE tabile mine.all A3
{
Selecr id_no, f_name, 1_name, eval_cime, dace, rel, aex, age, daya, coac
from mine. labl

£
: [
[

I
q

UNION ALL
Selsct id no, I_name, 1 neme, eval time, date, rel, sex. age, days, cost

7

from mine. lab?
UMION ALL
Zelect id no, £ neee, 1 name, eval time, date, rel, =ex, age, days, cost

Demo_de Diney_drugs
from mine. lab3
- . Vs
- T quirs
L2 L
Rem_sieep fem_fwo
! =l
K| =
BReus @ () Outpud - Lty |] uog - okt | [diseprs =
(= CIProgram Flesoas Instbute SASIVD Ln 32, Col 1 &

dston || 1 @ &) G @ @ || 2 s @ Gaclfess 2] o] B &bs| s | | (LB @I SGHACHIR BB 2o
Check the log. With UNION ALL, you will see how many total rows and columns were created.

Lol

[l rie Ede view Tools Sohdions Window b AT
- Flos &R e DU :208
Lplorer [303 " Tibnane nine 'C:ldeletoss i ho =
— ; A oTe . " Torat RINE was watocaatulre 4saigned a3 follows: E
CotesbroiMia' Ermgine: vE
F i Physieal Hane: [:ideletens'hoe
bl B e
- [0S PHOC SUL;
al fema o
1807 CHEATE table mine.all AS
o8

1
09 Select id no, f nane, | nane, eval time, date, rel, sex. age, days, cost

Demogragtic Desso_disg g:? i fron mine._labl
a1z

UN ALL
Erlect id_nn, f_nane, |_nane, eval_time, date, rel, sm, age, doys, cost

(13 fron mine. lab2
d d (314 UNIDN ALL

Demo_x Direy_chugs s Select id_no, T_nane, |_nams, eval_Lime, date, rel, sex, age, days, cost
216 fron mine.labd
- - (@17 3
NOTC: Table MINC.ALL created, with 32 rows and 10 columns.
o Labt 18 run;
MOTE: PAOC SOL statenents are executed innediately: The AUN statenent has no effect.
(19 guils:
NOTE : PROCCDUNE SOL used:
E m real Line 0.00 securmls
cpu time 0.00 seconds
Lati2 Las
Rem_denp flem_fwo

K1} _l;,
BReus @) Output - kit [T Lo - cumtintesty) .o+ | |

(= CIProgram Flesoas Instbute SASIVD &

st) @ W) G B @ | 2 B1s] @0 Gycfeps e o] Tl Ss s Bs| E| [LEG IS SEIVDVE TS 2nm

UNION DISTINCT
If you want duplicate rows eliminated from the final table use the UNION DISTINCT function. It behaves like the

UNION ALL, but returns only non duplicate rows.
libname mine "C:\deleteme\how";

PROC SQL;

CREATE table mine.all AS

(
34

NESUG 2006 Hands-On Workshops

Select id _no, f name, I _name, eval _time, date, rel, sex, age, days, cost
from mine.labl

UNION DISTINCT
Select id_no, f name, I _name, eval _time, date, rel, sex, age, days, cost
from mine.lab2

UNION DISTINCT
Select id_no, f _name, 1I_name, eval_time, date, rel, sex, age, days, cost
from mine.lab3
));
quit;

CONCLUSION:

PROC SQL is a very powerful addition to your SAS bag of tools. When working with huge datasets, the CPU and
resource savings can be dramatic. The beauty of PROC SQL is that the data does not need to be sorted like with
the traditional data step. This Hands-On Workshop is intended to get you started exploring the SQL procedure in
SAS. Each of the PROC SQL statements that we have discussed has many additional capabilities which are
beyond the scope of this paper. And while we used the Display Manager in SAS to submit the code, check the
log and list file, the PROC SQL syntax will work on any platform, whether you are running on the mainframe,
UNIX, or SAS Version 9's Enterprise Guide.

REFERENCES:

Allen G. Taylor, SQL for Dummies 5™ Edition, Wiley Publishing, Inc. 2003

Michael J. Larkins and Thomas L. Coffing, Jr. , Teradata SQL, Unleash the Power, Coffing Publishing, 2002

SAS Institute Inc. (1990) SAS Language and Procedure Guide, Version 6, Third Edition, Cary, NC: SAS Institute,
Inc.

Lora D. Delwiche and Susan J. Slaughter, The Little SAS Book: A Primer, Third Edition, Cary, NC. SAS Institute,
Inc., 2003

ACKNOWLEDMENTS

SAS g and all SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc, in the USA and other countries. ® indicates USA registration. Other brand and product names are
registered trademarks of their respective companies.

CONTACT INFORMATION

Your comments or questions are encouraged. Please feel free to contact the author at:

JoAnn Matthews

Highmark Inc

120 Fifth Avenue

Pittsburgh PA 15222-3099
e-mail: joann.matthews@highmark.com

35

