
Paper 11-28

1

A Serious Look Macro Quoting
Ian Whitlock, Westat, Rockville, MD

Abstract

You can make decisions macro with %IF and do looping
with %DO-loops. But there are times when you don't
understand why the beast does what it does. Now what?
It is time to come to this presentation.

It is time to take a serious look at macro quoting. I have
often said that anyone who thinks macro quoting is simple,
probably doesn't understand the problem; so I have been
there. Now I want to explain how simple it is.

Everything relevant to this paper is in SAS®/BASE.
Although the examples have been executed on a PC
under Windows, the examples are independent of any
particular operating system with the exception of file
definitions.

You might think this paper is a compendium of all the
macro quoting functions. It is not. It is more about the
subject of macro quoting than about the macro quoting
functions.

Introduction

Quoting in macro is really a difficult subject so, let's begin
on safer ground with a familiar context, SAS. How and
why does quoting arise? There has to be some way to
distinguish the instruction parts of the language from the
values acted on by those instructions. Consider the
assignment:

x = abc ;

The question is, what is on the right, a variable or a value.
The SAS rule is that if it begins with a letter or underscore
and continues with letters, underscore, or digits it must be
a variable. Hence values must be distinguished. Quoting
comes to the rescue. Quoting is used for character
values, but not numeric ones. Why is it, that the values
are distinguished and not the variable names? Well
programs typically refer to many more variables than
values; so it is more efficient to quote the values than
distinguish the variables. Moreover it is traditional with
many programming languages for the same reasons.

Now consider:

x = 123 ;

Here the number, 123, cannot be taken for a variable
name so there is no need to quote. In fact, it would be
wrong because then we could not distinguish the number
from the character string, "123".

To repeat: Why are character values quoted? So that they
can be distinguished from other elements of the SAS
language.

The same problem occurs in ordinary conversation. Is
Boston a six letter word, or is it a city? Again one
distinguishes the literal value by quoting it, i.e. putting it
between quote marks.

SAS macro is a programming language for manipulating
text that is to become a SAS program, or part of a SAS
program. So the first order of business is to decide how to
tell the instructions from the SAS code. Macro uses a
different technique from SAS. The %-symbol is used to
begin macro instructions and the &-symbol to reference
variables, so the instructions are distinguished rather than
the values acted upon. Everything not required as part of
an instruction is data, i.e. bits of SAS code. This decision
was important and a good one. Either the values or the
instructions must be distinguished in some form. Since
the values are bits of SAS code, it would be most awkward
if SAS code were required to be quoted: 1) Because we
are not used to it, and 2) Because the SAS code in a
typical macro can be quite extensive.

Also notice that we cannot distinguish the macro
instruction objects with quote marks since they already
have a meaning in SAS. Macro instructions are
distinguished by beginning with a %-symbol and macro
variable references are distinguished with the &-symbol.
This means that most of what is left will be constant SAS
code. The exception is that once an instruction is begun
certain objects will be required in certain places; hence
they may be considered part of the instruction without
further need to distinguish.

The other consequence from this is that all true macro
quoting must be done with macro functions because quote
marks are not available for this purpose.

We should look at an example in detail. Consider the
macro instruction assignment:

%let x = ABC ;

The %LET indicates an assignment instruction. The X is a
macro variable name. Why doesn't it need to be
distinguished from an X in SAS? %LET requires the
macro variable name to follow the %LET; hence there is
no need to distinguish. The X cannot be a SAS object.
Moreover, it would be most inconvenient to distinguish the
X because %X would reference a macro X whose job
would be to create the macro variable name, and &X
would be a macro variable reference whose value is to be
the name of the assigned variable. Thus a new symbol or

SUGI 28 Advanced Tutorials

2

function would become necessary to make the distinction.
Fortunately the macro language follows the rule: Don't
distinguish when it isn't needed. In this case quoting
would be quite wrong and the macro facility would not
understand the instruction if we quoted the macro variable
name. What about the equal symbol? Same principle; it
is an expected part of the instruction and hence it would
be wrong to quote it.

Now what about the ABC? Well, the rule is that this has to
be a value because everything after the equal sign up to
the semi-colon except for leading and trailing blanks is
part of the value. So once again there is no need to quote
it, although in this case the language permits it. Please
note that quoting here means the use of a macro quoting
function, not the simple use of quote marks. Why?
Because the quote marks would be part of the value.
They would not indicate quoting. In macro quoting must
be achieved through the use of functions or new symbols.
Wisely the SAS Institute chose not to introduce new
symbols for this purpose. So in macro when we talk about
quoting, we mean the use of quoting functions.

To repeat: the value ABC could be enclosed in a quoting
function, but there is no need to do so and it is a good idea
to avoid quoting when there is no need for it. The use of
quoting functions will make the reading of macro code
very much harder; hence avoiding unnecessary quoting
should be one of the chief reasons to come to an
understanding of when and why quoting is needed.

Finally we come to the semi-colon in the %LET instruction.
It ends the %LET instruction, but semi-colons also end
SAS instructions, so there is a conflict - who owns the
semi-colon? Macro, as the active language, owns any
semi-colon that could end a macro instruction. However,
all other semi-colons are just data and ready to be part of
the SAS code generated, i.e. they are not part of a macro
instruction, they are passed on to the SAS compiler. If the
SAS compiler is looking for the end of an instruction then
the semi-colon provides the end. Otherwise the semi-
colon is simply a null statement in SAS. Of course
unexpected null statements in either SAS or macro can
cause all sorts of difficulties and therefore should be
avoided. This is the reason why it is important to not place
semi-colons after macro invocations.

Now we have a problem. What if we want the semi-colon
to be part of the value of a macro variable? Somehow we
must tell macro that this is not the kind of semi-colon that
ends a %LET statement. Thus quoting has become
necessary in spite of the decision to distinguish macro
instructions with % and & symbols from the data, SAS
code. Now how did that happen? We allowed the semi-
colon to be part of both the macro language and the SAS
language; hence it will sometimes be necessary to
distinguish the semi-colon as data, i.e. part of SAS code,
from the semi-colon as the end of a macro instruction. To
repeat: Any time a collection of symbols can have a

meaning both in SAS and macro, it will become necessary
to distinguish which language has control, whenever the
context within a macro instruction cannot do so.
Consequently quoting will be needed for this purpose.
The macro quoting functions are used to make these
distinctions, not quote marks.

The advantage of using the semi-colon to end macro
instructions is that we are used to using semi-colons for
ending instructions. Hence the syntax of the language is
easier for the beginner to grasp. However, it comes at the
expense of opening the door to requiring a complex
system of quoting. Remember that was precisely the
problem presented above in the discussion of SAS
assignments. There ABC was allowed to be a variable
name and a character string so quoting became
necessary to distinguish which was meant. In the case of
SAS it is hard to imagine how the problem could have
been avoided. In the case of macro the decision was
made to reuse standard SAS symbols such as the semi-
colon; i.e. making the programs look familiar, rather than
trying to invent a completely new set of symbols.

Before turning to the details of the macro quoting functions
it is a good idea to step back and consider the quoting
problem further. In ordinary English, a sentence is just a
sentence, so something is either quoted or not, and it
stays that way in the sentence. The macro language is
different because there is a time when the macro facility
compiles the instruction, a time when the SAS code is
generated from the instruction, a time when SAS receives
and compiles the generated code, and a time when SAS
executes the executable image of the code. Thus the
same collection of symbols may need to change their
quoted status depending on at what time we consider the
instruction. Consider the SAS instruction:

put "abc" ;

What gets written? Well just the letters. What happened
to the quote marks? They are used to indicate the value,
but they are not part of the value. So quoting is removed
when the value is used. Usually the only time one has to
worry about the situation in SAS is when a character string
is passed to an operating system. In that case the
operating system may also require quoting, i.e., the
operating system does not expect a raw value but rather a
quoted one. Since most of SAS programming does not
involve passing strings to an operating system, the
problem is not ubiquitous and often goes unnoticed.

Now consider the situation in macro. The semi-colon
quoted to macro, must appear unquoted to SAS. As a
general rule any macro quoting must be removed as the
values are sent to SAS. Usually this activity is performed
automatically, just as SAS does when processing the
above PUT statement.

Did we open the door to quoting anywhere else? Yes.
What about the =-symbol in macro instruction:

SUGI 28 Advanced Tutorials

3

%let x = abc ;

An =-symbol already has meaning in SAS, so we might
expect situations where it will be necessary to hide the
equal sign from the macro facility through quoting. The
elements AND, OR, NOT, +, -, LE, NE, EQ, parentheses,
space, comma and period, in addition to others all have a
meaning in SAS and in macro instructions, so they are all
ready to cause you much grief. In version 9.1 the word IN
will be added to this list so it is still growing as new
features are added to the macro language.

I have often wondered whether we might have been better
off with the symbols such as the ones in the parenthetical
list, (%; %+ %- %& %and %not %, %(%) etc.) The fact
that many people write fine macros with little or no macro
quoting, suggests that the correct decision was made.

To sum up, it is the fact that same word or combination of
symbols can have meanings in both SAS and macro that
is the root cause for requiring quoting. A computer
language must provide some means for distinguishing
values from instructions. If any symbols or collection of
characters are meaningful as part of an instruction and as
part of a value, then the problem of quoting will arise.

The same problem occurs in mathematics, when one
wants to talk about a formal system, there must be a way
to distinguish the language of the system talked about
from the language in which it is discussed. These
distinctions are not natural for the human mind and require
considerable effort to understand. Hence one can predict
hard problems wherever quoting becomes a serious
subject. Of course, the same problem occurs in ordinary
language. We must be able to distinguish what we say
from the subject we talk about. Remember the statement:
"Boston" is a six letter word and Boston is a city with many
people living in it.

SAS, like English, uses either single or double quotes to
do the job of quoting. It would be impossible for macro to
choose the same method since the language distinctions
must be made. In macro quoting is achieved through
macro functions.

The problem gets still more difficult because it is important
to recognize two distinct times - macro compile time, when
the instruction is compiled; and macro execution time,
when the instruction is carried out, i.e. the SAS code is
generated. So a time element must also be introduced.
When does the quoting take place? For example,
consider

%let x = &macvar ;

Suppose the value of the variable MACVAR, which is
&MACVAR, is a semi-colon. Now there is no need to hide
the semi-colon from the macro facility at compile time
because the macro compiler does not see the value,
&MACVAR. It sees the word, &MACVAR, not the semi-
colon. During execution there might be a need to hide this

value, i.e. when generating the SAS code. This means
that the subject of quoting in macro must be inherently
harder than the subject in SAS or in any computer
language that is not dealing with another computer
language.

The problems of quoting for SAS macro are closer to the
corresponding difficulties in meta-mathematics. The
common experience of most programmers does not
usually require the intertwining of two languages.
Consequently, it takes an effort to do any macro coding
and a greater effort to develop the intuition necessary to
handle macro quoting. This is what makes the subject
hard.

At this point it would be well to recognize that quoting is
about the concept of hiding the meaning of various
symbols from various parties at various times.
Consequently it will often be easier to think in terms of
hiding rather than quoting. For example: What do you
want to hide? From what part of the system do you want
to hide it? When must it be hidden and when should it be
revealed? We will often use the language of hiding rather
than that of quoting, but the subject is the same. If you
keep the three basic questions in mind and think in terms
of hiding, then the subject becomes easier. Why?
Because the human mind has developed over millions of
years in which hiding was important, i.e. it is natural to
your thought process in a way that quoting is not.

The %STR quoting function

The most basic quoting function is %STR. It does the job
of hiding symbols at macro compile time. In other words,
if you want to express a value that could be interpreted by
the macro compiler as part of an instruction, then it must
be hidden. Usually the %STR function is the best one for
the job. By far the most important example is the semi-
colon, with the space symbol close behind in second
place. This means that one can write many useful macros
no more macro quoting knowledge than how to hide semi-
colons and spaces with %STR. The manual gives a
complete list, but it easier to think of the problem. %STR
will hide any symbols that are meaningful to the macro
compiler with some important exceptions.

Now how long will the meaning remain hidden? The
hiding done by %STR will continue through macro
execution time as long as the value is not modified.
Consider:

%let x = %str(;) ;

%put abc &x def ;

Here there is no problem. We get the message:

abc ; def

SUGI 28 Advanced Tutorials

4

on the log. During the execution of the %PUT instruction
the semi-colon in the value of X will remain hidden. Thus
it will not cause the instruction to be prematurely ended.

However the situation changes when macro functions act
on a value. Consider:

%put %upcase(abc &x def) ;

When executed we get:

ABC
NOTE: Line generated by the macro function
"UPCASE".
1 ABC ; DEF

 180

ERROR 180-322: Statement is not valid or it
is used out of proper order.

Clearly the semi-colon terminated the %PUT instruction.
What happened? %UPCASE removed the quoting from
its argument in changing the letters to upper case.

However, we shouldn't jump to conclusions too fast. The
program:

%macro semicolon ;
 %local x ;
 %let x = %str(;) ;
 %put abc %upcase(&x) def ;
%mend semicolon ;

%semicolon

will execute without a problem. What happened?

The first %PUT was in open code. As it is being compiled
the %UPCASE function is applied and produces a semi-
colon. So the %PUT is finished.

Now consider the %PUT in the macro. Here the macro
compiler does not evaluate the expression,
%UPCASE(&X). In fact it cannot be evaluated because
the value of X does not yet exist, since the %LET
statement has not executed. The evaluation must be
done at execution time. Remember the code between the
%MACRO statement and the %MEND statement is
compiled, not executed.

Common confusion on this point comes from the situation
where one macro calls another. Which has to be compiled
first? It does not matter. When the calling macro is
compiled there is no guarantee that the called macro will
already have been compiled. The only requirement is that
it be compiled by the time the first macro executes the call
to the second macro.

The physical semi-colon at the end of the %PUT line is
seen by the macro compiler as ending the %PUT
statement. Now consider the execution of this compiled
statement. The %UPCASE function does produce a raw
semi-colon, but what is to be done with it? It does not end

the compiled %PUT statement, and it does not get passed
to SAS. This is a good example of how symbols gain
macro meaning only through their context. The semi-
colon under question has no meaning and is simply written
to the log; hence there is no error. In short, that semi-
colon did not need to be hidden in the compiled %PUT
statement, and it did in the open code %PUT statement
because evaluation of the open code %PUT argument
took place while looking for the end of the %PUT
statement.

Note that this means, in general, that any macro statement
capable of both compilation and direct execution should
really be treated as two different types of statements. The
problem with the %PUT is not due to some mistake in
developing the language. It is inherent in the logic of the
situation. The existence of any macro variable values or
macros at the time of compiling a given macro is a mere
coincidence. That fact is central to understanding how to
use the macro language.

Now we see that a careful understanding of the macro
processing of a macro instruction will require knowing
whether or not that macro instruction is to be compiled
first. Moreover, we see that it can violently affect whether
quoting is needed or not. Macro quoting is not only hard
because it is a hard subject; it is also hard because one
must understand subtle differences in the macro
processing involved.

Now back to the problem, remember we were considering
how long the quoting action of %STR lasts. In general,
macro functions remove quoting when they are executed,
otherwise the value stays quoted until it is passed to SAS.
The exceptions are functions which begin with the letter
"Q". For example,

%let x = %str(;) ;

%put %qupcase(abc &x def) ;

writes

ABC ; DEF

without any problem in either open code or from a macro.
Many of the non-quoting macro functions now come with a
corresponding Q-version.

In general, the symbols that can be hidden by %STR do
not matter because they only gain meaning in macro
through specific contexts. Thus quoting is often not
necessary. So when is quoting needed?

The %EVAL does arithmetic and consequently logical
evaluation. Remember that the expression, 1 + 1, is just
an expression of three characters. To do the arithmetic
indicated, we need the expression %EVAL(1 + 1). But the
whole language of arithmetic expressions and logical
evaluation is shared by both SAS and macro; hence there
are lots of little things to cause trouble whenever %EVAL
is used. Note that all of the expressions inside the

SUGI 28 Advanced Tutorials

5

following calls to %EVAL also have a similar SAS
meaning.

%eval (&x and &y)
%eval (&x or &y)
%eval (&x ne &y)
%eval (&x > &y)
%eval (&x le &y)

The symbols, (and, or, ne, >, le) do not have a meaning in
macro outside of the contexts that expect them, but they
definitely do in expressions evaluated by %EVAL. You
may write macro code without ever using a %EVAL, but
you cannot avoid the issue because this function is called
wherever an instruction or function expects an arithmetic
expression. For example, consider:

%if ... %then ___ ;

Whatever goes between the %IF and the %THEN must be
fed into %EVAL for logical evaluation to 0 or 1. In short
the %IF statement has an implied call to the macro
function, %EVAL. The statement

%do i = ... %to ... %by ... ;

has three implied calls to %EVAL, and the expression

%SUBSTR (&string, ... , ...)

has two, as indicated by "...".

It is chiefly %EVAL that we must hide meaning from.
Once you realize this it is easier to eliminate unnecessary
quoting and concentrate your efforts where they are most
needed. It also means that we can often remove the
problem from a complex macro and use the statement,

%put %eval (quoted expression) ;

as a simple test to find out what we need to know about a
quoting function. However, it is important, to remember to
use the %PUT in a macro as was previously demonstrated
using the macro named SEMICOLON.

Pair Symbols

Now what about quote marks, how does the macro facility
treat them? Unlike SAS, in macro they are always part of
the value being indicated and thus become a part of the
generated program. However, they are also meaningful!
The macro facility expects then to come in pairs, and it will
not resolve macro expressions inside single quotes. That
means that single quote marks indicate quoted materail to
the macro facility. Double quotes were introduced into
SAS when the macro language was developed in order to
provide SAS with quoted material in which the macro
facility would be able to generate the quoted expression.
For example in the string, "%M", the macro facility will use
the macro M to determine what the string will be
generated. On the other hand, '%M' is just a four-
character string.

All of this means that sometimes quote marks must be
quoted, i.e. their meaning hidden from the macro facility.
%STR does not directly hide them, but it provides the %-
symbol as an escape character to allow such quoting, i.e.
under appropriate conditions the character following a %-
symbol is quoted (does not have its meaning). For
example, consider the use of the code,

%macro label ;
 John's salary
%mend label ;

in the SAS assignment

label = "%label" ;

It does not work because the single quote mark is
meaningful, i.e. the %MEND statement becomes part of
the value; hence the macro cannot even be compiled.

Using the escape character we have

%macro label ;
 %str(John%'s salary)
%mend label ;

The enhanced editor will growl at this code because it has
not been taught about quoting, but it is legal and will
execute correctly.

This feature can also be used for parentheses, which
would be part of the value, but also have a macro meaning
that what is begun must be finished.

It is important to note that the %-symbol is not a general
escape character; it only becomes an escape character
when in an appropriate macro quoting function and in an
appropriate context. For example, in

%str(%m)

The argument is a reference to a macro, M, and the %-
symbol is not an escape character.

The %NRSTR quoting function

One can write

%str(%%m)

to mean just the two characters, a %-symbol followed by
the letter M. However there is a second function,
%NRSTR, which acts like %STR at compile time and
hides all of the same symbols, except that it also hides the
%-symbol and the &-symbol. One way to view this is that
%STR hides the SAS meaning of symbols from the macro
facility at compile time and %NRSTR hides in addition the
macro meaning of symbols, i.e. the macro triggers. The
macro triggers trigger a rescanning process in the macro
facility; hence the NR in %NRSTR means no rescan.

In general quoting functions come in pairs, one to hide just
SAS meaning and one to in addition hide macro meaning.

SUGI 28 Advanced Tutorials

6

Unquoting

Sometimes it is necessary to reveal the meaning of
symbols at macro execution time that required hiding at
macro compile. This means we need an %UNQUOTE
function to remove macro quoting.

We have functions to control levels of quoting and when
the quoting action takes place. Why is there only one
function for removing macro quoting? There is only one
state of having a symbol revealed and from the macro
facility point of view that time is at execution time. Note
that revealing a quoted meaning at compile time would
simply means it shouldn't have been hidden at compile
time in the first place.

Do not confuse %UNQUOTE with the newer SAS function
DEQUOTE. DEQUOTE changes the value, while
%UNUOTE changes the meaning but not the value.
DEQUOTE is a convenience while %UNQUOTE is a
necessity.

Note that this means a plain comma and a quoted one will
be compared equal by %EVAL. For example, when the
following code is executed,

%macro equal ;
 %local x ;
 %let x = %str(,) ;
 %let x = %unquote (&x) ;
 %put eval of &x=%str(,) ;
 %put %eval (&x = %str(,));
%mend equal ;

%equal

it will produce a 1 on the log as the result of the
evaluation. But this is an important point, how do we know
that %UNQUOTE really did its job and that X holds the
unquoted version of the comma? Well we could add a line

%put %substr (a &x b, 1 , 1) ;

When this is done, SAS screams that the %SUBSTR
function has too many arguments. Why? It is because
there is an extra comma that came from the reference &X.
When the %UNQUOTE line is removed there is no
screaming because %SUBSTR does not see &X as
meaning a comma.

Incidentally, it looks like the macro facility may not look
inside the parentheses following the %SUBSTR at compile
time. The assumption can be proven by executing the
following macro.

%macro comma ;
 %local x ;
 %let x = ab, 2, 1 ;
 %put %substr (&x) ;
%mend comma ;

%comma

Here we see that it would be impossible to consider the
correctness of the argument to %SUBSTR at macro
compile time, because the value of X does not yet exist.
No quoting was used in the above example because none
was needed. In fact it is important that the commas in the
value of X not be quoted at the time of the evaluation of
%SUBSTR (&X). In general, the macro facility does not
look at the argument of a macro function at compile time.
Of course, %STR must look at the argument at compile
time because this is when %STR does the hiding; but it
can do no evaluation of variables or resolution of macro
calls at this time since in general, they do not exist at this
time.

Just how much does the macro facility not look at macro
function expressions? Consider:

%macro q ;
 %local x p1 p2 ;
 %let p1 = (;
 %let p2 =) ;
 %let x = ab, 2, 1 ;
 %put %substr (&x &p2 ;
 %put %eval &p1 1 + 1 &p2 ;
%mend q ;

%q

This code correctly writes a "b" on one line followed by a
"2" on the following line. Note that the macro facility did
not even need to see a parenthesis for the %EVAL
function. In the case of the %SUBSTR expression the left
parenthesis is essential, but not the right one. It is
inconsistencies like this that make it hard to know exactly
what one can do and what one cannot. However, in this
case, it is fortunate that using macro variables for the
parentheses makes the code hard to read, and there is
little need for this use of macro variables.

In the macro named EQUAL, I used two %LET statements
for clarity. Now consider:

%let x = %unquote(%str(,)) ;

It accomplishes the same thing, but is a little harder to
think about. If we unquote what is quoted, how is anything
accomplished? Remember %STR acts at macro compile
time, while %UNQUOTE acts when the %LET assignment
is executed. So, in fact, the combination simply means
hide the argument from the compiler, but do not let it stay
hidden at execution time. It is your choice whether to say
this in one assignment or two.

Throughout this discussion, I have referred to %STR as a
macro function, as do the manuals and almost everybody
referring to %STR. However, we have seen that %STR is
not a function in the sense that %SUBSTR is a macro
function. It would be clearer to think of it as a special form
of compile time directive in the disguise of a function. I will

SUGI 28 Advanced Tutorials

7

continue to refer to it as a function, but remember that is
just another little way to make macro quoting a confusing
subject. %UNQUOTE, on the other hand, is a true macro
function.

To see the power of %UNQUOTE, consider a %LET
assignment with a macro invocation on the left side of the
equal. For example,

%macro makename ;
 x
%mend makename ;

%macro q1 ;
 %let %makename = 77 ;
 %put &%makename ;
%mend q1 ;

%q1 ;

The first macro, MAKENAME, generates a variable name
in the simplest manner possible. The macro, Q1, makes
the assignment correctly and then perhaps naively tries to
use it. The result is

&x

instead of the expected 77. What went wrong? Well you
can see that the macro MAKENAME did it's job, however,
it must have done it too late for the &-symbol to indicate
resolution of the named variable. The macro facility saw
an &-symbol but did not see it as calling for the value of a
variable, since the macro facility did not see a name did
not immediately following the &-symbol at compile time.
Remember macro names begin with a letter or
underscore. So first an &-symbol was generated and then
an X was generated and both were written to the log.

What about the first %LET? There was no problem here.
Whatever comes between the %LET and the =-symbol
must be the name of a macro variable, and no test is
made at compile time. This suggests that the =-symbol
must be seen by the macro facility at compile time. It is
easy to prove by making a macro variable to hold =-
symbol, but remember the %LET must be inside a macro,
i.e. compiled, because the open code %LET does not
mind generating the =symbol.

Since the &-symbol was not understood, let's try unquoting
to make sure the compiler understands.

%macro q2 ;
 %let %makename = 77 ;
 %put %unquote(&%makename) ;
%mend q2 ;

%q2 ;

We get the same thing. Oops, remember that
%UNQUOTE works at execution time while we have
already seen that the macro facility makes a decision
about the meaning of the &-symbol at compile time. Well

we have learned something anyway. What? The decision
is made once at compile time and that quoting is not used
to record that decision. The only thing left is to hide the &-
symbol from the macro facility at compile time. Then no
decision will be made and now the %UNQUOTE will force
the issue. Can the decision to evaluate be made during
execution? The use of macro variable references in open
SAS code would suggest that it is a necessary feature of
the macro facility. Consider:

%macro q3 ;
 %let %makename = 77 ;
 %put %unquote(%nrstr(&)%makename) ;
%mend q3 ;

%q3 ;

First the %NRSTR hides the &-symbol from the macro
facility at compile time so no decision is made as to what
the symbols mean. The macro call is not in the argument
of the %NRSTR. So it will be resolved at execution time.
The %UNQUOTE now does two things. It reveals the &-
symbol, and it glues that symbol to the name X thus
creating a reference to the variable. Now as we
conjectured the macro facility must have a way to do the
evaluation of the reference, &X, and it does. So the
number, 77, is now written to the log.

Perhaps you have now learned why you never saw a
macro invoked on the left side of the =-symbol in a %LET
assignment. But there is a more important lesson here.
%UNQUOTE can glue together symbols to make macro
objects when the macro compiler does not see them as a
macro object. Note that

%put %unquote(%nrstr(&))%makename ;

does not give the correct result. Why, because the macro
facility sees the &-symbol and the name as two separate
things rather than as a macro variable reference.

In this case, I forced the macro facility miss the evaluation
of the desired "macro variable reference" in the macro Q1.
However, it is easy to see that there is room enough for
confusion that the macro facility can make a mistake and
interpret consecutive symbols as separate entities and
hence do the wrong thing. It is particularly confusing when
the problem is passed on to SAS as a line that looks
perfectly good but gets an impossible error message
because the SAS compiler got mislead by the macro
facility. Often a judicious use of %UNQUOTE will cure the
problem.

One important example comes from quoting quote marks.
Consider the code:

%macro mkfn ;
 %let dir = c:\junk\ ;
 %let mem = mystuff.txt ;
 filename q %str(%")&dir&mem%str(%");
%mend mkfn ;

SUGI 28 Advanced Tutorials

8

options mprint ;
%mkfn

The log produced

ERROR: Error in the FILENAME statement.
MPRINT(MKFILENAME):
 filename q "c:\junk\mystuff.txt" ;

Note that there is no hint of what went wrong. The
FILENAME statement looks perfectly good. It could be
copied from the log and run without problem. You could
complain that there was no need to quote the double
quote marks, however, there is also nothing against this
quoting. It follows all the rules and the quoting should be
removed when the text is passed to SAS.

I think the problem is that the macro facility does not
automatically unquote macro quoted quote marks. In any
case, explicitly unquoting each quote mark individually
cures the problem:

filename q
%unquote(%str(%"))&dir&mem%unquote(%str
(%"));

There is nothing special about the fact that I chose a
FILENAME statement, although that together with the
construction of operating system commands is where one
is most likely to want this form of quoting. However, it
usually comes from some requirement to enclose an
expression in single quote marks where macro references
are required in the expression.

To study the problem with single quotes consider this log
based on the same principle as before, but with more SAS
involvement.

21 %macro assignchar ;
22 %let x = abc ;
23 data w ;
24 z = %str(%')&x%str(%') ;
25 run ;
26 %mend assignchar ;
27
28 options mprint ;
29 %assignchar
MPRINT(ASSIGNCHAR): data w ;
NOTE: Line generated by the invoked
macro "ASSIGNCHAR".
1 data w ; z = '&x' ; run
;

 180
ERROR 180-322: Statement is not valid
or it is used out of proper order.

 -
 386

 202
MPRINT(ASSIGNCHAR): z = 'abc' ;
MPRINT(ASSIGNCHAR): run ;
ERROR 386-185: Expecting an arithmetic
expression.

ERROR 202-322: The option or parameter
is not recognized and will be ignored.

Again the quoting of the single quotes is not needed, but it
is not incorrect according to any published rules of which I
am aware.

I still think the problem is the failure of the macro facility to
automatically unquote the macro quoted single quote
marks. However, in this case it is more serious. Look at
what happens when %UNQUOTE is applied to each
quoted single quote mark separately. A little code has
been added after the macro is invoked in order to recover
from the error and reveal it.

50 %macro assignchar ;
51 %let x = abc ;
52 data w ;
53 z =
%unquote(%str(%'))&x%unquote(%str(%'))
;
54 run ;
55 %mend assignchar ;
56
57 options mprint ;
58 %assignchar
MPRINT(ASSIGNCHAR): data w ;
MPRINT(ASSIGNCHAR): z =
59 *';
60 put z= ;
61 run;

z=&x%unquote(___) ; run ;*

Note that the first quote mark got unquoted correctly
(confirming the conjecture that it was not previously
unquoted), but the second quote mark did not. Note the
&X in the value of Z. This indicates that the macro facility
did not see the macro variable reference. What
happened? After handling the first quote mark, the macro
facility is now processing an expression that begins with a
single quote. Remember that we quoted it in the first
place to avoid this situation. Now the macro facility treats
everything as literal until the closing single quote. But this
means that the closing %UNQUOTE will not be seen and
consequently not acted upon; hence the macro facility has
no way to work itself out of the single quoted expression
that has been started unless there is a bare single quote
at the end. This is impossible because the compiler
expects quote marks in pairs. The underscores, shown
above, inside the parentheses are how the Courier New

SUGI 28 Advanced Tutorials

9

font translated the boxes shown in the SAS log in the
display manager for unprintable characters.

Please observe the problem is a logical one. You cannot
allow quote marks to have a meaning to the macro facility
and also allow them to be both quoted and unquoted
separately. As soon as the first is unquoted, the second
by definition can never be unquoted because the macro
facility does not look inside a quoted expression. Thus the
failure to automatically unquote single quote marks
presents one with logical inconsistency.

The resolution of the problem lies in unquoting the entire
expression rather than the individual problem points. On
the other hand, I never understood the problem because I
always used that solution. Use:

z = %unquote(%str(%')&x%str(%')) ;

Here the macro facility must look at the expression and
resolve the reference, &X before the process of unquoting
the expression. I think quoted single quote marks cannot
be automatically unquoted without falling into the trap
demonstrated above; hence the problem was never fixed
and never will be. It is less clear why the problem cannot
be fixed for double quotes.

Are there any other cases, where the macro facility fails to
unquote macro quoted material? I no longer know. I did
see some examples years ago before version 6, but I have
not been able to reconstruct them and I do not know
whether it is because the problems were fixed or it is
simply that I no longer remember the circumstances well
enough t recreate the conditions.

In any case, the older documentation gave the simple rule:
If the mprint looks good and the SAS compiler does not
understand it, then try %UNQUOTE.

Execution time macro quoting

We have seen that compile time macro quoting is
sufficient for hiding symbols known at compile time. In
other words, you have coded the symbol and the compiler
sees it. That is the problem, you do not want the compiler
to see it. %STR or %NRSTR will do the job.

Now consider a macro variable. Suppose it has a problem
symbol in its value. The compiler has no problem
because it does not resolve macro variable references.
However, there is an execution time problem, when the
variable reference is resolved. Thus there are times when
you do not wish to hide the reference, but rather the result
of what that reference produces. For example, I might
have a comma separated list, say,

%let list = A, B, C ;

that I want to manipulate. The expression

%SCAN (&list, 2)

cannot be used because at execution time the macro
facility will see too many commas. %STR and %NRSTR
are hopeless because they act at the wrong time.

The macro facility provides %QUOTE and %BQUOTE, to
solve the problem. %QUOTE hides the standard stuff, just
as %STR did. It can handle explicit pair symbols by using
the %-symbol as an escape character, and the values of
macro variables in some cases. For example:

%let rp =) ;
%put %eval (%quote(%&rp) = %str(%))) ;

works fine at hiding the meaning of the value of RP, i.e. a
right parenthesis. But it fails miserably when a letter is put
in front of the right parenthesis. For example:

%let rp = x) ;
%put %eval (%quote(%&rp) = %str(x%)));

%BQUOTE fixes some bugs in %QUOTE and adds the
ability to handle pairing problems that arise from
evaluation at execution time in a more general fashion.
For example suppose you want to find out whether the
value of a variable RP is a right parenthesis or not. The
macro facility has no problem at compile time, but %EVAL
will when it is prematurely ended. Using %BQUOTE cures
the problem.

%let rp = x) ;
%put %eval (%bquote(&rp)=%str(x%))) ;

Their cousins %NRQUOTE and %NRBQUOTE are kind of
funny. For example, they do not hide macro variable
references. They hide the meaning of an &-symbol when
it cannot be part of a macro variable reference. For
example, consider:

%let a = b ;
%let b = q ;
%put %eval(%nrbquote(&&&a)=q) ;

Here the reference &A is evaluated to B and then the
reference &B is evaluated, so it is clear that the &-symbol
is not being hidden.

%SUPERQ hides all meaning of the result of the first level
evaluation of a macro variable. However, you must be
careful to understand what this means. It does not mean
the variable is not resolved. It means that nothing in the
value of that variable will be resolved. Moreover, you
must be careful to omit the &-symbol in the %SUPERQ
reference to a variable. In other words,

%superq(a)

references the variable A, but no macro symbols in the
value of A will be evaluated. If there are &-symbols in the
argument of %SUPERQ, they will be processed. So what
does

%superq(&a)

SUGI 28 Advanced Tutorials

10

mean? A is a macro variable that names a macro
variable, say B. So be is evaluated but no further
rescanning will take place. The code:

%let a = b ;
%let b = q ;
%put %eval(%superq(a)=b) ;

produces a 1 because A evaluates to the letter b.

However,

%put %eval(%superq(&a)=b) ;

is false because %SUPERQ(&A) resolves to the letter q.

Conclusion

I began this paper thinking that I could present a complete
reference to the macro quoting functions. However, I did
not cover all of them or even everything about some of
them. Instead I decided that it was far more important to
present the ideas and tools to allow you to investigate and
understand macro quoting.

Just as you can only come to understand the DATA step
by writing a great many very short DATA steps, so you will
have to write a great many short macros with some macro
quoting function involved in order to get a sound
understanding of the subject. If you have come to realize
how much there is to understand about the subject and
how to go about finding out that information via little study
macros, then I have achieved my purpose.

Macro quoting is hard because:

• Quoting is inherently a hard subject.
• The interaction between two languages makes

quoting harder.
• The timing issues involved are complex, when

the generated language compiles and executes
during the generation of its code.

• There are two macro languages involved - the
one which is compiled between %MACRO and
%MEND statements and the one which executes
immediately in open SAS code.

• Bugs in the macro facility prevent recognition of a
consistent pattern of how macro quoting works.

The choice of problem and the choice of what kind of
macro to write, can help the macro programmer to avoid
much of the macro quoting difficulties simply by avoiding
area where one is likely to face symbols that will need
quoting. However, the restriction will prevent the
development of some interesting programs, and the macro
programmer is not free to avoid all quoting issues.

In writing a macro program there will always be a tradeoff
between readability and absolute protection from what the
consumer may provide to your macro. It is often wise to
avoid a quoting issue when it is rather unlikely to occur.

In the abstract I suggested that the person who thinks
macro quoting is simple, doesn't understand the problem.
I began to doubt the truth of that statement, but now see
why it must be true. I hope that in reading this article, you
too have come to a better understanding of why. Never
again should you be intimidated by someone who tells you
that macro quoting is simple.

The author may be contacted as follows:

Ian Whitlock
Westat
1650 Research Boulevard
Rockville, MD 20850

Email: IanWhitlock@westat.com

The contents of this paper are the work of the author(s)
and do not necessarily represent the opinions,
recommendations, or practices of Westat.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

