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Proc SQL versus The Data Step
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ABSTRACT

Most data within organizations is stored in relational databases. Structured Query Language (SQL) has evolved
as the standard for accessing, updating, and modifying data stored in relational databases. PROC SQL is a
powerful procedure available in SASg that can minimize keystrokes and maximize CPU resources. PROC SQL
syntax looks very similar to SQL and can be used in place of traditional SAS data steps.

In this Hands—On Workshop, PROC SQL will be compared to the traditional data step. First, PROC SQL will be
compared to a simple data step. SELECT coupled with FROM, WHERE, GROUP BY and ORDER BY
statements will be demonstrated. CASE statements will be compared to IF THEN ELSE logic. Summary
functions using SUM, MIN, AVG, MAX and COUNT will be demonstrated. The true power of PROC SQL will be
demonstrated with UNION ALL, UNION DISTINCT and JOINS. Three types of join will be discussed, EQUIJOINS,
based on one common value, INNER JOINS, that discard all rows from the resultant table not having a
corresponding row in the source table, and OUTER JOINS, joins that exclude unmatched data. This workshop
will also be helpful to those who are new to SAS or Display Manager in Version 9.

INTRODUCTION

Given the complex data that is used by many large corporations, most corporations store their data in relational
data base systems or DMBS, such as Oracle, DB2, Access, Teradata tables, or permanent SASg datasets.
Structured Query Language (SQL) is defined is a standard interactive programming language for getting
information from and updating a database. Many database products support SQL commonly called ‘sequel.” SQL
has evolved as the standard for defining, accessing, updating, manipulating and modifying data stored in
relational databases SQL is carefully controlled and standardized by guidelines set up by the American National
Standards Institute (ANSI).

SQL is one of the most commonly used query languages for relational data base management systems (DBMS).
A data base management system (DBMS) is a set of programs used to define, administer and process data in a
database. DBMS programs run on a multitude of platforms including the mainframe, minicomputers and personal
computers. In many instances DBMS's reside on a several platforms within an organization, and contain all three
classes of machine, mainframe, mini and PC. A DBMS that runs on multiple platforms, large and small, is called
‘scalable’. The flow of information within the DBMS is from the user at the keyboard, to the interface, to the
program, through the DBMS, and finally to the database. SQL is a set of user friendly commands that are flexible
and easy to understand. The query is written in syntax that is like English, making it easy to interpret. A query is
a question to the database. The beauty of SQL is that when the data in the database satisfies your query, SQL
retrieves the data in the most efficient way possible. SQL is “nonprocedural’” meaning that you state what you
want, and the DBMS decides how best to retrieve the answer. In contrast, a procedural language, such as
FORTRAN, BASIC, C, or Java, requires that you to write a “procedure” to program what you want and need.

PROC SQL and SAS

SQL married SAS sometime after Version 5. PROC SQL was developed by SAS to make use of some of the
powerful components of SQL. PROC SQL is so similar to SQL that anyone who has programmed using standard
query language will quickly understand the basics. The PROC SQL procedure available in SAS can minimize
keystrokes and maximize CPU resources, particularly when working with very large databases. There are some
subtle differences with naming and security conventions between ANSI SQL statements and the SAS SQL
procedure but these differences are so subtle that the average SAS user need not be concerned about them. For
anyone who has ever used SQL, the syntax of the PROC SQL statement looks similar to standard SQL and can
be used in place of the traditional SAS data step.

When we compare the SQL procedure to the data step, there are some differences that should be taken into
consideration. One big difference is that you do not need to use the run after the procedure. PROC SQL will run
without the run statement. If you include the RUN statement in the PROC SQL, SAS ignores the RUN and will
give you a warning statement.
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e You do need a QUIT statement at the end of the PROC SQL procedure.

e You can execute a number of SQL steps within the procedure without having to repeat the PROC
SQL statement. This is an advantage when manipulating data. In traditional data step processing,
each step must begin with a procedure.

e In PROC SQL, variables ( columns) are separated with commas, not blanks as in a data step.

e The Select statement in PROC SQL outputs the data automatically, so that you do not have to
execute a PROC PRINT statement to see your output.

e One of the most significant differences in the two methods is that when using PROC SQL, the table
does not have to be sorted. When using traditional data step processing, each table must be sorted
before merging. This may not be a major issue when using small datasets, but when using millions of
observations, presorting a dataset can be a major space issue. Using PROC SQL can be a major
advantage when working with large volumes of data.

BASIC SQL SYNTAX

The most common components used in the SQL procedure are: SELECT, UPDATE, DELETE, CREATE, DROP,
INSERT, RESET, VALIDATE, ALTER and DESCRIBE. In alphabetical order, these SQL statements are
described:

ALTER <is used to add, delete or alter columns in a table>
CREATE <is used to create a view or table>

DELETE <is used to delete rows from a table>

DESCRIBE <is used to explain how a view has been defined>
DROP <is used to delete a table or view>

INSERT <is used to add rows to a table>

UPDATE <is used to update a table>

VALIDATE <is used to validate SQL syntax>

DESCRIBE <is used to describe the table>

RESET. <is used to add, change or alter options on the PROC SQL line>

SELECT <is used to generate a report and is the most important statement as it
evaluates the query, formats rows and sends the output to the output window>

Within the SELECT statement there are subcomponents:

SELECT <FIRST AND MOST IMPORTANT COMPONENT - identifies what your query will
contain>

FROM <is used to identify the source table for the query>

WHERE <is used to select specific rows or subset the query>

ORDER BY <is used to define the order of the data>

GROUP BY <is used to group the data>

Let's begin with a table of sleep participants’ demographic information. The name of this table is
mine.demographic and it resides on the c:drive. This table contains 20 observations (rows) and 7 variables
(columns). In order to confirm this data, let's do a PROC CONTENTS in a traditional data step. Go to the program
editor and type the following code, then highlight the code, put your cursor over the run icon, and execute the
code.

Hands-On Workshops
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libname mine 'c:\deleteme\how';
proc contents data=mine.demographic;

run;
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The PROC CONTENTS tells you everything you need to know about your data including the number of
observations, the number of variables, the nhames and characteristics of the variables. PROC CONTENTS is a
robust method to learn characteristics of the dataset. If the data is stored in a permanent dataset, running a
PROC CONTENTS allows the programmer to become familiar with a dataset. And a word of caution, get in the
habit of checking your log every single time you run a bit of code. Checking for errors and warnings is critical.

Now check the log. The LOG window contains valuable information about your session, as well as notes about
the code that you submitted. When doing a PROC CONTENTS, the log only tells you that the procedure ran. The
output has all the stats about the dataset.
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Now go to the output window. Your output from the PROC CONTENTS should look like this:
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Notice the top right portion of the output. Observations and Variables are described. In this dataset we have 20
observations (rows) and 7 variables (columns). Observe the bottom of the output where attributes of the variables
are described. Let’s print all the variables using a traditional data step. Go into the program editor, clear the log
and output window, and type the following code, then execute the code by using the submit icon on your toolbar.

libname mine "c:\deleteme\how";
data a;

set mine.demographic;

run;
proc
run;

print data=mine.demographic;

Notice that to see the data, you must run a second procedure, a PROC PRINT.
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You should see the following output.
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To accomplish the same thing with PROC SQL, we would use the following code with an asterisk in the SELECT
statement to bring in all the rows and columns. Think of the asterisk as a wild card that says “Give me
everything.” Go into the program editor, clear the log and output window, and type the following code, then
execute the code by using the submit icon on your toolbar.

PROC SQL;
Select *
From mine.demographic;
run;
quit;

Notice that if this PROC SQL statement is correct, the output appears automatically in the output window without
having to type proc print. This is one of the differences cited in the section describing differences between PROC

SQL and the data step.



NESUG 2006 Hands-On Workshops
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Always check the log. Notice that the run statement produced a warning that it had no effect. You do not need a
run statement when using PROC SQL. You do however need a quit; statement. This is another example of two of
the differences cited in the section on differences between PROC SQL and the data step.
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SUBSETTING THE DATA
Now let's subset the data by defining just those columns that we want using a subsetting WHERE clause. In this
instance, let's extract the sleep participants “WHERE age > 50”.

Using a data step, we would set the table and then do a proc print naming just those variables that we wanted to
see printed. Go into the program editor, clear the log and output window, and type the following code, then
execute the code by using the submit icon on your toolbar.
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Data a (keep =1_name sex age) ;
Set mine.demographic;

If age > 50;

Run;

Proc print data=a;

Run;
i
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You should see the following output.
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Now let's subset this data using PROC SQL. Go to the Program Editor window, clear the log and type the
following code, then execute the code by using the submit icon on your toolbar.
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PROC SQL;
SELECT 1 _name, sex, age
From mine.demographic
Where age > 50;

quit;
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Notice that variables in the SELECT statement in PROC SQL require a comma between them but not at the end
of the select statement. This is another difference between PROC SQL and the data step. Again, unlike the data
step, the PROC SQL statement does not require a run statement. It will produce a message into the log that says
the run statement has no effect if you do include it.

You should see the following output.
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So far, you will notice that the PROC SQL code does use a few less keystrokes, but the output is similar to the
data step.
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ORDER BY AND GROUP BY

Let's take the WHERE clause and build upon it. Using the same logic as above, let’'s put some order to our data.
ORDER BY returns rows in ascending order unless you specify DESC, for descending. Let's order persons over
50 in descending order. Notice that instead of using the actual variable name, we can use an alias. The number 1
says give me the variable that is in position 1 on the SELECT statement. This is an example of a relative column
number that is used in substitute for a variable name. A relative column number can be used in the ORDER BY
and GROUP BY statements. Go to the program editor, clear the log and output window, and type the following
code, then execute the code by using the submit icon on your toolbar.

PROC SQL;
SELECT 1_name, sex, age
From mine.demographic
Where age > 50
Order by 1 DESC;
quit;

Your output should look like this.
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You can group the data by the same variable with the GROUP BY statement. The syntax for this would look thus:

PROC SQL;
SELECT 1 _name, sex, age
From mine.demographic
Where age > 50
Order by 1;
Group by 1;
quit;

One word of caution: Do not try to GROUP BY using summarized values. An error message pertaining to non-
aggregate values on the GROUP BY statement can be confusing but says that you have tried to do a group by
with summarized values. This is a common error when first using the GROUP BY.

DISTINCT FUNCTION

The DISTINCT function in the SELECT statement is very powerful. If you have more than one row for a value and
you only want one value returned from your query, use DISTINCT. Let's bring in all the variables in our table to
see how many distinct last names there are in this dataset. In a traditional data step we would have to set the

9
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data, sort the data, then subset the data by the sort field, using an IF FIRST. statement, and finally print the data.
Go into the program editor, clear the log and output window, and type the following code, then execute the code
by using the submit icon on your toolbar.

DATA a;
SET MINE.demographic;

PROC SORT;
BY 1_name;

DATA HOWMANY ;
SET a;

BY 1 _name;

IF FIRST.1 name;
RUN;

PROC PRINT DATA=HOWMANY ;
VAR 1 _name;
RUN;

¥ sas - [Editor - Untitledz *] ~=lolx|
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EIDATA HOVEANY;
SET a;
EY 1_name:
IF FIRST.1_name;
RUH;

EIPROC PRINT DATA=HOUMANY:
VAR 1_name;
RUN:

g o
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Your output should look like this:
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With PROC SQL the distinct operator passes the statement directly to the DBMS, not through SAS, so that the
operator checks for duplicate rows. Distinct is a very powerful operator in the PROC SQL statement. Go into the
program editor, clear the log and output window, and type the following code, then execute the code by using the
submit icon on your toolbar.

PROC SQL;
select distinct I _name
from mine.demographic

quit;
SE
[ Pl £dt wview Took Run Schkicns Window el =18 x
|+ HbER SR TR B sX0&
| ™ oname mine ciidelerens) bow ; -
= Reads
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from mine.demographic
quit:
. '
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Notice that the output appears immediately. Notice also how much less code this query required as compared to
a traditional data step. The beauty of SQL is impressive when the table contains millions of observations, and lots
of distinct values.
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PROQ SQL using the SELECT DISTINCT can be used for one or more variables at the same time, and the table
does not have to be presorted. This truly is a powerful difference between traditional data steps and PROC SQL.
In addition, you can use DISTINCT with COUNT to nest the query and count the number of DISTINCT values. Go
into the program editor, clear the log and output window, and type the following code, then execute the code by
using the submit icon on your toolbar.

PROC SQL;
select count (distinct 1 _name)
from mine.demographic

quit;
=10ix
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Wstat| |74 @ ) 4 B @ || @] Gy [oas aps| aps.| s Qe B B B B oSG SRGEITEBR S am
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The count function counted the number of distinct last names in the data. Your output should look like this:

=10ix|
[} Fle Edt view Took Sohiwen Windkes Hely mrTE
v J0=@d S0 Bt DB+ O&
[resus AW The SAS Systen 17:39 Tuesday, June 20, 2006 45 =]
EF"‘"\ wnique_ids
E SQL! The SAS System
% ﬂsx The 545 System 5
L 2
o Fiasults Evplorer [ 2 tutpst - grrcaisienty [ g - vty | B ey + | |

=) i |Program Files | 945 Imtiue| SASTVE

e 8 &1L Q@ | @] W fos aps| aps| ws | @r B B B B [ E@ARGEICMBR S 2am

CASE STATEMENT
The CASE statement allows you to give meaningful names to variables or created fields in your program. This

would compare to a data step using if then else logic. Note that the value ‘missing’ will be truncated (cut off in
this example) unless you leave spaces for six characters. Let's create meaningful values for the sex variable
using traditional data steps. Go into the program editor, clear the log and output window, and type the following
code, then execute the code by using the submit icon on your toolbar.

Data a;
Set mine.demographic;

If sex = 1 then sex_desc = “Male ’; /* leave two spaces™*/
Else if sex=2 then sex_desc = ‘Female’;
Else sex_desc = ‘missing’;

Proc print data = a;
Var sex sex_desc;

Run;

13
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JST=TET|
wmwmvﬂsmwwww NETED|
AdDEFE &R 1o (et XD
:.!.'.".‘t-_ librame mine 'c:ideletesme) how' @ =
B R
% [y 50L: The 545 System “Data ap
L) Pk The 545 System Ser mine.demographic:

12 zex = L then zex_de:
Elze iZ zex=2 then sex
Elze dax_desc = ‘mi.

ZProc print dataa:
Var sex sex_desci
Ruan

g

[Reie || [ oupe - pomen | 5] wog - qurassen | [# sa_sssz | [ Enor - unaredz + |

Eﬂu-lu
MOTE: 11 Lines Submitted. I C:Program Fles|5A5 rstbutelSASIWE. Ln 16, Col | &

Hstart | 1) @ &) 3 B D || inenss ipnas-(- By | St | apsas- | [Whoes. | [SHER CEGOPDIMR, IB cum

Your output should look like this:

W 5AS - [Dutput - (Untitled) ] =] 9]

Fie Edit View Tools Solutions ‘Window Help =121 x|

[T HosR Srl Be- DB 400
£ The SAS System 17:45 Friday, June 16, 2006 62 -
5 Resuks SEX  sex_desc

&) 5QL: The 5AS System
() Print: The SAS System

=]
-
@

Male
Female
Female
Male
Male
Female
Female

CUPNNNANN=O @@~ @AW —
N e N e D e P D N e e T T e
=
o
£

e

L« s
@ Resuits 8.1 Expiorer B output - (Untitled) E] Log- (untitled) | B3 sqsasisas J ) Editor - Lntitled2 = | |

Log - (Untitled) | criprogram Files\sas Instivtsisasive | 4
mftart @ wlE) B @ | Byess. |[FBsns -t Fsssy.| o] sl S, | (S @E/BGOUIMRS F& anm

Now let's compare the CASE statement using PROC SQL. The following is a simple case statement for our
Disney sleep research data. Notice that the CASE statement requires an END statement. Go into the program
editor, clear the log and output window, and type the following code, then execute the code by using the submit
icon on your toolbar.

PROC SQL;
SELECT sex,
Case When sex eq 1 then "Male
When sex eq 2 then "Female”
Else "Missing®” end as Sex Desc
From mine.demographic;
QUIT;

14
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=10/
[@ Fio £dt wew Tooks Run Soltions Window Help ==
- Al SAlr t@e | 2 X008
[Results El libname mine *o:ideletemelhow ; = |
o7 e
b 5L The S5 System FpRoc suL;
SELECT sex,

Case When sex e 1 then "Male
Vhen sex &g ¥ then 'Female'
Elge 'Hissing' eod as Sex Desc

From mine.dsmographic:

QUIT:

L o

[P Resuks [ Oyt - itient) | 5] veng - tuiekitienty I & sa_sers.sars | [P ——— 1] Proogras B - (LiaRlesdy I
o CiProgr am Files | 5A5 Iretibutw{SASIYE Ln 13, Cal 1 A

dhstart|| (A @ o) G B @ || Gpervveoct|[Fss - o, Hnesuipa. | dbses (oo | @aarn o | [LEG SRGEITIUE swmn

You should see the following output:

W SAS - [Owtput - (Untitled) | D x|
D e Ed View Tooks Sohtiors Window Heb =% x|
4 CH0sR &R e DR £ 0@
el The BAE Bvatigma) 17:25 Mondoy, June 19, 2006 6 =
EW; SEX  Hex_Dess
* E he 545 &
) 5: The 545 System e
2 Female
? Female
1 Hale
1 HMale
2 Female
2 Female
? Female
1 Hale
1 HMale
1 Male
1 Male
? Female
1 Hale
2 Female
1 HMale
1 Male
1 Male
2 Female
1 Male
4 .
) Resus Espiues |2 utput - (Uetitied) ] Log - (Unkkled) | s sms.se | 0 irpont s+ |E]»w-m‘mm||
I Program Flesl5AS Insthuasl AT |

Bsan| |1 2 &) 4 B @ || e, |[Gsas o Dl pn. | edss- g | @eanm | [SEE SPGEATHAUR. e

You can create many new variables by combining case statements, and the syntax would look thus:

PROC SQL;
SELECT sex, rel, employ,

Case When sex eq 1 then "Male *
When sex eq 2 then “Female”
Else "Missing®" end as Sex_Desc,

Case When rel eq 1 then "Father *
When rel eq 2 then "Mother *
When rel eq 3 then "Daughter-”
When rel eq 4 then "Son*
Else "Missing®" end as Rel_Desc,

15
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Case When employ eq 1 then "Employee
When employ eq 2 then "Dependent”
Else "Missing®™ end as Emp_Desc,

from mine.demographic;

QUIT;

SUMMARY FUNCTIONS

Let's take that code we just created and remove the CASE statement and modify it to calculate the mean age
with a summary function. Notice we are giving the summary statistic an alias so that it has a meaningful label.
We have generated the mean, minimum and maximum but there are lots of other summary functions, including
AVG, MEAN, COUNT, FREQ, MIN, MAX, NMISS, to name a few. Revise the code from our last PROC SQL, then
execute the code by using the submit icon on your toolbar.

PROC SQL;
SELECT mean (age) as average_age,
Min (age) as minimum_age,
Max (age) as maximum_age
From mine.demographic;

QUIT;
=]
] Fle Edt View Took Run Schitions Window Hel =l x|
v dbEE &R ¢ r@me D X O
[Resills ] Libisest mine ' €11 deletems) how' ¢
Reads
% () 564 The SAS System PROC S(L:
SELECT mean (mge)l ma average_nge,
Ain (age
Max (mge)
From mine. demographlc;
QUIT:
4 _f_l
) Rk ) utp - (L) | ) o - iy | disrveysas + |

I\ Priogy s Fies|SAS Instdute|SASYVE L4, €l 1

Wstant||| ) & a0 D) @ @ || Bn] s @] GycllFs 9in] ] Fu] s das] Sas] G| (LB @A BRGEITMYU RS RS wm

Your output should look like this:
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=l0)x|
[ Fe Edt Wiew Tooks Sohtiors Window  Help == =)
b LA = A N R T X
[Results E| The SRS Systom 159 Tussday, June 20, 2006 41 4

o7 e aversge_sge mininum_age  naxinun_sge

e[ 5L The 545 System
s "’ am.55 20 0

4] 2T
P Resds Gl Explres [ L2 ot gt - gttty (] Lo - dltitiendy | 8 sy 5o = | |

o CiProgramm Fies'|5A5 Ireliubel SAS\YE

dhstont] | @ ) 5 9 @ || 2] 25| @) Gycfess. 2e] o] 1] s s s ] (LB @BGEIODMUG EH swm

MERGING VERSUS JOINS - The true power of PROC SQL

The true power of the PROC SQL procedure will become apparent when you are merging very large datasets or
combining two datasets with some common variable. Because PROC SQL does not require presorting of the
tables you are joining, computer resources are saved when using joins. There are ways to think about which is
more advantageous, to merge using a data step or join tables using PROC SQL.

ONE TO ONE MERGES

For one to one matching, both the data step and PROC SQL are acceptable and use about the same resources.
Begin by considering a simple SAS program that takes data from two tables and merges both into one final table:
The demographics data set has 20 ID numbers and demographic information about each person. The rem_sleep
dataset also has 20 rem sleep values for the same id’'s. We want all demographic data and all the rem sleep data
to be combined into one table with 20 observations. Go into the program editor, clear the log and output window,
and type the following code, then execute the code by using the submit icon on your toolbar.

DATA A;

SET mine.demographic;
Proc sort;

BY ID_NO;

RUN;

/*this dataset contains one TfTamily"s demographic data and one table with one
observation of rem sleep data per person. */

DATA B;

SET mine.rem_sleep;
Proc sort;

BY ID_NO;

RUN;

/*we want all demographics and all the rem sleep variables in one row for all 20
persons*/

DATA ALL;
MERGE A B;

17
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BY 1D_NO;
RUN;

PROC PRINT DATA = ALL;
RUN;

=0/ x|
[ Fbe Edk Wew Tods Run Soltions window Help == x|
v F0s@éd @8- 0uiX0&
[Results El libneme mine 'o:ideletemsihow’; =
TP Resuks
B ‘QSQL: The SAS System /*chis data set has 20 ID numbers and demographic information about each personts
51 |5 Prine: The 545 System
SIBATA k:
SET  mine.demageaphic:
BY Th_NO:
i

/TEhis dataset contains one family's demographic dats and one table with one obssrvation 0f rem

Slparta b:

SET mine.rem aleep;

BY IF NO:

RUN:

Fvue wane all demogeaphics and all the rem aleep variahles im one row for all 20 peraonaf
SIDATA ALL:

MERGE & B

Y 1D _NO;

BN

CIMBOC PRINT DATA = ALL:
RUH:

'I | o
rents  [SUEwive || D oupt ity | E] oy e | (88 sl sas.sms = [ et - untitiedz = |

I Ciiprogram FlestSas Instbute\SASIWE  Ln 27, Col £

dhstart| () @ ) B) B @ | Epesi. [[eas-r. Boassy | Eetse. | s 1| @noos. | [GEGSEGOUITR S8

In this example we are doing a one to one merge. That is to say we have one match from each table. We can
merge the two datasets and the resulting final dataset will contain one observation with id_no and the variables
from each dataset.

Submit the code and out output should look like this.

T 545 - [Dubpust - (Untitied) | =0l =|
[ Fie Bt wew Took Sohtions Wi Hel =18]x]
v D=8k wn - DELOS
[esults E| The SAS System 17345 briday, Jum 16, 2006 &3
[ neadte e MO F_MARE L_NAME  REL  SEX  AE  RANDOMLZED W
ekt 1 1 Barr, ik 1 1 56 n #.12
e . v ac : :
9 Pk The 545 Systen H 2 Daisy Duck 2 2 54 N a.81
a a Donn | Dk a 2 a» N T.72
4 4 Dar la Duck 4 1 30 N 6.90
5 5 Hickny [ 1 1 57 n 7.81
B [ Minnie ouse 2 2 54 ] 7.89
7 7 v Mouse 4 H 20 N 6.3
8 # Mar la ouse 4 2 26 N .83
3 1 Mannie Mouse 3 1 24 N ENT]
10 10 Morvin Mouuser: 3 1 e n #lee
1 1 Mike Mouse 3 1 20 ] 644
12 12 Ruggs Bunny 1 1 a8 N R.TT
13 13 Beverly  Bunmy 2 2 a7 N 9.21
1 1 Gary Goat: 1 1 [ N 51R7
15 15 Juannie  Goal 2 2 54 o 6.55
16 16 Jerry Gont a 1 23 [ 090
1w T Jimmye Guat 3 1 21 o 4,23
B 10 Bill Beauer | 1 a7 N ENT
18 13 Borbora  Beave » ® a5 N 7045
20 20 Terry Beaver 3 1 22 [ 933
| (] i
[ Resds I%! Esphoser I | L2 output - qunesied) [Z tog - untitind) | [&] sqp_sas.sas ] [ Erteoe - etz = I |
=3 Progeam Flns| 545 Iratkute|SASIVA &

Mstont ||| ) & w0 L) B O || B [sas 1o uassy | Gycwie | SBuas -] (e | (LB @S ABOOVITR GB e
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We can accomplish the same merging of these two datasets with a simple PROC SQL. In this instance we want
to join both tables on a common variable, id_no. An inner join will discard any rows that do not have a
corresponding row in both source tables. In this sample, however there is an equal match for each row, i.e. a
ONE to ONE merge. Go into the program editor, clear the log and output window, and type the following code,
then execute the code by using the submit icon on your toolbar.

PROC SQL;

SELECT *

from mine.demographic, mine.rem_sleep

WHERE demographic.id _no = rem_sleep.id _no;
quit;

=0/ x|

_Eﬁr-k. Edet Wiew Tooks Run Sotions Window Help == x|
" Nl R v@Ew (Hals X008

[Results El libname mine 'o:ideletemsihow’; =

..p Residks
e 500 The Sa5 Spztem
5 50U The SAS Systen

graphic dats set has 20 I bers and demographic informaticn sbout esch person
s slesp dats 20 1d

nt to join two tables by id

rs and 20 REN sleep values

e

SrBoc sgL:
SELECT *
from mine.demographic, mine.cem slesp
VHERE demographic.id no = rem sleep.id no:
quit;

K| ;IJ
&P R ! [ ontpu - {Litthenty | ] o - kit | [5al s ™ | [ Eae - Untithea? =

HOTE: 5 Lines Subnitted. [ CiProgram Fies\SAS Instlute|SASIVE.  n 14, Col 1 WV

st | ) @ )8 B @ | B |[Feas -1 [Paassy. | Gyci.| @ss ] Ewon. | [LEGS TEGOUIMR S8 rwm

You should see the following in your output window:

=0/ x|
Cyrle Ede Wew Tooks Soldions Window Meb & %]
v Fos &R e DB :208
[Results E| The 9A8 Syatem 1745 Friday, Juoe 16, 2006 64
[ Resks ID_ND F_WAME  L_NAME REL SEX AGE  RANDUN | ZED 10_ND REM  _
{5 S0L: The SAS Systen T -
i : v Duck [ 1 56 N [ 012
(2 3L+ The:545 Systam 2 Daisy  Duck ] H w4 N 2 9.81
3 Donnle Duck 3 a 32 N 3 772
4 Darla  Duck 4 1 30 N 4 6.9
5 Hickey Mouse 1 1 57 D 5 7.81
6 Minnie Mouse 2 2 54 D 17 ¥.e9
7 Nary Huuse 4 ] 28 N 7 .33
8 Marla  Mouse 4 a 2% N [ 6§89
9 Mannie  Huuse H 1 24 N ] 912
10 Harvin  Mouse a 1 22 0 10 822
1 Mike Mouse a 1 20 D 1 [
12 Bupgs  Bunny 1 1 43 N 12 6.7
13 Oeverly Dunmy H H 47 N 13 921
14 Gary Gual. 1 1 50 N 14 567
dnannie  Gnat H a B0 15 .55
16 Jerry  Goat a 1 23 D 16 0.90
17 Jimny  Goal H 1 2l D 17 9,23
10 DIl Beaver 1 1 47 N 10 04
19 Harbara Buaver ] H 45 N 19 7.45
30 Terry  Beaver a 1 2 0 20 933
41 20
P Rewas Q] Esplones |2 output - futittedy ] Lo - funkited) | [ s sas.sae = | 8 Ettcn - iktentz = |
[ [ Cilprogram Flestsas Insphelsasive | .

mnml - FOEE Xel '_ﬂﬂl’”m j?msw...l _j;ri[d-hl br (l lanmnl [EGe TS U e a6 (:wm.
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ONE TO MANY MERGES

Like one to one merges, one to many merges can be accomplished either with data steps or an PROC SQL
procedure. So far we have worked with very small datasets. Let's look at a larger dataset that contains multiple
evaluation times for Disney characters who have participated in a sleep study for depression. The dataset is
called mine.demo_diag. It contains all the Disney characters evaluation times and diagnoses. The mine.dx file
contains one value for each of 33 psychiatric diagnoses. What we want to see are only those diagnoses for the
Disney dataset (n=32). Go into the program editor, clear the log and output window, and type the following code,
then execute the code by using the submit icon on your toolbar.

libname mine "c:\deleteme\how";
Data a (keep = id_no f _name 1_name date diag);
Set mine.demo_diag;

proc sort data=a;
By diag;
Run;

proc print data=a;
run;

Data b;
Set mine.dx;

proc sort data=b;
By diag;
run;

proc print data=b;
Run;

Data all;
Merge a b;
By diag;
Run;

Proc print data = all;
Run;

(= -1}
[ rde Ede wew Todks Run Sohtions window Help 18] x|

De [T 4 X O8

name dnre diag) @

K| _lj
20 Renits 31 utpus - (Unitted) | £ o - tureriedy |[E disneyosas = |

NOTE: 20 Lines Submitted. 1S Cprooram Flestons Insthutelssve  n 33, Col L i

Hstart| | 74 @ W) 5) B @ | @iosen vatthew... | H ol e, |[cpsas - [disney... G ciidentemetbon | L0 @ A E O UEIDEL B v
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In this example we are doing a one to many merge, with many id_no’s in the first dataset but only one value for
each of the diagnosis numbers on the second dataset. We want to merge the datasets and have one diagnosis

description for each row of the demo_diag table or n = 32.

Look at the output. Displayed is the second page of output, and it is messy and incorrect.

W 5AS - [Output - (Untitled) ] o [=] 3]
[E3 File Edit View Tools Solutions Window Help =18 x|
T EEECIEEFEEY LI
[Results = The SAS System 09:06 Monday, June 26, 2006 10 |
E F Results Obs ID_NO F_NAME L_NAME Date Diag
5 Print: The 585 System
= Prik: The S5 System 2 12 Buggs Bunny 22FEB2005:00:00:00 200
{5 Print: The 545 System 26 . . 302
27 . . 303
28 5 Mickey House 24AUG2003:00:00: 00 304
29 5 5 305
30 5 5 306
31 . . 307
32 9 Mannie House 12JUN2003:00:00:00 308
23 4 Mary Mouse 12MAY2003: 00:00 309
34 8 Marla House 22MAT2003: 00:00 309
35 8 Marla House 01JUNZ004:00:00:00 308
36 . . 310
7 311
38 32
39 312
40 2313
41 5 314
42 3 Donnie Duck 01SEP2003:00:00:00 315
43 3 Donnie Duck 050CT2004:00:00:00 315
44 . 316
45 3Nz
46 318
Obs  desc
24 ANXIETY, DISSOCIATAIVE AND SOMATOFORM DISORDERS
25 PERSONAL | TY D ISORDERS
26 SEXUAL AND GENDER IDENTITY DISORDERS
27 ALCOHOL DEPENDENCE SYNDROME
28 DRUG DEPENDENCE
29 NONDEPENDENT ABUSE OF DRUGS
30 PHYSIOLOGICAL MALFUNCTION ARISING FROM MENTAL FACTORS
31 SPEC|AL SYWPTOMS OR SYNDROMES, NOT ELSEWHERE CLASSIF IED
22 ACUTE REACTION TO STRESS
33 LEPROSY, UNSPECIF IED
34 ADJUSTHENT REACT ION
35  ADJUSTMENT REACTION
26 SPEC |F IC NONPSYCHOTIC HENTﬁL DISORDERS DUE TO BRAIN DAMAGE
37 DEPRESSIVE DISORDER, NOT ELSEWHERE CLASSIFIED
38 DISTURBANCE OF CONDUCT, NOT ELSEWHERE CLASSIFIED
L) %9 DFSSFMINATED DISFASFS DIF TN NTHFR MYCNRACTFRIA Jll
« >
&P Resulie R Explorer Output - (Untitled) ) Log - {Unkitied) | [ ey s * | |
[ |= CiiProgram Filesisas Institutelsasive | y

Hstart || 1] @ w) B) @ @ || @0amn waithen.. | ool esucos. .. |[GFsas - [output .. Gcideictenciton | (B G @ I3 A O UEIDE £ suan

Check the log. We want to see 32 rows of data in our final merge. Unfortunately, what we have is the total of the
two tables. 32 rows from demo_dx and 33 rows from the diagnosis table. The final table contains 52 rows, not 32.

W SAS - [Luy - (Untitled) | (=]
[E] fle Ede wew Todks Schbons Window b 18] %]
| v MA@ e B 408
Resulls d|fE proc sart; =
57 Dy disa:
[ Resuks LE  rung
_W?‘.‘h!! The SAS System
H-0 Prink: The SAS System TE: Thers were 33 cbservalions resd fron Uie data sel WOHK.H.
i TE: The datn st WIAK.R has 33 chacrvations and 2 varlahles.
) {gp Print: The SAS System NUTE : PRUCEDURE SURT e ;
real tine 0.01 arconds
cpu time 001 seconds
7]
{60 proc print data=b;
61 Hun;
NOTE: There were 03 observations read fron the data set WOMC.D.
TE: PROCEDURE PRINT v -
real tine 0.01 seconds
G i 0.01 secoms
k2
63 Data all;
f1  HMerge o h;
65 Dy disa:
BE  BHung
TE: MERGE slalenent has more than one data sel with repsats of BY valuss.
TE: There wnree 32 nhseevatlons read fron the dota set WAK.A.
TE: Thers were 33 cbservalions resd fron Uie dals sel WOHK.H.
TE: The datn st MIAK.ALL has 52 ohservations and & variahies.
0TE: DATH statement used:
real tine 0.00 seconds
cpu time 000 seconds
i
B Proc print data = all;
63 Run:
0TE: There were 52 observations read fron the data set WOMK.LL.
NUTE: PRUCEDUHE PHINT used:
real tine 000 seconds
G i 0.00 secoms
L) ] |
& Rlenits ) utps - (uniied) |[ET o0 - (untitied) [ dreycae | |
NOTE: Lines have been deared. 15 Cilprogram Flesins Insbutelsasis A

mnml | @ )G B @ | @t otthe.. | Hinal s, |[psas - oa - (— _i.lr:MMnﬂ‘.Wl PR D] - K ] [ P T
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In order to correct the data step, we need to add the IN = option to our merged data. The IN = option creates a
new temporary variable that allows you to select only those observations that are on the data set A. Go back to
the program editor window, and add two more lines of code (in red), then execute.

Data all;

Merge a (in=x) b (in=y);
By diag;

if x;

Run

Check the log and confirm that you have only 32 observations. Now look at the output. The data is clean and the
results are the correct number of rows (n=32).

e
) Fde Eck Wiew Tooks Sohbiors Window Heb == x|
v Fos &R e DB :208
[Results E| The 9A8 Syatem 09306 Murday, June 26, 2006 12 s
&P Resukz s ID_NO F_WAME L_NAME Date  Diay
w1 Pt The SAS Srstem
1 13 Deverly  Dunny 239EP2003:00:00:00 201
2 1 Dal Ty Duck 11NDVZ003 09 00: 00 239
3 1 Daffy Duck O1DECI004 :00:00:00 230
4 1 Dalfy Duck 15NDVZ005 00 00: 00 239
5 5 Nickey Moaize 128FEP2004 ; 00:00 292
[ 10 Marw in Mouse 22MY2003:00:00:00 295
v 1 Mike Mot 22APRZ00Y:00:00:00 236
] 1 Mike Mouse 13NAY2004 00 00: 00 20g
] 2 Daisy Duck QIUCTZ003:00:00:00 23r
10 ] Dar by Duck GAECT004 :00:00:00 aa7
1 10 il Beaver OSMAY2003:00:00:00 297
12 19 Barbara — Heaver OIMATZ003:00:00:00 #3r
13 20 Terry Beaver 12APN2003: 00 00: 00 297
14 12 Hugys Bunny OSMAYZ003:00:00:00 23y
15 4 Darla Duck OEALIGT 00: 00300 200
16 4 Darla Duck 095EP200: 00300 300
1 B Minnie Mg Q4JUL200: 00300 300
10 o Minnie Mouse GIMANZ003: 0050000 300
19 12 Hugys Bunny OSMARZ004 :00:00:00 300
20 12 Rugos Runny BIFFRI00G:00:00:00 200
21 5 Mickey Mouse 24AUG2003:00:00:00 304
22 Fl Marn i Mot 12JUNZ003 09 00: 00 308
2a T Hary House 1ZHAYZ003:00:00:00 303 t—
Obs  desc

1
2 DEHENT IS
3 DENENT |AS
4 DEHEHT | AR
5 DAUG- INDUCED HENTAL DISORDCRS
L FCHIZUPHREENIC D ISURDERS
7 EPI1S0DIC HOOD SORDERS
¥ EF 1500 1C AOUD D ISURDERS
9 DELLE INNAL D ISDRDERE
10 DELUS 10MAL D ISORDERS
11 DELUS IUNAL D 1SURDERS
12 DELUS 10MAL D ISORDERS
DELUS IUNAL D 1SURDERS
14 OTHER NONORGAN IC PEYCHNEFS
15 ANXIETY, DISSOCINTAIVE NND SOMATOFORH D ISORDERS
5 ANXIETY, DIRENCIATATUR AMD SIMATIIEORA D ISORDFRS _lj

]
Dot [@lFpkon || [Dostput - uotitiedy  E] 1og - oinie | [ ey s | |
[ [ Ciprogram Flestsas Insthuta SASIVE i

dhstort| 1A @ w1 5) B @ | @ cemvathon.. | Hifrd neciiis... |[psas - Toutout .. Gjcidentencipon | (LB @ SGEOUAPERS B s

We can accomplish this same result with a simple PROC SQL and the code is significantly shorter. Go to the
Program Editor, clear the log and output and type the following code: Notice how we are specifically naming the
variables depending on what table they are being queried from — i.e. demo_diag.id_no. (Give me id_no from the
mine.demo_diag table, please).

PROC SQL;

Select demo_diag-id_no,
demo_diag.f _name,
demo_diag.l_name,

demo_diag-date,
demo_diag-diag,
dx.desc

From mine.demo_diag, mine.dx

Where demo_diag.diag = dx.diag;

Quit;
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=0l

Bre £k vew Tods Fun Sotions Window telp =15 x|
~ DR SR DA (D sX08
lesults E| libneme mine 'o:ideletemsihow’; El
l\?“lﬂ.‘;
{9 S0L: The SAS System CIPRDE SOL:

Select demo diag.id no,
dhemo_ding.f_name,
demo_diag.1_name,
dema_diag.dace,
dema_diag.-ding,
dx.desc

From mine.demo_diag, mine.dx

Vhers demo_diag.disg = dx.disg;

Quit:
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Notice the log. It does not display the number of observations. You need to know your data and what
number of observations you would expect, when using PROC SQL.

W SAS - [Log - (Untithed) | =10] %]
[l rbe Ede wew Tods Sohbors Window bbb = TS
«[  HosEadimec Dl +08
Ermgine: vE s
BT A Physical Hane: o:'deletenc'how |
R Resks  [I[s
i S0L: The SAS 11E  PADC BOL;
T S0k The 345 St 117 Select deno disa.id no,
118 deno_diay. T _nase ,
113 deno”diag. 1 _name
120 denu_diay.date,
121 drnn_diag ding,
122 dx.desc
129 From mine.deno_diay, mime.dx
124 Where deno_diag.diag = dw.diag:
125 Wuit:
NOTE: PROCEDURE SOL usmed :
real tine 0.01 seconds
Gp Lime 0.01 secoms
K} S
P Rlenas () Outpud - Lty [T Lo - ittty ) oy ™ |
HOTL: Lines have been deared. [ Ciprogram Flestsas Insthutsl5ASWE | L
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Note also that this is an example of an inner join. An inner join is the result of variables that are in one table that
have a match in a second table. These are also called equijoins. An equijoin combines tables based on a
common variable in both tables, eliminating the redundant columns.

i.e. Where a.id = b.id

And your output should look like this:
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Keep in mind that you can join more than one table at a time. In fact PROC SQL can join up to 32 tables. The
syntax for two tables would look like this:

PROC SQL;

SELECT *

from mine.demographic, mine.rem_sleep

WHERE demographic.id_no = rem_sleep.id_no
and demographic.place = rem_sleep.place;

quit;

While both the data step and PROC SQL can be used for one to many merges, where PROC SQL becomes very
powerful is when accessing huge datasets. When using small datasets, the data step may be just as efficient as
PROC SQL but when accessing huge datasets or large tables with many rows and many columns, PROC SQL is
more powerful and generally uses less resources.

MANY TO MANY MATCHES

Let's use a new rem sleep dataset that contains multiple sleep evaluations for each of our Disney families. The
study is now several years in funding, and every participant was asked to complete a second and third sleep time
to establish average REM times. Some families were able and some were not. We need to merge the two tables
of multiple sleep REM values. This is an example of many to many merge. Use PROC SQL when the merge is a
many to many merge and especially when some data is missing. Go into the program editor, clear the log and
output window, and type the following code, then execute the code by using the submit icon on your toolbar.

libname mine "c:\deleteme\how" ;

Data a (keep = id_no f name 1 _name date diag);
Set mine.demo_diag;

proc sort;
By id_no;
Run;

proc print data=a;
run;

Data b;
Set mine.rem_two;
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proc sort;

By id_no;

proc print data=b;

Run;

Data all;

Merge a (in=x) b (in=y);
By id_no;

Run;

Proc print data = all;

Run;
=il
[ Fle Fde Wew Tods Run Soltions Window Help == x|
v Fbed SR L vEw (el s X0
5L S libname mine 'ciideletemaihow' ;l
Flpata a (keep = id_no I_name | _name date diagl;:
Fet Ldeme_diag:
o
run:
Data b:
St mine,demo_dx:
Siprac b
By ding:
proc print datash
R
Data ally
recas a bi
by diadg,
Hun;
Froc print datsa 11
Bun;
o ;IJ
&P R [ ontpu - {Litthenty | ] o - kit |Imuj_'\-m..'\-m.' |@F.n.. Usititled? * |
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What you get is messy and incorrect. The best way to do a MANY to MANY MATCH is with PROC SQL. This is
particularly true if some of the values are missing, as PROC SQL will adjust for this condition.

Let's do a many to many merge with PROC SQL using the WHERE diag on demo_diag matches diag on
demo_dx. Go into the program editor, clear the log and output window, and type the following code, then
execute the code by using the submit icon on your toolbar.

PROC SQL;

SELECT demo_diag.id _no,
demo_diag.-f _name,
demo_diag.-1_name,
demo_diag.-date,
demo_diag-diag,
demo_dx.desc

From mine.demo_diag, mine.demo_dx

Where demo_diag.diag = demo_dx.diag;

quit;
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From mine.demo_diad, mine.demo_dx
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This output is correct with correct diagnoses for each member of the study.
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Let’s look at the log.
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Notice the log for PROC SQL does not confirm the number of observations, as the log does when using the data
step! This can be a real disadvantage of SQL. With the data step you see exactly how many observations were
read in for each data step. Checking the log can help you to be assured that the data you are getting is the data
you really want. With SQL, YOU MUST KNOW YOUR DATA! If not, use only a few observations, using the
INOBS = n option on the PROC SQL statement,

i.e. PROC SQL inobs = 10;

The INOBS = option restricts the number of rows (observations) that PROC SQL will process.
Check the log:
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CARTESIAN PRODUCT

If you join two tables without using the WHERE clause, you will get the product of the two numbers (a Cartesian
product). 20 x 20 = 100. Generally, a Cartesian join is accidental. Usually if you want to join two tables you are
intending to do a concatenation, using SET. An accidental Cartesian, when done on a large table can bring your
system to it's knees. 10,000 rows x 10,000 rows may be more than your system resource allocation will allow.

If your intent is to accomplish a Cartesian product ,this is difficult to do using traditional data step processing. For
example a table with 20 observations in one table, and 20 observations in the other table will result in 400
observations in total. Cartesian products can best be accomplished by the use of PROC SQL. Here is an example
of a Cartesian product but PROC SQL was smart enough to know this isn't what we really want to do, because
we should be using a where statement.

Let's make an intentional programming error. Go to the SAS Editor window, clear the log and type the following
code, then execute the code by using the submit icon on your toolbar.

PROC SQL;
CREATE table all as
SELECT *
from mine.demographic, mine.rem_sleep;
QUIT;

Since id_no appears on both tables, you will see an error message as a result of trying to do a Cartesian product
(a join without a where clause) on two datasets, a many to many merge. Most Cartesian products are accidental
and are resource intensive.
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OUTER JOINS

In contract to an inner join, an outer join retrieves records from both tables but only returns those observations
that do not match the first table. When you join two tables, the first one may have rows that don’t have matching
counterparts in the second table. Conversely, the table on the right may have rows that don’t have a match in the
table on the left. If you do an inner join on those tables all the unmatched rows are excluded. There are three
types of outer join, left outer, right outer and full outer join. The syntax is similar to the inner join, except that you
substitute outer for inner. The left outer join preserves unmatched rows from the left table but discards unmatched
rows from the right table. Right outer joins preserves unmatched rows from the right table but discards unmatched
rows from the left table. You can use this on the same tables and get the same result by reversing the order in
which you present the tables in the join: Full outer joins combine the functions of the left outer join and the right
outer join. It retains the unmatched rows from both the left and the right tables.

UNION ALL

Suppose you have three tables that you wish to concatenate. You can use the SET statement in SASg to
concatenate the tables. Or you can use the UNION ALL, as long as all the variables in all the tables are input in
the same position. This type of union creates another table that has everything, all the columns in all the source
tables.

The Disney participants used three separate sleep labs. The data for those three labs needs to be combined into
one table. LAB1 was housed in Magic Kingdom and contains 11 sleep evaluations (rows of data) for the Mouse
family. LAB2 was in Epcot Center and contains 9 sleep evaluations (9 rows) for the Duck family. The third sleep
lab was in Animal Kingdom and contains 12 sleep evaluations for the Bunny, Goat and Beaver families. Using a
traditional data step to concatenate we would use the SET, instead of MERGE. Go into the program editor, clear
the log and output window, and type the following code, then execute the code by using the submit icon on your
toolbar.

libname mine “c:\deleteme\how";

Data a;

Set mine.labl;
proc sort;

By id_no;

Run;

29



NESUG 2006 Hands-On Workshops

proc print data=a;
run;

Data b;
Set mine.lab2;

proc sort;
By id_no;

proc print data=b;
Run;

data c;
set mine.lab3;

proc sort;
by id_no;
run;

proc print data=c;
run;

Data all;
set a b c;
By id_no;
Run;

Proc print data=all;
by id_no;
run;
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B Rosuke bata n:
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Always check the log when running data steps. Let's examine the log.
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Observe the number of observations in the final table ALL. We would expect to see 32 observations, 11 from A, 9
from B, and 12 from C. Look at the output window and observe that the final dataset appears clean and
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Now let's use a UNION ALL in PROC SQL. One quick and dirty way to do a UNION ALL is to simply use the
asterisk function that says “Give me all the variables”. This works beautifully if both tables have the exact same
format. If the tables are union compatible, i.e share the same format, the resultant table would be all the rows in
the first table, plus all the rows from the second table. Go into the program editor, clear the log and output
window, and type the following code, then execute the code by using the submit icon on your toolbar.
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libname mine "C:\deleteme\how";
PROC SQL;

CREATE table all AS
SELECT * From mine.labl

UNION ALL
Select * from mine.lab2;
UNION ALL
Select * from mine.lab3;
quit;
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Always check your log. Make sure that the row counts are what you expect.
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If on the other hand, the tables are not union compatible, you can use the UNION ALL and explicitly define the
variables that you wish to concatenate. Explicitly listing the columns that you want rather than relying on the *
shorthand is usually a good idea. It is quite possible that even though the tables were union compatible when you
first ran the query, when running the query later, one of the tables could have been modified. The resultant tables
are no longer union compatible. Explicit definition is always safer.

Let's do a join with explicitly defining the variables. Go into the program editor, clear the log and output window,
and type the following code, then execute the code by using the submit icon on your toolbar.

libname mine "C:\deleteme\how" ;
PROC SQL;

CREATE table mine.all AS
(C

Select id_no, f name, I _name, eval _time, date, rel, sex, age, days, cost
from mine.labl

UNION ALL
Select id_no, f _name, 1I_name, eval_time, date, rel, sex, age, days, cost
from mine.lab2

UNION ALL
Select id no, f name, 1 _name, eval _time, date, rel, sex, age, days, cost
from mine.lab3
] );
quit;
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UNION ALL
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Check the log. With UNION ALL, you will see how many total rows and columns were created.
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UNION DISTINCT
If you want duplicate rows eliminated from the final table use the UNION DISTINCT function. It behaves like the

UNION ALL, but returns only non duplicate rows.
libname mine "C:\deleteme\how";

PROC SQL;

CREATE table mine.all AS

(
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Select id _no, f name, I _name, eval _time, date, rel, sex, age, days, cost
from mine.labl

UNION DISTINCT
Select id_no, f name, I _name, eval _time, date, rel, sex, age, days, cost
from mine.lab2

UNION DISTINCT
Select id_no, f _name, 1I_name, eval_time, date, rel, sex, age, days, cost
from mine.lab3
) );
quit;

CONCLUSION:

PROC SQL is a very powerful addition to your SAS bag of tools. When working with huge datasets, the CPU and
resource savings can be dramatic. The beauty of PROC SQL is that the data does not need to be sorted like with
the traditional data step. This Hands-On Workshop is intended to get you started exploring the SQL procedure in
SAS. Each of the PROC SQL statements that we have discussed has many additional capabilities which are
beyond the scope of this paper. And while we used the Display Manager in SAS to submit the code, check the
log and list file, the PROC SQL syntax will work on any platform, whether you are running on the mainframe,
UNIX, or SAS Version 9's Enterprise Guide.
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