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What Is In This Book
Thank you for getting this book! This book contains examples of different types
of hypothesis testing to determine if you have a statistically significant result. It
is intended to be direct and to give easy to follow example problems that you
can duplicate.  In addition to information about what statistical significance is,
or what the normal curve is exactly, the book contains a worked example for
these types of statistical significance problems

Z Test
1 Sample T Test
Paired T-Test   ( 2 examples )
2 Sample T-Test with Equal Variance
2 Sample T-Test with Unequal Variance

 
Every example has been worked by hand showing the appropriate equations
and also done in Excel using the Excel functions.  So every example has 2
different ways to solve the problem.   Additionally, this book includes a

Z Table
T Table

Along with the functions that you can use to create your own Z-Table or T-
Table in Excel

 

If you want to help us produce more material like this, then please leave a
positive review for this book on Amazon. It really does make a difference!



Your Free Gift
As a way of saying thank you for your purchase, I’m offering this free
Hypothesis Testing cheat sheet that’s exclusive to my readers.

This cheat sheet contains information about the 5 main types of hypothesis
tests, including an example of when you would use them, the equations that
drive them, and the Excel functions for the equations.   This is a PDF document
that I encourage you to print, save, and share.  You can download it by going
here

http://www.fairlynerdy.com/hypothesis-testing-cheat-sheets/
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Statistical Significance Overview
When you are testing for statistical significance, the equation you are asking is,
how unlikely would this outcome have been if it just happened by random
chance?

For instance, say you are a farmer trying out a new type of pig food.  You are
trying to determine if the new food makes the pigs gain weight faster.  To do
this test, you try the new food on 10 pigs, and the old food on 10 pigs.  After a
month, you measure the weight of all the pigs and find that the pigs who ate the
new food gained more weight.  Does that mean the new food caused the
increased weight gain?

Well, maybe.  Maybe the new food caused that result, or maybe you just
happened to give the new food to the 10 pigs that were always going to gain
the most weight no matter what.  How can you tell?

What we are doing with statistical significance calculations is determining
how unlikely an outcome was to occur by random chance, and then deciding if
that probability is unlikely enough that we can conclude something other than
random chance caused that outcome.

The two most important things in a statistical significance calculation are the
distance the average value of your measured data is from what you are
comparing it against, and the standard deviation of what you are measuring.  It
is easy to understand how the difference in measurements is important.   If I am
making some measurements, and I measure a difference of 100 compared to the
typical mean value, that is more likely to be significant than if I measured a
difference of 5.   The greater the difference in measurements, the greater the
significance, assuming that all other values are equal.

 

Standard Deviation
Standard deviation is the second important topic in calculating statistical
significance.  It is worth going over how the standard deviation works. 
Standard deviation is a way of measuring how spread out your measured
values are. If the values you are measuring are all clustered together, they will
have a low standard deviation.  If they have a lot of variation in the



measurements, they will have a high standard deviation.

As an example, pick a coin from your pocket, for instance, a quarter if you are
in the United States.  If you measure the weight of 10 of those coins, they will
probably all weigh about the same.  After all, they were all manufactured to be
similar. Now if you go outside and find 10 rocks approximately the size of
those coins and measure the weight of those rocks, there will be a lot more
variation in the weight of the rocks.  The standard deviation of the weight of
the rocks is higher than it is for the coins.

The image below shows what we typically think of when we think about
standard deviation.  There is a mean value at the center of a normal curve.   If
you make another measurement of the same type of data it will fall somewhere
on that normal curve, with decreasing likelihood the farther you get away from
the mean value.



With a typical normal curve

68 percent of the data will fall within 1 standard deviation of the mean
95 percent of the data be within 2 standard deviations
99.7 percent of the data is within 3 standard deviations

 

With hypothesis testing, what we are doing is turning that chart around and
asking the question in reverse.  Now what we are doing is putting a normal
curve around our measured data, and asking the question “How likely is it that
this measured data comes from the same source as the reference data?"  We are
asking how many standard deviations the reference value is from our mean
value.   This is shown in the chart below.

 



Now this might seem like it was a useless distinction.  If the reference value
was two standard deviations away from the measured value, then the measured
value will be two standard deviations away from the reference value.   That is
completely true, but only if we only have a single piece of measured data.



The Most Important Concept In This Book
We now get to the single most important concept in understanding statistical
significance.  If you understand this, then you understand statistical
significance. The rest of it is just knowing when to apply which equation. 
Because of its importance, we will spend the next couple pages going over this
concept a few difference ways.

The concept is this: We do not care about the standard deviation of our
data. What we care about is the standard deviation of the average value
of all of our measurements. And that standard deviation of the average
can change as you make additional measurements.

This is shown in the chart below. Like the chart above, it has a normal curve
centered on the mean values of the measured data. However, due to the fact that
there are more measurements in this data, rather than just the single
measurement in the chart above, this normal curve is narrower



Since the normal curve is narrower, the reference value falls farther away from
the measured average, in terms of the number of standard deviations.  As a
result, we will conclude that it is less likely that our measured values and the
reference value came from the same set of data.

 



Why Does The Standard Deviation Of The Mean Decrease With More
Measurements?

We stated that what we are interested in is the standard deviation of the
average value of all of the measurements we make.  The standard deviation of
that average value decreases as you increase the number of measurements
made.  Why is that? Fortunately, we don't have to use complicated math to
explain this topic.  You have almost certainly seen it before, although you
probably didn't think about it in these terms.

The example we will use to demonstrate what happens is the result you get
when you roll 1 die, vs 2 dice vs. an increasing number of dice.

If you roll a single die, you are equally likely to get a 1, 2, 3, 4, 5, or 6.  Each
value will come up one-sixth of the time, so the probability distribution of a
single die rolled six times will have each value coming up one time.



 

Now what happens if you roll two dice, and add their values? Well, there are
36 different permutations of die rolls that you can get out of two dice, 6 values
from the first die, multiplied by 6 values from the second die.  However, there
are only 11 different sums that you can get from those two dice, the values of 2
through 12.

Those 36 different die permutations don't map evenly onto the 11 different
possible sums. You are more likely to get values in the middle of the range than
values on the edges. The probability distribution of the sum of two dice is
shown below.



The single most likely sum is a 7, which is why casinos make that value a
number that they win on in the game of craps.

For our purposes, the key point is that the probability of outcomes is more
concentrated in the center of the graph for two die rolls than it is for a single
die roll. That concentration of probability into the center of the graph doesn't
stop with 2 dice.  If you sum the value of 3 dice there are 216 different
permutations of rolls (6 * 6 * 6) mapped onto 16 possible values (3-18).   The
probability distribution for 3 dice summed is shown below.



Even though it isn’t quite as visually obvious as going from 1 die to 2 dice,
summing 3 dice has a greater concentration of probability in the center of the
graph than the sum of 2 dice. That process would continue if we kept rolling
additional dice.

So far with these dice, we've talked about the sum of the dice values.   Now
let’s talk about the average value.  To calculate the average value, just take the
sum and divide by the number of dice.  So for instance if you rolled a sum of 7
on 2 dice, then your average value was 3.5.

The probability distribution of the average value for 1, 2, and 3 dice rolled is
shown in the plot below.



This plot makes a few things obvious

Not matter how many dice are rolled, the average value is always
centered on 3.5.  This is because the average of all the numbers on a
single die, (average of 1, 2, 3, 4, 5, 6) is 3.5
As you increase the number of dice, the probability of getting an average
value that is on the edges of the range decreases dramatically. The bulk
of the probability shifts to the center of the graph

It might be surprising that the probability for every single possible average for
3 dice is lower than their counterpart for 2 dice, and also for 1 die. That is
because as you increase the number of dice, the probability is spread among
more possible outcomes. There are only 6 possible outcomes with 1 die, but
11 possible outcomes with 2 die and 16 possible outcomes with 3 die.   In
order to get consistent probability distributions with different numbers of dice,
we can use a histogram and ‘binning' to make sure the probability is spread
among the same number of outcomes.



That wouldn’t plot very well for 1, 2 and 3 dice; however here is a binned
result of the probability distribution for the average roll when rolling 5, 10,
and 20 dice.

As you can see, the greater the number of rolls, the more the probability
distribution of the average value is clustered around the average value of 3.5
and less at the edges. This means that the standard deviation of the average is
decreasing as you increase the number of samples used to calculate it.

We can, in fact, calculate the standard deviation of the average for a given
number of dice.  For a single die, this is just the population standard deviation
of [1, 2, 3, 4, 5, 6], which is 1.7078.   For two dice, it would be the population
standard deviation of the 36 possible average values (11 distinct values) of [1,
1.5, 1.5, 2, 2, 2, 2.5, 2.5, 2.5, 2.5, 3, 3, 3, 3, 3, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 4, 4,
4, 4, 4, 4.5, 4.5, 4.5, 4.5, 5, 5, 5, 5.5, 5.5, 6], which is 1.207615.   Fortunately,
there are more efficient ways to calculate the standard deviation than listing
out every single value (by using a weighted average of the squared difference



from the mean).  When you calculate the standard deviation of the average for
all numbers of dice between 1 and 20, you get the plot below.

As expected, we see that the standard deviation of the average continues to
drop as we increase the number of samples.  The other notable thing about this
plot is that the rate of change begins to level off.  Adding a few more dice
drastically decreased the standard deviation of the average at the beginning,
but it takes a greater and greater number of dice to get the same amount of
change.

In practical terms, what this means for statistical significance is that there is a
diminishing return to getting more data to use in your statistical significance
calculation.  At the beginning additional data will make a large change,
however, eventually the cost of acquiring additional data will outweigh the
benefit.

The plot below is the same as the plot above, except with a regression curve
fit on the data.



What we can see is that the regression fit the data exactly. The rate of change of
the standard deviation of the average is equal to the standard deviation of the
population, multiplied by the number of data points raised to the power of
negative one-half.   A power of one-half is the same as a square root.  A
negative power is the same as dividing by that number. Rewriting the equation
to incorporate those changes



Here the 1.7078 is the standard deviation of the population of average values
with 1 sample (i.e. [1, 2, 3, 4, 5, 6]). We will denote that with a sigma. Here
‘x’ is the number of dice.   In later problems instead of ‘x’ denoting the number
of dice, the equations use ‘n’ to denote the number of measurements. If we use
those symbols, this equation becomes

Although it varies slightly depending on the problem in question, that sigma
and the square root of n appear in pretty much every variation of the statistical
significance equations that we use in this book.  What they are demonstrating is
that the standard deviation of the average of the samples is the standard
deviation of the samples (sigma) divided by the square root of the number of
samples. Or to put it another way, as you increase the number of samples, the
resulting average of your measurements is increasingly likely to be close to the
true population average, just like we saw with the dice rolling.

 



Variations Of Statistical Significance Problems
This book works through several different variations of statistical significance
problems.  Some of the problems are like this one, where you are comparing
your measured value with a known baseline value using a known standard
deviation.

However, in other problems, you might not know the baseline value for sure
either. The baseline value might have variation in it that might or might not
match the variation in your measured values.  That would look something like
this



In other examples, not only might you have unknown variance in the mean
value, you might also have variance in your standard deviation.  That would
cause the shape of the normal curve to shift and put more probability towards
the tails of the curves and would look something like the lower, more spread
out orange line below.



The Process We Will Use For Every Example
The overall process of finding statistical significance

1)       Determine how many standard deviations our outcome is from the
average outcome.
2)      Look up that level of standard deviation in a probability table to find
how unlikely it is that the outcome would occur by random chance.

Depending on the data in question, there are a couple of different ways to find
how many standard deviations an outcome is from the mean, and there are a
couple of different probability distributions to choose from.

The following examples go through each of those options to help you determine
when each different equation is the right one to use.

The first example below shows calculating the statistical significance of a set
of data when you already know what the baseline result is.  I.e. if you can look
up the typical blood pressure results for adults who are 50 years old, and all
you need to calculate is how different the results of your test are, you would
use this process, which is known as a Z test and demonstrated below.



Example 1 – Z Test
In this example imagine you are working at a hospital looking at the birth
weights of the 30 most recent male babies at your hospital.  You would like to
conclude that mothers give birth to heavier babies at your hospital than they do
nationwide, on average.  (Doubtless, this is due to your exceptional care, but
since that is hard to prove, let’s start by just determining if the babies are
heavier)

The average birth weight for an American boy is 7.5 lbs., with a standard
deviation of 1.25 lbs.

Using the table below, can you determine, with at least 95% confidence, if
male babies born at your hospital exceed the national average weight?





The Z Test Equation:

The process for finding the solution to this problem is

1. Determine if a Z test is appropriate to use, or if not, what test should be
used

2. Find the Z statistic
3. Determine if we need a 1 tailed or a 2 tailed p-value
4. Find the p-value from the Z table, and compare to our desired confidence

level

 



Step 1 – Determine What Test To Use
As we stated in the introduction, there are a couple variations of statistical
significance testing, depending on the parameters of your data set.  In this case,
we were supplied with the baseline mean and standard deviation data, which
means we don't need to calculate those values from our own data set.  We also
have a moderate number of data points, 30 in this case.  

The reason we are using a Z test instead of a T-test like we do in the later
examples is that the standard deviation of the population is provided for us,
and we expect that our sample matches the population.  Some sources will
state that you can use a Z-test if you have more than 20-50 data points.  (The
exact number is a bit of a judgment call).  This is not exactly true.  What is
actually occurring is that as the number of samples increases, the T test
converges on the Z test. We will get into that in more detail in later examples. 
For now, let's see how to apply the Z test to this example.

 



Step 2 – Find The Test Statistic
The equation for the Z Statistic is

Where
x̄ is the sample mean

u0 is the population mean

σ  is the population standard deviation

n is the test sample size
 
Note the sigma divided by the square root of n in this equation.  This is the
standard deviation of the average of the data that we discussed earlier, in the
example with the average rolls when rolling multiple dice.

 
This is the typical form of the Z equation.  Personally, however, I prefer not to
have the fraction within a fraction.   So if you pull the square root of n to the



top of the equation, it looks like this.
 

To me, this makes it clearer that a larger sample size (bigger n) will serve to
increase the Z value.
 
The data from the problem was

The population mean value, u0, is 7.5 lbs.
The population standard deviation, σ, is 1.25 lbs.
The number of samples, n, is 30
The average of the samples,  x̄, is 7.8333

 
The resulting equation is

Which becomes
 

 
So the calculated Z statistic is   1.461
 



 



Step 3 - 1 Tailed or 2 Tailed
1 tailed or 2 tailed is asking the question if you just want to find out if you are
different than the baseline value, or if you care which side of the mean your
measured average is on.  For instance, if you want to determine if filling your
pickup truck with rocks changes your gas mileage, you would use a 2 tailed
distribution. Theoretically, it could improve or reduce your gas mileage. If you
want to determine if the rocks improve your gas mileage, you would use a 1
tailed distribution. (Side note, they don’t)

Since the problem asks us to conclude if we are greater than the average, not
just different than the average, we will use a 1 tailed Z value. 1 tailed vs 2
tailed is shown graphically below.

 

Step 4 - Look up our Z value in the Z table, and get the p-value

One thing to be cautious of when extracting results from a Z table is exactly
what kind of table you are using. What table to use, or how to use it, is partly
based on if you need a 1 tailed or 2 tailed result. All Z tables are based on the
same standard normal curve. A standard normal curve is a normal curve with a
mean of zero and a standard deviation of 1.0



All Z tables have the same source of data. However, that data can be used in
different ways. Some tables can show values filled in from the left

 

Others filled in from the middle

Some might be filled in from both sides, instead of a single side



Typically if the table you are looking at doesn’t have what you need, you can
convert it to a different format by subtracting the confidence values from 1, or
by multiplying or dividing them by 2.

In this case, we are trying to determine if we are greater than the average.  We
want a Z table equivalent to this graph

And we want to determine if our data is far enough to the right that 95% of the
area under the curve is filled in.



This is a 1 tailed Z Table, from the left

To read a Z table, you look up the whole number and first decimal of the Z
value from the leftmost column and match that with the 2nd decimal of the Z
value from the top row.



Since our Z statistic is 1.46, we look up 1.40 going down the left-hand column,
and .06 going across the top row.  Where that column and row matches is the
cumulative probability which is .9279 in this case.

 

That means 92.79% of the area is at a Z value less than the value we calculated
for our data.

Subtracting .9279 from 1 results in a 1 tailed p-value of .0721.    Since we
want 95% confidence or greater, we would need a p-value of .05 or less to
satisfy that condition.  So we cannot say with 95% confidence that the weights
in this hospital are greater than average



What Can Change The Results
We did not get our desired 95% confidence.  How can we get higher
confidence? Let's work the problem backward to see what would need to
change for us to have 95% confidence that our hospital had heavier babies. 
That result would require a value of .95 on the Z table.  That value equates to
having a Z value of at least 1.65, which we know by looking up .95 and the Z
table and seeing the column and row Z values that generate the .95 confidence.

The equation that we used to calculate the Z value was



We see a couple of things. The x̄ and square root of n relate to our test results. 
The u0 and σ values relate to the whole population. We can assume that we
cannot affect the population as a whole (for instance by making every other
baby born be lighter). So the numbers we can affect are what is occurring in
our hospital.

To be more confident that our hospital has higher weight babies than average,
we either need to make our babies even heavier compared to the average, or
increase the number of samples.  Of those two options, the most viable is
probably increasing the number of samples. 

If we leave every other number the same, to get a Z value of 1.65 we can solve
for the required n value.

This results in an n value of 38.3.  Since we can't have a partial sample, this
would require 39 samples.  We already have 30 samples, so if we measured 9
more babies and got the same average we have now, we could make the claim
with 95% confidence that babies born in our hospital were heavier than the
national average.  (Of course, when making those 9 measurements our average
could go up or down.)

 

 



The Diminishing Return Of Increased Samples
Although in this example we were able to reach our desired confidence level
by making additional measurements, it is worth knowing that the effect of
increased measurements has a diminishing return.  This is due to the square
root in front of the n.  As you increase n from 1 to 100, this is how the square
root of n effect would change

Each subsequent doubling in the value of the square root requires 4 times as
many measurements.



Example 1 Summary Table

A table summarizing how we solved this example is shown below.   To get the
p-value from the Z table in Excel, I used the function

=NORM.S.DIST(xxx,TRUE)

 

 



Doing The Z Test in Excel

So far we saw how to calculate the Z value and turn that into a confidence
level.  But sometimes you just want an answer.  There are some statistical
software packages that you could use.  But the software you are most likely to
have is Excel. If you just want to do the Z test in Excel, it is quite easy. You
just need the function

= Z.Test(array, x, [sigma])

Where

Array is the data to test, in this case, it would be the 30 sample weights
from the hospital
x is the population mean, in this case, the 7.5 lbs. average population
weight
[sigma] is the population standard deviation, in this case, 1.25 lbs.  
Sigma is in brackets because it is optional. If you don't include it, Excel
will use the sample standard deviation from your sample data.

The p-value from the Z test in Excel gives the same result as the hand
calculation

 
Get The Data & Excel Functions

If you want the excel file that contains all of the example data and solutions, it
can be downloaded for Free here   http://www.fairlynerdy.com/statistical-
significance-examples/



But What Is The Normal Curve?
What is the physical meaning of the normal curve?  And what is the math to
generate it?

After all, many constants that we use every day have physical meaning beyond
their mere value.  Pi is 3.14159…, but it is also the ratio of the circumference
of a circle to the diameter of that circle

Since you don’t have an infinitely fine ruler to measure the diameter and the
circumference, one of the many ways to calculate Pi is

Pi = 4 * (1/1 – 1/3 + 1/5 – 1/7 + 1/9 – 1/11 + 1/13 ……)

 

e is another commonly used number. You see the exponential e appear in many
places.  It has the value of 2.71828….    But it also has a physical meaning.  If
you have a unit of growth, and then cut the intervals you are compounding on to
infinitely small, you get e.  For instance, if you have a 100% interest rate, and
compound 1 time, you end up with 200% of your starting money.  If you have a
50% interest rate, and it compounds twice, you end up with 225%.  If you keep
cutting the time intervals down infinitely fine, eventually you will plateau at a
growth of e.  This is why e is used to calculate continuously compounded
interest.   (This site has a great explanation of e  
https://betterexplained.com/articles/an-intuitive-guide-to-exponential-



functions-e/ ). 

You can calculate e by calculating the value of (1 + 1/n)^n as n goes to infinity. 
If you do that for the first couple values of n you get

n = 1 ->  (1 + 1.0/1)^1 = 2

n = 2 ->  (1 + 1.0/2)^2 = 2.25

n = 3 ->  (1 + 1.0/3)^3 = 2.37037

n = 4 ->  (1 + 1.0/4)^4 = 2.44141

When n is infinite you get e

 

But his is a book about statistical significance.  So what about the normal
curve?  What does it mean, and how can you calculate it?

It turns out that the normal curve was originally developed to approximate the
Binomial Theorem. Which tells you how likely an outcome is after a number of
discrete trials.

For instance, if I flip a coin 10 times, I can count how many times I get 0 heads,
1 head, 2 heads, etc. If I plot that in a histogram, it is similar to the normal
curve. The more discrete events I do, the more it approaches the normal curve. 
After infinitely many events, it matches the normal curve precisely.

The normal distribution shows up in many more real world locations than just
coin flips. For instance, a plant might have 10 genes that control its height.  For
any of those 10 genes, it could get the shorter version of the gene or the taller
gene. This is a binomial event, and as a result, the heights of the plants will
tend to follow the normal distribution.  So if you had 2^10 plants (1024 plants)
on average you would have on average

1 plant with 0 tall genes
10 plants with 1 tall gene
45 plants with 2 tall genes
120 plants with 3 tall genes
210 plants with 4 tall genes
252 plants with 5 tall genes
210 plants with 6 tall genes



120 plants with 7 tall genes
45 plants with 8 tall genes
10 plants with 9 tall genes
1 plant with 10 tall gents

A histogram of that distribution is shown below

This distribution has an average value of 5 tall genes and a standard deviation
of 1.58 tall genes.  If we change this into a probability distribution by dividing
all the numbers by 1024 total plants, we can compare the result again a normal
curve.  The normal curve we are comparing against was generated with a mean
value of 5 and a standard deviation of 1.5. This is shown below.



If you can’t see the two lines in the chart above, it is because they are nearly
right on top of each other.  And that is after only 10 events.  With sufficient
additional events, the binomial distribution and the normal distribution become
indistinguishable.  (For more about the binomial distribution you might check
out my book “Probability With The Binomial Distribution And Pascal's
Triangle”).

So that is an application of the normal curve in real life.  It is grounded in the
reality of the typical outcomes of events when subjected to random chance. 
But how can you calculate the normal curve without simulating infinitely many
random events?   As it turns out, there is an equation for the normal curve, and
that is shown below.



This is a probability density function. The factor of square root of 2 Pi at the
bottom of that equation ensures that the total area of the normal curve is one. 
The one-half on the top of the equation ensures that this curve has a standard
deviation of 1, and is hence a standard normal curve.

This equation will give a maximum value of one divided by the square root of
2 Pi at a value of x equal to zero.



Doing A T-Test, Which Is Slightly Different Than A Z Test
Let’s do another example that has one big difference from the first one.  That
difference is that the standard deviation of the population is not provided. In
real life, this will probably be more common, because really, how many things
can you just look up the standard deviation to?  

Let’s say you are testing if a new fuel additive makes your fleet of trucks more
fuel efficient.  Will you be able to look up what the standard deviation of the
fuel efficiency of those trucks is?  No, you’ll just have to measure it and
calculate the standard deviation based on those results.

This type of test, where you are using a standard deviation that you calculate,
is a T-test, as opposed to a Z-test.  This test is also knowns as a “Student’s T-
test”, not because it is primarily used by students, but because the developer of
the test in the early 1900's developed it under the pseudonym of "Student."

In addition to calculating your own standard deviation, the other big difference
between a Z-test and a T-test is that all Z-tests use the standard normal
distribution, and the T-test uses a different distribution that varies depending on
how much data that you have, a metric known as degrees of freedom (df).  The
reason that the T-test distribution changes based on how much data you have is
to account for the uncertainty you have in calculating your standard deviation.

Let’s say that you have 10 data points and you calculate the standard deviation
of those 10 points.  How do you know if that standard deviation matches the
population as a whole? You don’t.  Your sample standard deviation could be
high or it could be low. 

The chart below demonstrates the uncertainty that you have in getting standard
deviations from measurements.  The data was generated by taking the standard
deviation of a set of random integers between 1 and 10.  The true standard
deviation of that set should be the standard deviation of [1, 2, 3, 4, 5, 6, 7, 8, 9,
10] which is 2.872.  However I don’t have the true data set, what I have are
measurements drawn from that data set. For one line in the chart below I
selected 5 random numbers between 1 and 10 and calculated the standard
deviation of those 5 measurements.  For the other line I selected 10 random
numbers between 1 and 10 and calculated the standard deviation of those 10
measurements. I did that random selection 1,000 times for both groups and



made a histogram of the calculated standard deviations

The reason those curves are bumpy instead of smooth arcs is that the chart
above was made with data generated from random numbers, as opposed to
actual calculated values.

As you can see, in both cases there were times when the data overestimated the
population standard deviation and times when it underestimated the standard
deviation. However, the examples where there were 10 data points were
chosen had a greater probability of being closer to the actual standard
deviation.

The T-test accounts for this variance in the measured standard deviation by
changing the shape of the T distribution curve depending on how much data you
have measured (the degrees of freedom).  The less data that you have the more
probability is put towards the tails of the curves in the T-distribution compared
to the than the standard normal distribution. This is shown in the chart below,
where the T-distribution with 2 degrees of freedom (which is quite low) has a
lot more outlying probability than the Z-distribution.



The smaller the degrees of freedom in your test (I.e. derived from a smaller
data set) the more heavily the T-distribution weights the tails of the curves. 
The chart below shows how a T-distribution with a degree of freedom 5 has
less probability at the tails of the curves than a degree of freedom 2
distribution.



As you increase degrees of freedom, the T-distribution matches the normal
distribution more closely.  At approximately df = 30, there is very little
difference between the two distributions to the eye.  With a large enough
sample, the T-distribution will eventually exactly match the normal
distribution. The chart below shows the T distribution with a degree of
freedom 2, 5, 30, and 100.  There is a large change in distribution going from 2
to 5, and from 5 to 30; however, there is only a little change in the probability
distribution going from 30 to 100.  This is because the T-distribution with 30
degrees of freedom already closely matches the standard normal distribution
(Z distribution), so additional data samples that increase the degrees of
freedom only make small changes.



With a large enough sample, essentially what you have done is recreate the
population standard deviation.

 

Summary of a T-test

In a T-test, you have to use the sample data to determine the standard
deviation of the population, as opposed to it being provided
Because of the uncertainty in the standard deviation, the T-distribution
puts more probability at the tails of the probability distribution
With enough data, the T-distribution exactly matches the standard normal
distribution.  (i.e. you could use a T-table or a Z-table and get the same
result)
Enough data is usually assumed to be a df somewhere between 20 and
50.  (That value is something of a judgment call.  If you want to see how
T-distribution changes as you change the degrees of freedom, this online
tool is useful. http://rpsychologist.com/d3/tdist/ )

The following example shows the use of the 1 sample T-test.



Example 2 – 1 Sample T-Test
You have been told that the average height of female college students in the
United States is 5.5 feet.  You have measured 15 students at your college, and
want to determine if the average height at your college is statistically different
than the average across the U.S.

 

Here we know the population mean, 5.5 feet, but not the population standard
deviation.  We will have to derive that from our data.  (With this type of test
there is an assumption that the population standard deviation is not



systematically different from the data that we have. For instance, we didn't
intentionally admit students based on their height in order to make a narrow
distribution.)



The process for finding the solution to this problem is very similar to what we
did for the Z test.

1. Determine what test to use
2. Find the test statistic
3. Determine if we need a 1 tailed or a 2 tailed p-value
4. Find the p-value from the table, and compare to our desired confidence

level

 



Solving The 1 Sample T-Test

Step 1 – Determine What Test To Use

We have 1 sample set of data.  That sample set is only 15 measurements.  We
have a population mean, but not a population standard deviation.   Since we
don’t have a population standard deviation, and we have fewer than 20
samples, we will want to do a T test.   Since we have 1 sample, and we have a
population mean, it will be a 1 Sample T Test

These are the key points of our problem

We have exactly 1 set of data.  We don’t have a before and after.  We
don’t have a test group and a control group.  We have 1 and only 1 set of
data.
We do have a population mean to calculate our difference off of
We do not have a population standard deviation

These factors mean we should do a 1 sample T test. 

Keeping track of all the T-test equations, and when you should use them, can
get confusing.  If you want to get a one page PDF cheat sheet of all the T-test
and Z-test equations, and when you would use them, you can get it here
http://www.fairlynerdy.com/hypothesis-testing-cheat-sheets/



Step 2 – Find The Test Statistic
The equation for the test statistic is

Where
x̄  is the sample mean

u0 is the population mean

s is the sample standard deviation

n is the test sample size
 

This could also be re-written with the square root of n pulled out of the
denominator and be

 

Really this equation isn't different from the Z equation, except we use a sample
standard deviation that we calculate instead of the population standard
deviation that is provided. In both cases, we are calculating the number of
standard deviations outside the population mean that your data is, and factoring
that number by the size of the data (square root of n)

To calculate the sample standard deviation in Excel, you use the function



=STDEVA().  To do it by hand, you use this equation

 

What you are doing is

Take the difference of each item from the mean
Square that value
Sum all of the squares
Divide by the number of samples minus 1
Take the square root

Note that what we are using here is the sample standard deviation, which has
(n-1) on the denominator, as opposed to population standard deviation which
would have n instead of (n-1)

Doing that in a few columns looks like this



So in this example

x̄ = sample mean = 5.673

u0 = population mean = 5.5 (from problem statement)

s = sample standard deviation = .3105

n = test sample size = 15
 
 
The equation for the test statistic is



When we plug our values in, we get
 

 
So the T value is 2.16
 
Since this is a T-test, not a Z test, we cannot use the Z table. Instead, we need
to use the T table.  A T table is different than the Z table because it puts more
probability on the tails of the curve for low sample sizes.  To use a T table, we
need to calculate degrees of freedom, which is a measure of how large our
sample size is.
 
The equation for degrees of freedom for a 1 sample T test is
 

So in this case, df = 14



Step 3 - 1 Tailed or 2 Tailed
Once again we need to decide if we are just looking for any change in results,
or if we need change in a certain direction.

Since the problem just asks us if the results are statistically different, we will
use a 2 tailed T test.  Since the problem didn’t specify how confident we
needed to be, we will assume that we need at least 95% confidence.



Step 4 – Using A T-Table
With that information, we can reference the T Table

 



The T table is not the same as a Z Table. A Z table has the Z value along the
outside of the table.  The T table has degrees of freedom and the p-value along
the outside of the table. The reason the tables are different is that the T-table is
trying to cram an extra piece of information, the degrees of freedom, into the
same two-dimensional table. The degree of freedom controls the shape of the
probability distribution, so it is required information.  That problem of extra
information could have been solved by having many different T-tables, on for
each df value, but instead, the typical T-table simply shows less dense
information than a Z-table.

For instance, on a typical Z-table you can look up a Z-value to a .01 precision

But on this T-table the distribution of the test statistic is much coarser. For
instance, on this T-table with a degree of freedom of 14, you cannot look up a
T statistic between 2.62 and 2.14

If we desire a finer resolution than is in the T-table, we could interpolate the



values. Otherwise, we can use a source of the T-value other than this table,
such as Excel, to get a more precise value.

 

With 14 degrees of freedom and a T value of 2.16, we look that up in the T
table

 

The value of 2.16 isn’t in the T table, but the value of 2.144 is close enough. 
We can read up to see that the two-tailed confidence at this T value is .05. This
means that we are at least 95% confident that this college has a statistically



different height than the average.

 

Putting that all into one table

 

Excel generated the p value using the function

= T.Dist.2T(x, DF)

It returned .0484 which is slightly more precise than the .05 we got from the T-
table since we had to go with the closest value of 2.14, which didn’t precisely
match our T value

 

Doing a 1 sample T Test in Excel



Unfortunately there is no easy one line way to replicate a 1 sample T test in
excel.   You are forced to go through it step by step.   But using the equation
=STDEVA to get the sample standard deviation, and =T.Dist(), T.Dist.RT() or
=T.Dist.2T() to lookup a value from the T table makes it relatively painless



2 Tailed vs 1 Tailed Result
Noting that the previous problem asked us if the results were statistically
different than the mean, rather than statistically greater was important.   It
meant that we are asking the question to see if our mean value falls in either of
these parts of the probability distribution

As opposed to asking if it falls in this part

For data that falls in either of these two spots you can get a different result, in
terms of do you meet your required confidence level.



 
 

You will always be less confident with a 2 tailed test than a 1 tailed test.
(Assuming the 1 tailed test was pointed in the direction of your mean.)  The
reason is simple if you think about the confidence as area under the curve. 
With a 2 tail test you are missing the area on the opposite tail, for any given T
or Z value.



How Much Data Do You Need?
One question you might ask when working with data is “How much data do I
need to get a statistically significant result?”

With a Z test our answer was “At least 1 data point, depending on how
different those results are from the baseline results”  With a T-test our answer
is “At least 2 data points, depending….”

Why do you need at least 2 data points for a T-test when you only need at least
1 for a Z test?

The answer is found in the degree of freedom and sample standard deviation
equations.  Both of those contain an “n-1” in the equation. 

Degree of freedom equation

Standard Deviation Equation

With only 1 data point that would result in a zero.  A zero degree of freedom
results in an undefined T-distribution.  It also means a zero is on the
denominator of the standard deviation equation, which does not work.

More intuitively, standard deviation measures how far data points are spread
from the mean.  With one point, there can be no spread and the standard
deviation is undefined.  The reason we could get an answer with only 1 data
point in the Z test is that our standard deviation came from outside the data. It



was provided as part of the problem statement. 

The full answer to “How much data do we need to be statistically significant?”
depends on how small of a difference we are trying to measure.  To conclude
that a value is significantly different from the mean requires a lot less data if
that difference is large than if it is very small.



Paired T Test – When You Use The Same Test Subject
Multiple Times
The big difference between the second example and the first example was that
the problem didn’t provide a standard deviation in the second example; it
needed to be derived from the data.  The difference between this third example
and the second example is that a mean value isn’t provided in this example. 
Instead you get two sets of data representing a before and an after.  Instead of
calculating the difference from the mean, we will calculate how much the
“after” data set changed from the “before” data set and determine if that level
of change is significant.

The times when you would use this type of test is when you are measuring the
exact same individual multiple times (typically twice).  For instance you
would use this test if

You have a drug trial and measure a person’s blood pressure before and
after giving them the drug
You are making a new golf club and measure how far people can hit a
golf ball with a standard club vs your new club
You are a high priced restaurant consultant, and you measure weekly
sales in a restaurant before your visit, and after you come in to give
advice and make improvements

 

You would not use this analysis, and instead use a different equation if

You have a drug trial and give one group of people a placebo and the
other group your new drug, and measure the blood pressure of both
groups.
You give 10 people your new golf clubs and 10 people your old ones
and see how well each group scores on a round of golf
You measure the sale of restaurants you have consulted, and compare
them with similar restaurants in the area that haven’t utilized your
services yet

The key thing to remember is that this hypothesis test determines if distinct
individuals change in the period of time spanning two measurements.



Example 3 – Paired T Test
You weigh 20 people before and after a diet.   You want to determine with
99% confidence if the participants lost weight while on the diet.

The key things to note are

This is a paired T test because we have a before and after of each
individual
We are testing to see if they lost weight, not just if their weight changed

Data



Solving The Paired T-Test

Step 1 – Determine What Test To Use

For this problem we will use a Paired T test.  The reason – we have a before
measurement, and an after measurement for the same participants.

 

Step 2 – Find The Test Statistic

The equation for t for a paired T test is

Where
d̄ is the average of the difference between the after sample and the
before sample
s  is the sample standard deviation

n is the test sample size
 

This equation could be rewritten to be

Notice that this equation is almost the same as our previous T equation which



was

The only difference is instead of measuring the difference of a data set against
a known mean value, we are measuring how much the value changed against
another data set.  Other than replacing   (x̄ – u0) with d̄, the equation is exactly
the same.  And frankly the d̄ means almost exactly the same thing as the (x̄ – u0),
especially since d̄ could be written as (x̄new - x̄old)

d̄ is the average change in weight. Calculating it is as simple as subtracting the
old weight from the new weight for each item, and finding the average of that
value.

 



The average of the change in weight for this data is -5.35 lbs.

 

Sample Standard Deviation
To calculate the sample standard deviation the question is, which set of data
should you take the standard deviation on?  The before data?  Or the after
data?  The answer is neither. Take the standard deviation on the difference, the
d̄ column.  Note that this is the real reason that this equation is different from
the previous ones.  This is the reason you need to subtract each pair of data
individually instead of just taking the difference of the mean values.

The sample standard deviation of the change in weight column (found using
STDEVA() in excel, but see example 2 for a walkthrough of sample standard



deviation) is 5.6127 lbs.  Notice that this number is positive even though the
average change in weight is -5.35 lbs.  Standard deviation is always positive.

 

 

Number of Samples
The number of samples is 20.    This is a little bit tricky because we actually
have 40 measurements.  But for this Paired T Test, n is representing each pair
of measurements, and we have 20 pairs of measurements.

 

So for this example the values are
d̄  = -5.35

s  = 5.6127

n  = 20

 
Plugging our values into the equation results in
 

 
Since this is a T test, we also need degrees of freedom before we can look up
the result in the T table.   The equation for degrees of freedom is



 

 
So since we have 20 pairs of measurements, the degrees of freedom is 19



Step 3 - 1 Tailed or 2 Tailed
Since we want to determine if the participants lost weight on the diet, and not
just if their weight changed, we want a 1 tailed p value.  I.e. if they gained a
statistically significant amount of weight on this diet (the all chocolate diet) we
would get a negative result.

 

Step 4 - Find the p value from the table, and compare to our desired
confidence level

The T value that we have is -4.2628.  We are trying to determine with 99%
confidence that the new results are less than the baseline results.  This is
equivalent to determining if at least 99% of the area is to the right of -4.2628
on this T-distribution chart.



However T and Z tables aren’t always set up how you need them.   For
instance this T Table doesn’t have any negative values in it.  That is because it
is a table from the left, not the right. It is more common to see them set up from
the left, which is equivalent to finding this area



 

As opposed to finding this area, if the chart was from the right.



However since the T and Z distributions are symmetric, we can simply change
the sign of the T or Z value and use that value.   I.e. if you get a value for 2
standard deviations using a chart from the left, it would be the same as the
value you would get for -2 standard deviations using a chart from the right.

The other thing we could do with a curve starting at zero from the left (which
is not the chart that is shown in this book) would be to find the area to the left
of -4.2628, and subtract it from 1.0 to get the area on the right.

 

Getting The Confidence Level From Excel

Looking up a T value of 4.2628 and DF of 19 in excel using   = T.Dist.RT() we
get a cumulative p-value of .0002. In Excel, if I had used -4.2628 I would have
gotten the left slice shown in the chart above and would have had to subtract
the result from 1.0. Since .0002 is less than the .01 required for 99%
confidence, we can say that we are 99% confident that the participants lost
weight

I got the .0002 value from Excel. If I had looked it up in a T table, I would
have seen that a T value of 4.2628 is greater than 2.8609, which is the T value
associated with a 99.5% confidence, so I would have been able to answer the
question, but would not have been able to determine that the exact probability



was .0002 since the table does not have that level of detail

 

A p-value of less than .005 would be the best you can extract from this T table
due to its coarseness.   Excel was able to determine the p-value was .0002



Putting it all together into one table



Paired T-Test Excel Solution

You can do a Paired T test in a single line in Excel with the function

=TTest(array1, array2, tails, type)
In this case

array1 = before measurement
array2 = after measurement
tails = 1 tailed or 2 tailed     (1 tailed for this problem)
type      = what type of T-test    (1 for Paired T-Test for this problem)
 
 
When you plug in the before and after data into that excel function you get
.0002, just like the by hand solution



Finding If There Is A Change Of A Required Magnitude
Up until now all the examples we have done have merely asked the question
“Is there a statistically significant change?”  Sometimes we were interested in
the direction of change, other times only if a change existed at all. However,
there are times when you are also interested in the magnitude of change. 

Imagine that you are the chief data officer for a large chain of stores such as
Walmart. You have a new layout for your stores that you think will increase
sales. To test the concept, you direct 15 sample stores to change their layout
and get before and after results for those stores.  Those results show that the
new layout increased sales.

However, you need to know something else in addition to the mere direction of
change. You need to know if the change increased sales by at least 1 million
dollars annually per store. After all, making the switch to the new layout isn't
free. It will cost money to change all the layouts, and it is only worth doing of
the new revenue is higher than the old revenue by a quantity that is driven by
the cost of the project, not just a quantity-driven by statistical significance.

The next example reworks the previous problem to show how you can
incorporate a required level of change into the statistical significance
calculation.



Example 3A – Paired T-Test With Non-Zero Hypothesis
You weigh 20 people before and after a diet.   You want to determine with
95% confidence if the average weight loss was at least 4 pounds.   Note, this
uses the same data as Example 3, the only difference is instead of trying to
determine if the participants lost more than zero pounds, we are trying to
determine if they lost more than four pounds.  That subtle change will affect
our hand calculation and the one line Excel function. 

Data       



Solving The Paired T Test With A Non-Zero Hypothesis Problem:

Step 1 – Determine What Test To Use

For this problem we will use a Paired T-test using the same logic as before.

 

Step 2 – Find The Test Statistic

The equation that we will use for this Paired T-Test with a hypothesized
difference is    

 

Where
d̄ is the average of the difference between the before sample and
after sample
s  is the sample standard deviation

n is the test sample size

u0 is the hypothesized mean difference
 

This is the same equation as before, except that we are subtracting our
hypothesized value from the average difference, which will, in this case,
reduce the t statistic.  (It could theoretically increase the t statistic if the
problem were different and was something like "Do you have 95% confidence
that the participants either lost weight or gained less than 7 pounds)

Previously the problem was this



The new problem is this



The first few steps are the same in example 3. We find the average change in
weight to be -5.35 pounds, the standard deviation of the change in weight to be
5.6127 pounds, and we have a sample size of 20.    

The only new information is that the hypothesis that we are testing is that the
dieters lost at least 4 pounds, which makes u0 equal to -4 

 

So the values to use in our equation are
d̄ =  -5.35

s  = 5.6127

n = 20

u0 = -4
 



 
Plugging our values into the equation results in
 

 
As you can see, this t statistic of -1.0757 is a lot smaller in magnitude than the
previous t statistic of -4.2628.  Changing the problem to losing at least 4
pounds has made it a lot more difficult to accomplish.
 
 
The equation for degrees of freedom for this problem is the same as Example
3, which is
 

 
Since we have 20 pairs of measurements, the degrees of freedom is 19



Step 3 - 1 Tailed or 2 Tailed

Since we want to determine if the participants lost weight on the diet, and not
just if their weight changed, we want a 1 tailed p-value

 

Step 4 - Find the p-value from the table, and compare to our desired
confidence level
We can look up the T value of 1.0757 with a DF of 19 in the T-Table.  Once
again the coarseness of the T-table means we cannot get an exact result, but we
do see that the result is at least 0.1, which means that we won’t have the
desired 95% confidence.
 



 
We can get a more exact p-value using a different source, such as Excel. 
Looking up a T value of 1.0757 and DF of 19 in excel using   = T.Dist.RT() we
get a cumulative p-value of .1478. This is not less than .05, so we cannot
conclude with at least 95% confidence that participants will lose at least 4
pounds.

Putting it all together in one table



 

The 95% confidence t statistic would have been -1.7291. 



If we keep every other number the same and solve for u0, you can plug that
back into the t statistic equation to determine that the 95% confidence weight
loss number was 3.18 pounds.   



Alternatively, you could assume that your mean difference and standard
deviation results would remain unchanged and calculate how many samples
you would need to be 95% confidence that the dieters lost at least 4 lbs.  (After
all, they lost 5.35 lbs. on average)

The result is that you would need at least 51.68 pairs of samples.  Since you
cannot have a fraction of a sample, this would be at least 52 samples.  (Of
course, once you got the additional measurements, you might find that your
mean difference of -5.35 lbs. or your standard deviation of 5.6127 lbs. had



changed. We also ignored the fact that by getting 52 samples, your degrees of
freedom would have changed.  However, when we look up the T requirement
for 50 degrees of freedom and see that it is 1.68, as opposed to the T
requirement of 1.73 for the 19 degrees of freedom, this is not a bad
assumption.



Excel Solution For A Paired T-Test With Non-Zero Hypothesis

We can still use this function to do the Paired T-Test in Excel

=TTest(array1, array2, tails, type)

However since we are not testing against a hypothesized value of zero, there is
some editing to the data to do beforehand. The reason we need to edit the data
is that there is nowhere to input a hypothesized difference in this function. We
need to make sure that hypothesized value is already included in either array1
or array2 of the data that we are feeding the function.

In this example, I am going to do that by subtracting 4 pounds from the before
weight before feeding it into the function.



So, for instance, for the first participant instead of the function comparing a
weight of 123 vs 116 lbs. and getting a weight change of 7 lbs., the function
will compare 119 vs 116 lbs. and calculate a weight change of 3 lbs., which is
performing the same function as subtracting the u0 in our by hand equation



When you input the modified data into the =TTEST function, you get the same
result out as our by hand calculation



Two-Sample T-Tests
The final two examples are the type of statistical significance calculations you
probably most commonly think of for any medicinal scientific study. In these
examples, you essentially have two groups, one of which is the control and the
other is the study group.

These types of statistical significance calculations are for when you know
nothing about the population you are testing. You don't know the mean value or
the standard deviation. Therefore you have to establish those values for the
baseline group as well as for the group you are studying. Unlike the Paired T-
Tests we showed in the last example, these tests are done when the members of
the population are not the same.  I.e. you aren't getting a baseline result from a
person and then getting another result from the same person later.

It is useful to visualize what is happening in these calculations. Imagine you
own a running shoe company and want to demonstrate that your shoes are faster
than your competition. You invite 100 people to your track and time them on a
100-meter run. You provide your shoes to 50 people, and your competitor’s
shoes to 50 people.  (And since you are doing this for science, not marketing,
you don’t even put weights in your competitor’s shoes).

The first result that you will get is the mean values for both groups.

The mean values are instructive, but to get a confidence level you need to
know what the probability distribution of the results the mean values are.  If the
distribution are similar to the chart below



You will be confident that your shoes make people faster.  If it the distributions
are more like this chart

Then your confidence will be a lot lower because, for instance, the true
average of your competition’s shoe could be somewhere on the left of its
standard distribution, and the true average of your shoe could be on the right of
yours, as shown below.



The following two examples show how to do that calculation.

The difference between the two examples is how we are accounting for the
standard deviation.  Specifically, can we assume that the standard deviation for
the two groups is the same?  If so, we can just calculate a single standard
deviation of all the measurements, as we do in example 4.  Otherwise, we need
to calculate separate standard deviations for both groups, as we do in example
5.

By pulling 100 people off the street and measuring their running speed, we
expect that both groups should be similar in how much difference there is
between good runners and bad runners, and therefore it would be applicable to
use a single standard deviation.

By contrast, maybe you are trying to determine if there is a difference in fuel
economy between cars which come from a brand new factory where they are
entirely built by robots, vs an older factory where they are mostly manually
constructed.  Not only might the mean values of the two factories differ, it is
entirely possible that the new robot factory has a smaller variation in results
among its cars.  In that case, an unequal variance is probably a better
assumption.



Example 4 – Two Sample T-Test with Equal Variance
You have two different types of cat food, and want to determine if the cats eat a
different amount of type B food than type A, with at least 95% confidence. 
You are not using the same cats for each test

 



Solving The T-Test With Equal Variance Problem:

Step 1 – Determine What Test To Use

For this problem we will use a Two Sample T-Test, with equal variance.   We
do not know the population mean or standard deviation, so we can’t do a Z-
test. Since we aren't using the same test subjects for the two measurements, we
can't do a paired T-Test. Since the measurements are for cats eating food, we
are assuming that the variance is close enough between the two samples to use
the Equal Variance calculation (which will give a slightly lower p-value than
the Unequal Variance calculation) but that is something that we can check
while doing the problem.

Note, for this problem we don't have the same number of measurements for
Sample A compared to Sample B. Although the same number of measurements
for the two data sets would be required for a Paired T-Test, it is not required
for a Two-Sample T-Test, with either equal or unequal variance.



Step 2 – Find The Test Statistic
The equation for t for 2 Sample T-Test with Equal Variance is

Where
x͞1 is the average of Sample 1

x͞2  is the average of Sample 2

s1  is the sample standard deviation of Sample 1

s2  is the sample standard deviation of Sample 2

n1 is the test sample size of Sample 1

n2 is the test sample size of Sample 2
 
This equation seems more complicated than the previous equations, and it is,
but it is understandable if we break it into 3 parts. Those 3 parts are the same 3
parts we have seen in every variant of this equation.



Let’s dissect this equation

 

Part 1 – Difference of Means

is the same difference of mean values that we have seen in every equation so
far.

 

Part 2 – Average Standard Deviation

The

Looks complicated.  On every other equation we have seen, this part of the



equation would either just be the population standard deviation σ, or the
sample standard deviation s. This equation is different because we have two
sample standard deviations s1 and s2 from our two sets of data. However,
remember that theoretically s1 and s2 are equal because this is the equal
variance problem. Variance is standard deviation squared.

So what do you do when you have two values, but need one value for your
equation?  Take the average of them, or in this case, the weighted average.

The sample variance of set 1 uses (n1-1) in its equation

The variance of set 2 uses (n2-1) in its equation. The (n1-1) and (n2-1) can be
multiplied by their respective variances to get a weighted standard deviation.
And since we need a weighted average, we then divide by   (n1-1) + (n2-1),
which is the (n1 + n2-2) part of the equation.



The result is a single variance.

 

Part 3 – Number of Samples

Now what about the

part of the equation?

This is taking the place of the

that we initially saw in the average of dice rolls example, and have seen in all
the other equation also. Once again, more measurements in the form of either
more n1 or more n2 will increase the t value.

 

An Example Of How That Equation Works

When we looked at rolling the dice, we found that the standard deviation of the
mean was captured by the equation



But what we care about here is the standard deviation of the distance between
two means (with equal variances). This is similar to saying that we are rolling
a red die and a blue die.  Both have 6 sides.  For the red die let's keep its
values as is.  For the blue die let's add 2 to its roll.  How does the variance
between mean values change?

It turns out that whichever data set has the smallest number of samples (the
smaller n) tends to dominate the result.   Here is a chart with 1 roll of both dice

Now let’s say you roll the blue die 20 times and average its value and plot
those results over many sets of the 20 rolls.  Its standard deviation of the
average of the mean will drop dramatically, and the average of the mean of the
difference will be dominated by the red die.



Remember, these two values have the same standard deviation of values,
which is 1.708, but the standard deviation of their mean is driven by the
equation

And in the chart above we have only rolled the red die 1 time, but we have
rolled the blue die 20 times. As a result, we have more certainty on what the
mean value we expect from the blue die is.

 



What Would Happen If You Rolled One Die Many, Many Times?

If I roll the blue die many more times, say infinitely many times, what ends up
happening is that the count of n2 and the variance of s2 drop out of the equation

And a sample deviation with infinite samples just becomes a population
deviation

And what we are left with is the

This is the same equation as we had in our first example. Getting data for just



one half of the problem can’t get rid of all the uncertainty, to do that you need
to address both sets of data. Visually what happened is if we gather enough
data for the blue die, eventually the standard deviation of the mean becomes
infinitely small, and the blue curve will be infinitely narrow and we will get
this

The t values for this type of problem will tend to be lower than the t values we
would have for the equations we used in Examples 1 or 2, when we knew the
mean value of what we were comparing against for certain.  The reason for
this is clear when you consider that the Z equation in example 1 is just a
specific instance of this equation, an instance where you have infinitely many
samples for one of your data sets so you know the population mean and
standard deviation.



Example 4 – Two Sample With Equal Variance - Solution:

It is simple to use these functions in Excel to find Average, Sample Standard
Deviation, and number of samples of the data.   You can also see Example 3
for an example of finding sample standard deviation by hand

=Average() for average

=STDEVA() for sample standard deviation (note the difference between
that and population standard deviation)
=Count()  for sample size
 



 

Here we see that the two standard deviations are .624 and .611.  Those values
are close enough that the equal variances assumption is a good one.  When we
plug those values into our t equation we get



With the summarized information, the t statistic is calculated to be -1.748

 

Degrees Of Freedom
The formula for degrees of freedom for Equal Variance is

This formula comes from adding the (n1-1) and (n2-1) that we would use to get
the degrees of freedom if the two variances of the mean were separate
problems.

So with

n1 = 10     and n2 = 12      we have 20 degrees of freedom 



 

 
Step 3 - 1 Tailed or 2 Tailed

Since we want to determine if the cats ate a different amount of food, as
opposed to just more food, we want a 2 tailed p-value

 

Step 4 - Find the p-value from the table, and compare to our desired
confidence level
When we look up the value of 1.748 in a T table, with DF=20 we can find the
value of 1.7247 which is pretty close.  That gives a p value of .1 for the 2
tailed test.
 



 
Looking up a T value of 1.748 and DF of 20 in excel using   = T.Dist.2T() we
get a cumulative p-value of .0958. This is not less than .05, so we cannot
conclude with at least 95% confidence that cats will eat a different amount of
food. (Note, the 1 tailed p-value is .0479, so we could have concluded with
95% confidence that the cats eat more food), which is an odd, but correct,
result and shows the importance of deciding if you intend to get a 1 tailed or 2
tailed result.
 



Summarizing this into one table



Excel Solution:

The function to do this problem in Excel is

=TTEST(array1, array2,  2,  2)

Where the 2 that is entered for the third piece of information is because it is a 2
tailed problem, and the 2 that is entered for the fourth piece of information
selects the 2 Sample, Equal Variance solution type



Example 5 - 2 Sample T-Test With Unequal Variance
This problem goes over the last type of statistical significance.  It is two sets
of data that do not have the same variance. 

This leads to the question, when will you have data that you want to compare
which you cannot assume has equal variance? For a lot of examples, equal
variance is a decent assumption.  If I pull 20 people off the street and give
them either a standard golf club or my new fancy golf club, I might see that they
can hit the ball farther with the new golf club, but there will probably be
similar scatter among the members in the two groups.

Of course, one would expect different variance if the two sets of data were
quite dissimilar, for instance, the average weight of a group of dogs vs a group
of coyotes. But what is an example for when you have two similar sets of data?
When can you expect to get an unequal variance?

The best example I have is if you have introduced some quality control into a
process.  For instance, if you measure the average amount of time it takes some
workers to perform a task, you might get one level of variance.  If you then
introduce training so that everyone does the job the same way instead of their
own way, you can expect less scatter in how long it takes people to perform
that task, in addition to, hopefully, an overall reduction in average time.

Things that introduce training or other quality control are likely to change the
standard deviation of the two sets of data and make it a good time to use this
equation with unequal variance.

Of course, you can calculate the variance of your data sets and determine how
similar they are

In terms of the equation itself, it is largely similar to all the other variants that
we have seen so far, and most of the process is exactly the same.



Unequal Variance Example Problem

You own a factory, and you have measured the time it takes some of your
employees to assemble a part. You then give a different group of employees
training on how to do the job better, and measure how long it takes them to
assemble the part.  You want to determine, with 90% confidence, if the training
has reduced the average time it takes to do that job.





Solving The 2 Sample Unequal Variance Problem:

Step 1 – Determine What Test To Use

For this problem, we will use a Two Sample T-Test, with unequal variance. 
We do not know the population mean or standard deviation, so we can't use the
Z-test. Since we aren't using the same test subjects for the two measurements,
we can't do a paired T-Test. The question becomes “Should you use the 2
sample T test equation with equal variance or unequal variance?”

In this case, we are assuming that we will need to use the equation for unequal
variance since your training very well could have significantly reduced the
variance in the amount of time it takes different people to do the job. In fact,
when we calculate the sample variance for the two sets, we find that the
sample standard deviation for the first set is 5.298 minutes, and the sample
standard deviation for the second set is 2.444 minutes. Those results are
different enough that it makes sense to use the equation for unequal variance.

 

Step 2 – Find The Test Statistic
The equation for t for 2 Sample T-Test with Unequal Variance is

 

Where
x̄1  is the average of Sample 1

x̄2  is the average of Sample 2



s1  is the sample standard deviation of Sample 1

s2  is the sample standard deviation of Sample 2

n1 is the test sample size of Sample 1

n2 is the test sample size of Sample 2
 
 

Dissecting the equation

is the same difference of means that we see in every problem.   For the
standard deviation part of the equation

We see a similar effect as we do in Example 4. The larger of the s2/n terms is
going to dominate the problem. If you have one of those terms that is really
large (due to having a high sample variance or a really small number of
samples) then no matter how small the other term is you will be limited in the
resulting t statistic.

If you get a large enough number of measurements, either n1 or n2, then one of
the terms will drop out of the problem, and the resulting equation will be the
same as we have in example 2.  Here is how the equation would look if n2

went to infinity.



 “Large enough" is, of course, a relative term, but for general engineering, if
you have an s2/n term that is at least two orders of magnitude smaller than the
other variance of the mean term, then the smaller value will tend to have very
little impact on the results.   (You could probably get away with ignoring
something that is at least 1 order of magnitude smaller than the other s2/n term,
depending on what you are doing the data analysis for)

 

It is simple to use these functions in Excel to find Average, Sample Standard
Deviation, and a number of samples. You can also see Example 3 for an
example of finding sample standard deviation by hand

=Average()  for average

=STDEVA()  for sample standard deviation  (note the difference between
that and population standard deviation)
=Count()   for sample size
 



 

Get The Data & Excel Functions

If you want the excel file that contains all of the example data and solution, it
can be downloaded for Free here   http://www.fairlynerdy.com/statistical-
significance-examples/



The T-Statistic equation is

Plugging our values into the equation, the t statistic is calculated to be 1.36



Degrees of Freedom
The formula for degrees of freedom for Unequal Variance is fairly
complicated, it is

 

So with plugging in the values from our data

We have 20.3 degrees of freedom, which can just be rounded to 20

This degrees of freedom equation is another case where the result is primarily
driven by the smaller of n1 and n2. In this case, the two values are similar in
magnitude, but if one was significantly larger than the other, the smaller value
would end up controlling the resulting degrees of freedom. The chart below
shows what the degree of freedom value would be, using the same 5.298 and
2.444 values for variance as we did above, if we had a range of different n1



and n2 values

As you can see, by looking down the n2 =2 column for instance, as n1 gets very
large the degree of freedom values is driving by n2.

If n1 or n2 get large enough to be considered infinity (once again, you can
estimate that as two orders of magnitude larger than the other term) then it
cancels out of the equation and you are left with a much more simple equation.

For instance if n2 approaches infinity, the equation becomes



This ends up reducing to

And finally simplifies to



Which of course is the same equation for degrees of freedom that we saw in
Example #2.



Step 3 - 1 Tailed or 2 Tailed
Since we want to determine if the workers do the job in less time, not just a
different amount of time, we will use a 1 tailed p-value

 
Step 4 - Find the p-value from the table, and compare to our desired
confidence level
Looking up a T value of 1.367 and DF of 20.3 in excel using   = T.Dist.RT()
we get a cumulative p-value of .0934. This is less than .1, which means we
have a greater than 90% confidence that the mean value of the first data set is
greater than the mean value of the second data set, i.e. the training did cause a
decrease in the average time it took the workers to assemble the parts.
 
If we were to look this result up in the same T-table we have been using, we
would run into the interesting problem that a DF value of 20.3 is not in the
table.  (In addition to the T value of 1.367 not being directly in the table.)  As a
result, we could use the closest value in the table, which would be DF of 20,
or we could interpolate.
 

Summarizing this into one table



 

Get The Data & Excel Functions

If you want the excel file that contains all of the example data and solution, it
can be downloaded for Free here   http://www.fairlynerdy.com/statistical-
significance-examples/



Excel Solution:

The function to do this problem in Excel is

=TTEST(array1,  array2,  1,  3)
Where the 1 that is entered for the third piece of information is because it is a 1
tailed problem, and the 3 that is entered for the fourth piece of information
selects the 2 Sample, Unequal Variance solution type.  

Once again we get a 1 tailed confidence of .0933, this means we have a greater
than 90% confidence that the workers from the first data set took longer than
the workers from the second data set to assemble the parts.



What If You Mix Up Equal Variance With Unequal Variance?
The last two problems were quite similar.  The only difference between them
is if we considered the data to have equal variance or unequal variance when
we chose our equations. That, of course, leaves some room for a judgment call.
So what would our results have been if we had done the problem the other
way? For instance, what if we had used the data in Example 4 and assumed
unequal variance, or if we had used the data in Example 5 but assumed they
had equal variance?

Here is what the effect would have been on the test statistic, the degrees of
freedom, and the resulting 1 tailed confidence.  (Note, the original example 4
used 2 tailed confidence, but this table uses 1 tailed to better match example 5)

Here are the results for Example 4 data

Here are the results for Example 5 data

Based on these results we cannot categorically say that either the equal or
unequal variance equation will give a higher confidence level or t value.  It
will depend on the data.  The Equal Variance equation will always give a
higher degree of freedom.  However as we saw, the importance of the degree
of freedom drops of quickly once you get more than 10 samples or so.



For practical purposes, however, the results between the two equations are not
that different. If you are not sure whether equal or unequal variance is the right
solution for your problem, you can solve it both ways and see the results, or
just pick one and go with it.



If You Found Errors Or Omissions
We put some effort into trying to make this book as bug-free as possible, and
including what we thought was the most important information.  However, if
you have found some errors or significant omissions that we should address
please email us here

And let us know.   If you do, then let us know if you would like free copies of
our future books.   Also, a big thank you!



More Books
If you liked this book, you may be interested in checking out some of my other
books such as

Bayes Theorem Examples – which walks through how to update your
probability estimates as you get new information about things.  It gives
half a dozen easy to understand examples on how to use Bayes Theorem
 
Probability – A Beginner’s Guide To Permutations And Combinations –
Which dives deeply into what the permutation and combination equations
really mean, and how to understand permutations and combinations
without having to just memorize the equations.  It also shows how to
solve problems that the traditional equations don’t cover, such as “If you
have 20 basketball players, how many different ways can you split them
into 4 teams of 5 players each?”  (Answer 11,732,745,024)
 
Probability With The Binomial Distribution And Pascal’s Triangle –
Which demonstrates how to calculate the probability of different
outcomes for a series of random events, i.e. what are the odds of getting
exactly 10 heads in 30 flips of a coin.



Thank You
 

Before you go, I’d like to say thank you for purchasing my eBook.   I know you
have a lot of options online to learn this kind of information.    So a big thank
you for downloading this book and reading all the way to the end.   

If you like this book, then I need your help.   Please take a moment to leave a
review for this book on Amazon. It really does make a difference and will
help me continue to write quality eBooks on Math, Statistics, and Computer
Science.

If you want to keep up to date on any new eBooks, examples, or cheat sheets
you can find us on Facebook at

https://www.facebook.com/FairlyNerdy

or interact with us on our home page

http://www.FairlyNerdy.com

We frequently make free pre-release copies of our new books available to
people who are willing to leave an honest review on Amazon. If you are
interested and want us to let you know when we have pre-release copies of
future books available, please email us at

If you have other thoughts or question on this book or our other books, I’d love
to hear from you!

~ Scott Hartshorn
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