
1

Paper 3734-2018

Anything You Can Do I Can Do Better: PROC FEDSQL VS PROC SQL

Cuyler R. Huffman1,2, Matthew M. Lypka1, Jessica L. Parker1

1Spectrum Health Office of Research, 2Grand Valley State University

ABSTRACT

Structured Query Language (SQL) was implemented in SAS as PROC SQL. A benefit of the SQL
Procedure is that you can write queries or execute SQL statements on a SAS dataset or in a database.
Another benefit is the SQL language makes it capable to combine the functionality of a DATA step and
multiple PROC steps all into one procedure. Although useful, PROC SQL is limited in that it can only
make one database connection per query, and is not compliant with the American National Standards
Institute (ANSI) SQL syntax. Due to this non-compliance interacting with ANSI standard compliant
databases becomes more difficult. Due to these limitations with PROC SQL a new procedure, PROC
FEDSQL, was introduced.

PROC FEDSQL was introduced in SAS 9.4, and offers faster performance, ability to connect to multiple
databases in one query, increased security, broader support of data types, and full compliance with the
ANSI SQL: 1999 core standard, among others. In this paper, we will explore these acclaimed benefits.
We will compare PROC SQL and PROC FEDSQL in terms of syntax, performance, and output. We will
determine which procedure should be used in various use cases and how and when to incorporate PROC
FEDSQL into your workflows.

INTRODUCTION

Introduction of PROC SQL

Structured Query Language (SQL) was first developed in the early 1970’s. The purpose of SQL was to
manage data stored in Relational Database Management Systems (RDBMS). In 1986 SQL became the
standard language of the American National Standards Institute (ANSI) and this standard SQL language
has been revised and updated over the years. SQL was introduced into SAS as PROC SQL.

The major benefit to using PROC SQL over a DATA step or other procedure steps is that PROC SQL
could combine the functionality of the DATA and PROC steps into a single step. This often leads to fewer
lines of code than the traditional DATA and procedure steps coding style. One of the other benefits of
PROC SQL is the ability to connect to, retrieve, update, and report information from other RDBMS. In
order to connect to RDBMS some of the database features associated with SQL were not implemented
with PROC SQL, therefore, PROC SQL is not fully compliant with ANSI standards.

Introduction of PROC FEDSQL

A Federated Query Language (FEDSQL) can simultaneously connect to multiple databases all under a
single query request. However, in order for this connection, and associated query, to happen all of the
databases must be coordinated under the same standard. Therefore, when SAS introduced PROC
FEDSQL in SAS 9.4 they made PROC FEDSQL to fully conform to ANSI SQL 1999 standards and allows
the processing of queries in the native languages of all other data sources that also conform to the ANSI
1999 standard. Previously users using PROC SQL were limited to using only character, integer, decimal,
and date data types. With PROC FEDSQL and the compliance now the user has access to many more
data types including, but not limited to:

 Time(p)

 Timestamp(p)

 Double

 NChar

 Varchar

2

With the support of the new data types comes the ability to create datasets within a RDMNS, which is
also compliant with ANSI 1999 standards, using PROC FEDSQL (The SAS Institute, 2018).

More benefits of PROC FEDSQL

Along with the ANSI compliance and all the associated benefits that come along with it, PROC FEDSQL
brought many other benefits to SAS users. PROC FEDSQL enables the user to access multiple data
sources all within one query, as opposed to a different query for each new data source that PROC SQL
would do previously. Multiple data sources are combined in a query in PROC FEDSQL when one or more
SELECT statements are used to produce a dataset. If multiple SELECT statements are used in a query
then their resulting sets must be combined in some way using set operators so the query produces a
single output set as a result. Another benefit that comes with PROC FEDSQL is a SQL pass-through
process where the query response time is reduced and the security is enhanced. There are two types of
pass-through that PROC FEDSQL can perform, explicit and implicit pass-through. Explicit pass-through
has the user connect to a data source and then send that data source SQL statements directly for that
data source to execute. An associated benefit of this is that the user is able to use the syntax that is
native to that data source even if that syntax is non-ANSI standard. An implicit pass-through, on the other
hand, takes SAS syntax and translates it into equivalent code specific to the data source the user is
connected to, therefore, the data can be passed to the data source directly for processing. Due to the fact
that the data source is processing the query, the required data does not need to be transferred to a SAS
server, only the resulting dataset needs to be transferred, which greatly reduces query time (The SAS
institute, 2018). Since the query is being processed within the data source and only the resulting table is
being transferred back, this eliminates the need of having to transfer over tables that may contain
sensitive information. The SQL Procedure also has this capability, however, by default, the FEDSQL
Procedure attempts to use an implicit-pass through for all SQL data sources.

DIFFERENCES BETWEEN PROC SQL AND FEDSQL

Many SAS users may not be familiar with PROC FEDSQL, but with the promise of better performance
one might expect that they can go to any of their previously written PROC SQL code and then add “FED”
to the top and rerun it for instant benefits. The example code below is straight from the Base SAS 9.2
Procedures Guide. All the code is doing is creating a table in Proc SQL and then inserting data into it.

Now we copied the previous PROC SQL code and added “FED” to the beginning so we can see if it does
exactly what PROC SQL did just better.

Proc sql;

 create table proclib.paylist

 (IdNum char(4),

 Gender char(1),

 Jobcode char(3),

 Salary num,

 Birth num informat=date7.

 format=date7.,

 Hired num informat=date7.

 format=date7.);

insert into proclib.paylist

 values('1639','F','TA1',42260,'26JUN70'd,'28JAN91'd)

 values('1065','M','ME3',38090,'26JAN54'd,'07JAN92'd)

 values('1400','M','ME1',29769.'05NOV67'd,'16OCT90'd)

 values('1561','M',null,36514,'30NOV63'd,'07OCT87'd)

 values('1221','F','FA3',.,'22SEP63'd,'04OCT94'd);

quit;

Figure 1

3

Unfortunately, that doesn’t seem to be the case. This begs the question, “If I can’t just replace PROC
SQL with PROC FEDSQL how much work am I going to have to put into this in order to see those
benefits?” To answer this question, we will look at everyday scenarios that an average SAS programmer
may face and see just how different PROC SQL and PROC FEDSQL really are. Our criteria for this are
Syntax, Performance, and Output.

Syntax: Supported Data Types

People that have knowledge of PROC SQL will find that much of the syntax of PROC FEDSQL is familiar.
However, there are a few intricacies between the two procedures that should be highlighted. The first of
which is the data types that are supported within PROC FEDSQL. For instance, we can see from the
example code in Figure 1 that PROC FEDSQL can create data types like double, as well as others that
are compliant with the ANSI standard. The inclusion of more data types allows PROC FEDSQL more
precision. For instance, if querying data that is of the data type BIGINT, which is supported in PROC
FEDSQL, in PROC SQL the corresponding results may be inaccurate. The reason for this is due to the
fact that PROC SQL does not have the precision to process integers larger than a certain size, therefore,
it will display it as floating point notation, not be able to display it at all, or not display it correctly
(Mohammed, Gangarajula, Kalakota, 2015). This can ultimately influence results and output if the issue is
not caught. It is important to know the data types of the data that is being queried when connecting to
outside databases.

Proc fedsql;

 create table proclib.paylist

 (IdNum char(4),

 Gender char(1),

 Jobcode char(3),

 Salary num,

 Birth num informat=date7.

 format=date7.,

 Hired num informat=date7.

 format=date7.);

insert into proclib.paylist

 values('1639','F','TA1',42260,'26JUN70'd,'28JAN91'd)

 values('1065','M','ME3',38090,'26JAN54'd,'07JAN92'd)

 values('1400','M','ME1',29769.'05NOV67'd,'16OCT90'd)

 values('1561','M',null,36514,'30NOV63'd,'07OCT87'd)

 values('1221','F','FA3',.,'22SEP63'd,'04OCT94'd);

quit

Figure 2

ERROR: Syntax error at or near "informat"

84 insert into proclib.paylist

85 values('1639','F','TA1',42260,'26JUN70'd,'28JAN91'd)

86 values('1065','M','ME3',38090,'26JAN54'd,'07JAN92'd)

87 values('1400','M','ME1',29769.'05NOV67'd,'16OCT90'd)

88 values('1561','M',null,36514,'30NOV63'd,'07OCT87'd)

89 values('1221','F','FA3',.,'22SEP63'd,'04OCT94'd);

ERROR: Syntax error at or near "D"

90 select *

91 from proclib.paylist;

ERROR: Table "PROCLIB.PAYLIST" does not exist or cannot be

accessed

ERROR: BASE driver, Table PAYLIST does not exist or cannot be

accessed or

 created

 Figure 3

4

Figure 5

Syntax: Making Connections

One of the main benefits of both PROC FEDSQL and PROC SQL is the ability to connect to other
RDBMSs, for instance Oracle or MySQL. The syntax changes depending on whether an implicit or explicit
pass through is being performed. One of the main differences between the two is that an implicit pass
through uses a LIBNAME statement in order to connect to the other data sources. After using the
LIBNAME statement the connection will be made whenever libref name is used. In the example a
LIBNAME is being used to connect to the ORACLE engine, notice that all the connection information
needed to access the Oracle database needs to be specified. Syntax wise when PROC SQL and PROC
FEDSQL make a connection this way it is nearly identical.

An explicit pass-through, however, does not use a LIBNAME statement. Instead an explicit pass-through
makes these connections within the procedure. This is done using the CONNECT TO statement where all
the connection information needed to access the database needs to be specified. Once the connect to
statement is specified, the corresponding query within the statement is being passed directly to that data
source for execution. Another important aspect to explicit pass through is the EXECUTE statement. The
EXECUTE statement passes the SQL statements that are specific to the RDBMS that was specified in
the CONNECT TO statement for processing. Statements included in EXECUTE statements are
specifically non-query statements. Instead, the purpose is to manipulate the table being accessed in
some way, for instance deleting/inserting rows, updating data, etc. Similar to implicit pass-through, the
syntax to perform explicit pass through is very similar between the two procedures. However, as
mentioned previously, PROC FEDSQL has the added capability of being able to perform federated
queries and in those instances the syntax changes between PROC FEDSQL and PROC SQL. We can
see that PROC FEDSQL is able to perform this query all within one select statement while querying data
from both the Microsoft SQL Server and Oracle. For PROC SQL to perform this same query, multiple
select statements and a join would have to be performed.

*Proc FEDSQL;

create table sales (prodid double not null,

 custid double not null,

 totals double having format comma8.,

 country char(30));

*PROC SQL;

create table sales2 (prodid numeric,

 custid numeric,

 totals numeric format

comma8.,

 country char(30));

Figure 4

*Implicit Pass-through;

libname myspde spde 'C:\spde';

libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx

schema=xxxxxx;

proc fedsql;

 select * from myspde.product

 where exists (select * from myoracle.sales

 where product.prodid=sales.prodid);

quit;

5

Figure 7

Output: Typical Two-Table Join
For this example, we are using two SASHELP datasets, Zipcode and Zipmil, and joining them together.
This new dataset is not practical when it comes to everyday use, but it does highlight something
interesting going on in the background when running PROC FEDSQL and PROC SQL. To make it clear
as to what exactly is happening, an observation number was added in both the Zipcode and Zipname
datasets; these are called OBS and OBS2, respectively. Outputting the first ten observations from each of
the queries we notice that PROC FEDSQL and PROC SQL perform the same join differently. The

*Explicit Pass-Through;

proc sql;

 connect to oracle as ora2 (user=user-id password=password);

 select * from connection to ora2 (select lname, fname, state from staff);

 disconnect from ora2;

quit;

*Execute statement;

proc sql;

 connect to oracle(user=user-id password= password);

 execute (create view whotookorders as select ordernum, takenby,

 firstname, lastname,phone from orders, employees

 where orders.takenby=employees.empid) by oracle;

 execute (grant select on whotookorders to testuser) by oracle;

disconnect from oracle;

quit;

*Federated Query;

LIBNAME MSSQL ODBC DSN="MSSQLSERVER";

libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx

schema=xxxxxx;

proc fedsql;

 create table payment as select S.ID,

 O.Transaction,

 S.Amount,

 O.Product

 from mssql.product S, myoracle.sales O

 where S.prodid= O.prodid);

quit;

*Federated Query;

LIBNAME MSSQL ODBC DSN="MSSQLSERVER";

libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx

schema=xxxxxx;

Proc SQL;

create table payment1 as select mssql.ID,

 mssql.Amount,

 mssql.prodid

 from mssql.product;

create table payment2 as Select myoracle.Transaction,

myoracle.Product,

 myoracle.PRODID

 from myoracle.sales;

Create table final as select * from

payment2 as d1 full join

payment1 as d2 where d1.prodid = d2.prodid;

quit;

Figure 6

6

Figure 9

resulting tables for the PROC FEDSQL and PROCSQL queries are represented in Figure 9 and Figure 10
respectively.

We can see from Figure 9 that PROC FEDSQL performs this join exactly as one might expect. All of the
columns specified from the first dataset, in this case the Zipname dataset with the specified columns
PONAME, Alias_City, and OBS2, are combined with the first row of these selected columns with the first
row from the second table or dataset, in this case the Zipcode dataset with the variables City and OBS.
Then the same columns from the Zipname dataset are then joined with the second row of the Zipcode
data set, and so on and so forth.

*Equijoin;

proc fedsql;

create table zip3 as select zipcode.obs, ZIPMIL.PONAME,ZIPMIL.ALIAS_CITY,

ZIPCODE.CITY, zipmil.obs2

from zipcode, zipmil

where zipcode.STATENAME = zipmil.STATENAME;

quit;

*Equijoin;

proc sql;

create table zip4 as select zipcode.obs, ZIPMIL.PONAME,ZIPMIL.ALIAS_CITY,

ZIPCODE.CITY, zipmil.obs2

from zipcode, zipmil

where zipcode.STATENAME = zipmil.STATENAME;

quit;

Figure 8

 obs PONAME ALIAS_CITY CITY obs2

 1 DPO Diplomatic Post Office Holtsville 1

 1 APO Army Post Office Holtsville 2

 1 APO Army Post Office Holtsville 3

 1 APO Army Post Office Holtsville 4

 1 APO Army Post Office Holtsville 5

 1 APO Army Post Office Holtsville 6

 1 APO Army Post Office Holtsville 7

 1 APO Army Post Office Holtsville 8

 1 APO Army Post Office Holtsville 9

 1 APO Army Post Office Holtsville 10

 Figure 9

7

Figure 11

However, what is interesting is that PROC SQL first joins the first row as expected, DPO and Diplomatic
Post Office are joined with the first row of the Zipcode dataset where the City is Holtsville. Then, instead
of moving to the second row of the Zipmil dataset, PROC SQL moves to the last row of the Zipmil dataset
where PONAME and Alias_city are APO and Army Post office and are joined onto the first row of the
Zipcode dataset, where City is Holtsville. PROC SQL continues in this backwards fashion until it has gone
through every row of the Zipname dataset, then moves on to row two of the Zipcode dataset, again
starting with row one, then the last row, then the backwards process from there. Using the _Method
option, the methods both procedures used to perform this join are outputted to the log. It is easy to see
that PROC FEDSQL is performing a hashjoin between the two datasets. However, with PROC SQL,
interpreting what methods were used is more difficult. Notice the SQXCRTA and the SQXJHSH in the
PROC SQL log method details, what these methods are doing is creating a table and then performing a
hash join, respectively. Therefore, up until this point, both PROC FEDSQL and PROC SQL are doing
things the same. The differences come in to play when going through the rows of each of the tables. The
method that PROC SQL uses to do this is SQXSRC which will source rows from the two tables. The
FEDSQL Procedure, on the other hand, is using the SeqScan Method. The SeqScan Method is reading in
the data in sequential order. It is due to this sequential ordering that there are differences in the output.
PROC SQL is making this join as efficiently as possible, which is why it goes to the first row, then the last
row and so on, while PROC FEDSQL just does it in order.

Methods:

Number of Joins Performed is : 1

Number of Hash Joins Performed is : 1

 HashJoin (INNER)

 SeqScan from WORK.WORK.ZIPCODE

 SeqScan from WORK.WORK.ZIPMIL

NOTE: Execution succeeded. 1248119 rows affected.

Figure 11 FEDSQL Methods

 obs PONAME ALIAS_CITY CITY obs2

 1 DPO Diplomatic Post Office Holtsville 1

 1 APO Army Post Office Holtsville 337

 1 DPO Diplomatic Post Office Holtsville 336

 1 DPO Diplomatic Post Office Holtsville 335

 1 APO Army Post Office Holtsville 334

 1 DPO Diplomatic Post Office Holtsville 333

 1 DPO Diplomatic Post Office Holtsville 332

 1 DPO Diplomatic Post Office Holtsville 331

 1 DPO Diplomatic Post Office Holtsville 330

 1 DPO Diplomatic Post Office Holtsville 329

Figure 10

8

NOTE: SQL execution methods chosen are:

 sqxcrta
 sqxjhsh

 sqxsrc(WORK.ZIPCODE)

 sqxsrc(WORK.ZIPMIL)

NOTE: Table WORK.ZIP4 created, with 1248119 rows and 5 columns.

Performance

One of the associated benefits of PROC FEDSQL is that the query times are reduced. This is done when
connecting to other databases and using the implicit pass through process to its fullest potential.
However, the query time reduction does not seem to hold up when creating and running the query all
within a local SAS environment. One of the reasons for this is the sequential scan that PROC FEDSQL is
performing when joining tables. We know that ordering can be very resource intensive, therefore, PROC
SQL is performing joins as efficiently as possible when no order by statement is specified. We can see
from Figure 13 that the real time for PROC FEDSQL to run the query was 5.72 seconds while PROC SQL
was able to perform this same query in 1.93 seconds, again in real time. While four seconds in real time
may not have much of a significant impact we can see that if we are working with large datasets that
these time differences would become noticeable.

We can start seeing a drastic change in performance when we move into correlated subqueries. For
those unfamiliar, a correlated subquery is a query nested inside another query, and the nested query is
using values from the outer query. In SAS, this is done with a WHERE clause. The WHERE clause within
the subquery is referring to values from the outside query.

Figure 13

Figure 12 SQL Methods

58 proc fedsql;

59 create table zip3 as select zipcode.obs, ZIPMIL.PONAME,ZIPMIL.ALIAS_CITY, ZIPCODE.CITY,

59 ! zipmil.obs2

60 from zipcode, zipmil

61 where zipcode.STATENAME = zipmil.STATENAME;

NOTE: Execution succeeded. 1248119 rows affected.

62 quit;

NOTE: PROCEDURE FEDSQL used (Total process time):

 real time 5.72 seconds

 cpu time 1.26 seconds

64 proc sql;

65 create table zip4 as select zipcode.obs, ZIPMIL.PONAME,ZIPMIL.ALIAS_CITY, ZIPCODE.CITY,

65 ! zipmil.obs2

66 from zipcode, zipmil

67 where zipcode.STATENAME = zipmil.STATENAME;

NOTE: Table WORK.ZIP4 created, with 1248119 rows and 5 columns.

68 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 1.93 seconds

 cpu time 0.51 seconds

9

As we can see from Figure 14 and Figure 15, the real time taken to run our correlated subquery in PROC
FEDSQL was 26.89 seconds, the amount of time it took PROC SQL to run the same query was 0.14
seconds. Using the _METHOD statement again we can see that the reason for this difference in time is
due to the fact that PROC FEDSQL and PROC SQL are using different methods to perform this same
query. In the previous example it was highlighted that this SeqScan method is increasing query time,
however, now there is a new method SubPlan that is bogging down the speed. For many SQL systems a
Subplan is part of maintenance plan and work similarly to organizing tools. PROC SQL on the other hand
uses the SQXFIL and SQXSUBQ methods which stand for row filtration and subquery respectively.
However, it is important to note that PROC FEDSQL has the ability to perform subqueries from two
different data sources. It does this by directing the subquery to the data source to be performed there, this
reduces performance time because the data source is doing all the work and only the resulting table or
data set is being transferred from the data source into SAS. While PROC SQL is able to perform
correlated subqueries, it is unable to perform them from multiple data sources.

Figure 14

18 proc sql _method;

19 create table sub4 as

20 select *

21 from zipcode e

22 where exists(select * from zipmil d

23 where d.statename = e.statename);

NOTE: SQL execution methods chosen are:

 sqxcrta

 sqxfil

 sqxsrc(WORK.ZIPCODE(alias = E))

NOTE: SQL subquery execution methods chosen are:

 sqxsubq

 sqxsrc(WORK.ZIPMIL(alias = D))

NOTE: Table WORK.SUB4 created, with 6217 rows and 22 columns.

24 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.14 seconds

 cpu time 0.04 seconds

11 proc fedsql _method;

NOTE: Writing HTML Body file: sashtml.htm

12 create table sub3 as select * from zipcode e

13 where exists(select * from zipmil d

14 where d.statename = e.statename);

Methods:

 SeqScan with qual from WORK.WORK.ZIPCODE

 SubPlan (EXISTS) in qual

 SeqScan with qual from WORK.WORK.ZIPMIL

NOTE: Execution succeeded. 6217 rows affected.

15 quit;

NOTE: PROCEDURE FEDSQL used (Total process time):

 real time 26.89 seconds

 cpu time 19.01 seconds

Figure 15

10

CONCLUSION

Breaking the comparison between PROC FEDSQL and PROC SQL down into syntax, performance, and
output when evaluating which to use in everyday use cases, we can see that PROC FEDSQL does not
do “everyday” tasks nearly as well. However, that is justifiable; FEDSQL is excellent at doing what it was
created to do which is connecting multiple different databases at once. The benefits associated with
PROC FEDSQL in the times that PROC FEDSQL is needed far outweigh anything that PROC SQL has to
offer. However, those looking to replace PROC SQL with PROC FEDSQL are going to be disappointed
because PROC SQL is simply better when it comes to everyday use cases, like creating tables, joining
tables, performing subqueries, when considering performance time. However, when working with other
RDBMSs that are outside of SAS, this is when PROC FEDSQL really shines. Even though PROC
FEDSQL and PROC SQL look similar, and even sound similar, it is important to keep in mind that they
were created to perform different tasks. PROC FEDSQL was not created to replace PROC SQL, it was
created to perform tasks that PROC SQL, for one reason or another, was not able to perform or not able
to perform well. Therefore, we see that PROC FEDSQL cannot do everything PROC SQL can do better,
because it wasn’t meant to.

11

REFERENCES

Dickstein, Craig, & Pass, Ray (2003) “DATA Step vs. PROC SQL: What’s a neophyte to do?”. Available at
<http://www2.sas.com/proceedings/sugi29/269-29.pdf>

Kaufmann, Shaun (2016) “High-Performance Data Access with FedSQL and DS2”. Available at
<https://support.sas.com/resources/papers/proceedings16/4342-2016.pdf>

Lafler, Kirk (2009) “Exploring the Undocumented PROC SQL _METHOD Option”. Available at
<http://support.sas.com/resources/papers/proceedings09/063-2009.pdf>

Mohammed, Z., Gangarajula, G., Kalakota, P. (2015) “Working with PROC FEDSQL in SAS® 9.4”.
Available at <https://support.sas.com/resources/papers/proceedings15/3390-2015.pdf>

Ronk, Katie (2003) “Introduction to Proc SQL”. Available at
<http://www2.sas.com/proceedings/sugi29/268-29.pdf>

The SAS Institute. “Base SAS® 9.2 Procedures Guide”.

The SAS Institute. “SAS

®
 9.4 FedSQL Language Reference, Third Edition”

The SAS Institute. “SAS/ACCESS® 9.4 for Relational Databases: Reference, Ninth Edition”

The SAS Institute. “Base SAS® 9.4 Procedures Guide, Seventh Edition”

The SAS Institute. “SAS® 9.3 SQL Procedure User's Guide”

The SAS Institute. “SAS/ACCESS® 9.3 for Relational Databases: Reference, Second Edition”

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Cuyler Huffman
Spectrum Health Office of Research
Cuyler.Huffman@SpectrumHealth.org

Matthew Lypka
Spectrum Health Office of Research
Matthew.Lypka@SpectrumHealth.org

Jessica Parker
Spectrum Health Office of Research
Jessica.Parker2@spectrumhealth.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Cuyler.Huffman@SpectrumHealth.org
mailto:Matthew.Lypka@SpectrumHealth.org
mailto:Jessica.Parker2@spectrumhealth.org

