
Paper 4-25

Arthur L. Carpenter, California Occidental Consultants

ABSTRACT

Many macro functions are very analogous to those of the
DATA step.  The differences are in how they are used
and applied.  While DATA step functions are applied to
values on the Program Data Vector, PDV, macro
functions are used to create, modify, and work with text
strings.  Initially this may seem like a minor difference,
but because macro functions deal with text, they can be
used to build SAS code.  This becomes the powerful
advantage of the macro language.

The use of various macro functions will be presented. 
Some of these functions return quoted results, and
macro quoting functions will be introduced.  Examples
will include functions like %SYSEVALF and %SYSFUNC,
which are new to V6.11 and V6.12, as well as, various
Autocall macros.  Several of the examples are adapted
from “Carpenter’s Complete Guide to the SAS  Macro®

Language”.  

KEYWORDS

MACRO, MACRO FUNCTIONS, %SYSFUNC, MACRO
QUOTING, SCL

MACRO CHARACTER FUNCTIONS

Macro character functions either change or provide
information about the text string that is included as one
of the arguments.  Many of these functions are
analogous to similar functions in the DATA step.  Some
of the macro character functions that have analogous
DATA step functions include:

Macro Analogous Task
Function(s) DATA Step

Function

%INDEX index First occurrence of a
text string is located

%LENGTH length Character count

%SCAN scan Search for the n
%QSCAN word in a text string

th

%SUBSTR substr Select text based on
%QSUBSTR position

%UPCASE upcase Convert to upper case

It is important that you remember the differences
between these macro functions and their DATA step
equivalents.  DATA step functions work on character
strings, numeric values, and DATA step variable values. 
Macro functions are applied to text strings that NEVER
contain the values of DATA step variables.

Several of these functions have two forms, with and
without a Q at the start of the function name. Functions
with names that start with Q (quoting) remove the
meaning from special characters including the
ampersand (&), percent sign (%), and mnemonic
operators in returned values.

����%INDEX
The %INDEX function searches the first argument
(ARGUMENT1) for the first occurrence of the text string
which is contained in the second argument
(ARGUMENT2).  If the target string is found, the position
of its first character is returned as the function’s
response (0 if not found).

SYNTAX
%INDEX(argument1,argument2)

EXAMPLE
This example stores three words in the macro variable
&X.  The %INDEX function is then used to search in &X
for the string TALL and the result is then displayed using
the %PUT statement.
 
%LET X=LONG TALL SALLY;
%LET Y=%INDEX(&X,TALL);
%PUT TALL CAN BE FOUND AT POSITION &Y;

Notice that the TALL as the second argument is not in
quotes.  The %PUT results in the following text being
written to the LOG:

TALL CAN BE FOUND AT POSITION 6

�%LENGTH
The %LENGTH function determines the length (number
of characters) of it’s argument.  The number of detected
characters is then returned.  When the argument is a null
string the value of 0 is returned.

SYNTAX
%LENGTH(argument)

EXAMPLE
In the macro %LOOK the name of the incoming data set
is checked to see if it exceeds 8 characters.

Advanced TutorialsAdvanced Tutorials



%MACRO LOOK(dsn,obs); %put &wscan &wqscan;
%if %length(&dsn) gt 8 %then

%put Name is too long - &dsn;
%else %do;
PROC CONTENTS DATA=&dsn;
TITLE "DATA SET &dsn";
RUN;

PROC PRINT DATA=&dsn (OBS=&obs);
TITLE2 "FIRST &obs OBSERVATIONS";
RUN;

%end;
%MEND LOOK;

The LOG shows that the following data set name
exceeds 8 characters:

53 %look(demographics, 5)
Name is too long - demographics

�%SCAN and %QSCAN
The %SCAN and %QSCAN functions both search a text
string (ARGUMENT1) for the n  word (ARGUMENT2)th

and returns its value.  If ARGUMENT3 is not otherwise
specified the same word delimiters are used as in the
DATA step SCAN function.  For an ASCII system these
include the following (for EBCDIC the ¬ is substituted for
the ^):

blank . < ( + | & ! $ * ) ; ^ - / , % > \

%QSCAN removes the significance of all special
characters in the returned value.

SYNTAX
%SCAN(argument1,argument2[,delimiters])
%QSCAN(argument1,argument2[,delimiters])

EXAMPLE
The macro variable &X below can be broken up using
the %SCAN function.

%LET X=XYZ.ABC/XYY;
%LET WORD=%SCAN(&X,3);
%LET PART=%SCAN(&X,1,Z);
%PUT WORD IS &WORD AND PART IS &PART;

The %PUT returns the following:

WORD IS XYY AND PART IS XY

Notice that the word delimiter (third argument) is not
enclosed in quotes as it would be in the DATA step
SCAN function.

The %QSCAN function is needed when you want to
return a value that contains an ampersand or percent
sign.  This is demonstrated below: 

%let dsn = clinics;
%let string =
%nrstr(*&stuff*&dsn*&morestuf);

%let wscan = %scan(&string,2,*);
%let wqscan = %qscan(&string,2,*);

The %PUT writes:

clinics &dsn

Both functions return the value &DSN, but since the
meaning of the & is not masked by %SCAN, the &DSN 
in &WSCAN is resolved to clinics.

�%SUBSTR and %QSUBSTR
Like the DATA step SUBSTR function these macro
functions return a portion of the string in the first
ARGUMENT.  The substring starts at the POSITION in
the second argument and optionally has a LENGTH of
the third argument.

SYNTAX
%SUBSTR(argument,position[,length])
%QSUBSTR(argument,position[,length])

As is the case with most other macro functions, each of
the three arguments can be a text string, macro variable,
expression, or a macro call.  If a value for LENGTH is not
specified, a string containing the characters from
POSITION to the end of the argument is produced.

EXAMPLE
%LET CLINIC=BETHESDA;
%IF %SUBSTR(&CLINIC,5,4) = ESDA %THEN

%PUT *** MATCH ***;
%ELSE %PUT *** NOMATCH ***;

The LOG would contain *** MATCH *** since &CLINIC
has the value ESDA in characters 5 through 8.

As is shown in the following example, the %QSUBSTR
function allows you to return unresolved references to
macros and macro variables.

%let dsn = clinics;
%let string =
%nrstr(*&stuff*&dsn*&morestuf);

%let sub = %substr(&string,9,5);
%let qsub = %qsubstr(&string,9,5);

%put &sub &qsub;

The %PUT will write  clinics* &dsn*   in the LOG.

�%UPCASE
The %UPCASE macro function converts all characters in
the ARGUMENT to upper case.  This function is
especially useful when comparing text strings that may
have inconsistent case.

SYNTAX
%UPCASE(argument)

EXAMPLE
The following code allows the user to differentially
include a KEEP= option in the PROC PRINT statement.  

Advanced TutorialsAdvanced Tutorials



The %UPCASE function is used to control for variations EXAMPLE
in the text that is supplied by the user in the macro call. In the following example the %EVAL function is called to

%macro printit(dsn);
* use a KEEP for CLINICS;
%if %upcase(&dsn)=CLINICS %then
%let keep=(keep=lname fname ssn);

%else %let keep=;
proc print data=&dsn &keep;
title "Listing of %upcase(&dsn)";
run;
%mend printit;

%printit(cLinICs)

The macro call to %PRINTIT produces the following
code.

proc print data=cLinICs (keep=lname fname
ssn);
title "Listing of CLINICS";
run;

MACRO EVALUATION FUNCTIONS

Since in the macro language there are no numbers or
numeric variables (there is only text and macro variables
that contain text), numeric operations such as arithmetic
and logical comparisons become problematic. 
Evaluation functions are used to bridge the gap between
text and numeric operations.  

Prior to Release 6.12 only the %EVAL function was �%SYSEVALF
available.  Because this function has some limitations,
the %SYSEVALF function was added to the SAS System
starting with Release 6.12. 

The evaluation functions are used:

� to evaluate arithmetic and logical expressions

� inside and outside of macros

� during logical comparisons to specify TRUE or
FALSE - a value of 1 is returned for logical
expressions if the condition is true, 0 (zero) if it
is false

� perform integer and floating point arithmetic

The requests for these functions are either explicit
(called by the user by name) or implicit (used
automatically without being directly called during
comparison operations).

�%EVAL
The %EVAL function always performs integer arithmetic. 
Regardless of the requested operation the result will
always be an integer. 

SYNTAX
%EVAL(argument)

perform arithmetic operations.  The code uses %EVAL to
add the value of 1 to &X which in this case contains 5.

%LET X=5;
%LET Y=&X+1;
%LET Z=%EVAL(&X+1);
%PUT &X &Y &Z;

The %PUT writes the following to the LOG:

5 5+1 6

Non-integer arithmetic is not allowed.  Use of the
statement

%LET Z=%EVAL(&X+1.8);

would result in the following message being printed in
the LOG:

ERROR: A character operand was found in
the %EVAL function or %IF condition where
a numeric operand is required. The
condition was: 5+1.8

The 'integer only' requirement is taken quite literally.  If
the above argument had been &X+1.0 or even &X+1.,
the error message would still have been generated.  In
this case the decimal point is enough to prevent a
numeric interpretation of the argument. 

The floating point evaluation function, %SYSEVALF, is
new with Release 6.12 of the SAS System (although it
was available but undocumented in Release 6.11).  This
function can be used to perform non-integer arithmetic
and will even return a non-integer result from an
arithmetic operation.

SYNTAX
%SYSEVALF(expression[,conversion-type])

The EXPRESSION is any arithmetic or logical expression
which is to be evaluated and it may contain macro
references.

The second argument, CONVERSION-TYPE, is an
optional conversion to apply to the value returned by
%SYSEVALF.  Since this function can return non-integer
values, problems could occur in other macro statements
that use this function but expect integers.  

When you need the result of this function to be an
integer, use one of the CONVERSION-TYPEs.  A
specification of the CONVERSION-TYPE converts a
value returned by %SYSEVALF to an integer or Boolean
value so it can be used in other expressions that require
a value of that type. CONVERSION-TYPE can be:

� BOOLEAN 0 if the result of the expression
is 0 or missing, 

Advanced TutorialsAdvanced Tutorials



1 if the result is any other Because the semicolon following DSN terminates the
value. %LET statement, the macro variable &P contains

� CEIL round to next largest whole
integer

� FLOOR round to next smallest whole
integer

� INTEGER truncate decimal fraction

The CEIL, FLOOR, and INTEGER conversion types act
on the expression in the same way as the DATA step
functions of the same (or similar) names i.e. CEIL,
FLOOR, and INT.

EXAMPLE
The following table shows a few calls to %SYSEVALF
and the resulting values.

Example Result 
(%put &x;)

%let x=%sysevalf(7/3) 2.333333333

%let x=%sysevalf(7/3,boolean) 1

%let x=%sysevalf(7/3,ceil) 3

%let x=%sysevalf(7/3,floor) 2

%let x=%sysevalf(1/3) 0.333333333

%let x=%sysevalf(1+.) .

%let x=%sysevalf(1+.,boolean) 0

MACRO QUOTING FUNCTIONS

Quoting functions allow the user to pass macro
arguments while selectively removing the special
meaning from characters such as &, %, ;, ‘, and “.  Most
of these functions are not commonly used and are even
less commonly understood.  Although they are powerful
and can even be necessary, programming solutions are
usually available that do not require the use of the
quoting functions.

All quoting functions are not alike.  Consult the
documentation to get the gory details, however the
following three functions should solve most of your
quoting problems.

�%STR
The most commonly used macro quoting function is
%STR ('most commonly used' does not necessarily
make it the best, see %BQUOTE below).  Often it is used
along with the %LET statement to mask semicolons that
would otherwise terminate the %LET.

In the following example we want to create a macro
variable &P that contains two SAS statements;

%LET P=PROC PRINT DATA=DSN; RUN;;

PROC PRINT DATA=DSN

which will almost certainly result in a syntax error due to
the missing semicolon.

The %STR function masks the semicolon by quoting it.

%LET P=%STR(PROC PRINT DATA=DSN; RUN;);

This results in the macro variable &P being correctly
assigned the two statements.

PROC PRINT DATA=DSN; RUN;

�%BQUOTE
The %BQUOTE function is probably the best choice as a
overall quoting function.  It eliminates many of the
limitations of the %STR function (Carpenter, 1999), and
it will also remove the meaning from unmatched symbols
that are normally found in pairs such as quotes and
parentheses.  The following %LET will cause all sorts of
problems because the apostrophe will be interpreted as
an unmatched quote. 

 %let a = Sue's new truck;

The %STR function will not help because %STR does
not mask quote marks, however %BQUOTE does.

%let a = %bquote(Sue's new truck);
%put &a;

�%UNQUOTE
Once a quoting function has been used, the text remains
quoted.  Since these "quotes" are hard to see, even in
the LOG, this can cause problems for the programmer
that does not anticipate that quoting functions may have
been used.  If you need to remove or change the effects
of any of the other quoting functions, the %UNQUOTE is
used.

Three macro variables are defined below, but the
second, &OTH, is defined using the %NRSTR function. 
This means that &CITY can not be resolved when &OTH
is resolved.  When the %UNQUOTE function is applied
to &OTH its value (&CITY) is seen as a macro variable
which is also resolved.

%let city = miami;
%let oth = %nrstr(&city);
%let unq = %unquote(&oth);

%put &city &oth &unq;

The LOG shows:

miami &city miami

Although &OTH looks like any other macro variable in
the %PUT statement, it will not be fully resolved because

Advanced TutorialsAdvanced Tutorials



 it is quoted, thus preventing &CITY from being resolved. Secondly the resolved values of interior calls to

USING DATA STEP FUNCTIONS IN THE
MACRO LANGUAGE

Two macro tools were introduced with Release 6.12 that
allow the user to execute virtually all of the functions    
and routines available in the DATA step as part of the
macro language.  The %SYSCALL macro statement calls
DATA step routines and the %SYSFUNC macro function
executes DATA step functions.  Through the use of  
these two elements of the macro language, the need to
use the single pass DATA _NULL_ step to create macro
variables is virtually eliminated.

More importantly these two macro functions greatly
increase the list of functions available to the macro
language by making available almost all DATA step and
user-written functions. 

SYNTAX
%SYSFUNC(function-name(function-

arguments)[,format])
%QSYSFUNC(function-name(function-

arguments)[,format])

EXAMPLE
The following example shows three ways to add the
current date to a TITLE.  The automatic macro variable
&SYSDATE is easy to use but cannot be formatted.   
Prior to Release 6.12 most users created a DATA
_NULL_ step with an assignment statement and a CALL
SYMPUT to create a formatted macro variable.  The
DATA step can now be avoided by using the  
%SYSFUNC macro function.

data _null_;
today = put(date(),worddate18.);
call symput('dtnull',today);
run;

title1 "Automatic Macro Variable SYSDATE
&sysdate";

title2 "From a DATA _NULL_ &dtnull";
title3 "Using SYSFUNC

%sysfunc(date(),worddate18.)";

The following three titles are produced:

Automatic Macro Variable SYSDATE 10APR00
From a DATA _NULL_ April 10, 2000

Using SYSFUNC April 10, 2000

The leading spaces before the date in the second two
titles is caused by the date string being right justified.  The
LEFT and TRIM functions can be used to remove the
space, however care must be exercised or a couple of
problems can be encountered.

The first is that function calls cannot be nested within a
%SYSFUNC.  Fortunately this is rather easily handled
because %SYSFUNC requests can be nested.  

%SYSFUNC are used as arguments to the outer calls. 
When the resolved value contains special characters
(especially commas), they can be misinterpreted.  The
following revised TITLE3 will not work because the
interior %SYSFUNC uses a formatted value which
contains a comma.

title3 "Using SYSFUNC
%sysfunc(left(%sysfunc(date(),worddate18.)
))";

After the inner %SYSFUNC is executed the result is:

title3 "Using SYSFUNC %sysfunc(left(April
10, 2000))";

Because of the comma, the LEFT function will see two
arguments (it is expecting exactly one), and the message
'too many arguments' is generated.  

The %QSYSFUNC function can be used to mask special
characters in the text string that is passed to the next
function.  Rewriting the TITLE statement using
%QSYSFUNC as is shown below eliminates the problem
with the comma.

title3 "Using SYSFUNC
%sysfunc(left(%qsysfunc(date(),worddate18.
)))";

TITLE3 from above becomes:

Using SYSFUNC April 10, 2000

Starting with Release 6.12,  functions originally included
in the Screen Control Language (SCL) library, became
available in the DATA step and so are also now available
to %SYSFUNC.  

Starting with Nashville Release of the SAS System
(Version 7), SAS/ACCESS  utilizes the engine option in®

the LIBNAME statement to designate the type of data
that is to be read or written.  This allows the user to
directly read non-SAS data forms such as Excel  and®

dBase .   Other third party vendors have been using®

technique for some time.  

The following macro uses the PATHNAME function to
retrieve the path associated with a LIBREF. This path is
then used to build a new LIBREF with a different engine. 

%macro engchng(engine,dsn);
* engine - output engine for this &dsn
* dsn - name of data set to copy
*;

* Create a libref for the stated Engine;
libname dbmsout clear;
libname dbmsout &engine

"%sysfunc(pathname(sasuser))";

* Copy the SAS data set using the
* alternate engine;

Advanced TutorialsAdvanced Tutorials



proc datasets;
copy in=sasuser out=dbmsout;
select &dsn;
run;

%mend engchng;

****************;
* convert to alt. engine;
%engchng(v604,classwt)

Notice that the LIBREF in the PATHNAME function call is
not in quotes.  Remember that arguments to macro
functions are always text so the quotes are not necessary. 
As you use DATA step functions with %SYSFUNC, you
should expect the behavior of many of the arguments of
the DATA step functions to vary slightly in ways such as
this.

When the macro must not contain any non-macro
statements, librefs can be defined by using the LIBNAME
DATA step function.

%let rc = %sysfunc(libname(classwt,
%sysfunc(pathname(sasuser)),
v604));

This single macro statement will create the libref
CLASSWT with the V604 engine using the same path
information as SASUSER.

%SYSFUNC can also be used to check to see if a data
set exists by using the EXIST function.  The following %IF
will execute the %RPT macro only when the data set as leading and trailing blanks) from a text string.  This
identified by &DSN exists. macro is similar to the COMPBL DATA step function.  In

%if %SYSFUNC(exist(&dsn)) %then %RPT(&dsn); macro variable using the SYMPUT routine.  In the

The GAMMA function can be used to calculate factorials. to &FIVE.
In a macro a factorial can be calculated by calling the
GAMMA function with %SYSFUNC.  The following macro
acts like a function and returns the factorial value of the
argument, N.

%macro fact(n);
%sysfunc(gamma(%eval(&n+1)))

%mend fact;

%let fact5 = %fact(5);

The macro variable &FACT5 will contain 120.

AUTOCALL MACROS THAT MIMIC
FUNCTIONS

The AUTOCALL facility allows the user to call macros that
have been defined outside of the execution of the current
program.  A number of these macros are provided with the
base macro language and are described in the Macro
Language Elements section of the SAS  Macro®

Language: Reference, First Edition reference manual. 
Although these are, strictly speaking, macros, they act like
functions.  

Commonly used Autocall macros include:
%CMPRES
%LEFT
%LOWCASE
%TRIM
%VERIFY

�%LEFT
This macro can be used to left justify a macro argument. 
In the earlier example for %QSYSFUNC the DATA step
LEFT function was used, this title can be further
simplified by using %LEFT.

title3 "Using SYSFUNC
%left(%qsysfunc(date(),worddate18.))";

�%VERIFY
While %INDEX and its variations search for specific
strings, %VERIFY determines the position of the first
character that is NOT in a text string.  The following
example subsets a string starting at the first character
that is not a number.

%let code = 2000SUGI25;
%let part =
%substr(&code,%verify(&code,1234567890));

&PART will contain:

SUGI25

�%CMPRES
The %CMPRES macro removes multiple blanks (as well

the following example a numeric value is placed into a

conversion process a series of leading blanks are added

data _null_;
x=5;
call symput('five',x);
run;

%put *&five*;
%let five = *%cmpres(&five)*;
%put &five;

The resulting LOG shows:

138
139 %put *&five*;
* 5*
140 %let five = *%cmpres(&five)*;
141 %put &five;
*5*

Advanced TutorialsAdvanced Tutorials



SUMMARY REFERENCES

Macro functions extend the capabilities and power of the Burlew, Michele M., SAS  Macro Programming Made
DATA step to the macro language.  Many of the DATA
step functions have analogous macro functions, and 
other DATA step functions can now be directly accessed
from within the macro language through the use of  
macro functions such as %SYSFUNC.  Since recent
changes to the base SAS System allow the use in the
DATA step of functions that were originally a part of   
SCL, these functions are also now available in the macro
language.

Quoting functions and functions that return quoted 
results, are available and can be used to remove the
special meaning of selected characters.

The Autocall library that is supplied with the SAS   
System also contains a number of macros that act like
functions.  These macros further extend the range of the
macro language by providing even more power and
functionality. 

ABOUT THE AUTHOR

Art Carpenter’s publications list includes three books
(Annotate: Simply the Basics, Quick Results with
SAS/GRAPH  Software, and Carpenter's Complete Guide®

to the SAS  Macro Language),  two chapters in Reporting®

from the Field, and over three dozen papers and posters
presented at SUGI, PharmaSUG, and WUSS.  Art has
been using SAS since 1976 and has served in a variety 
of positions in user groups at the local, regional, and
national level.

Art is a SAS Quality Partner  and SASTM

Certified Professional .  Through CaliforniaTM

Occidental Consultants he teaches SAS
courses and provides contract SAS
programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
P.O. Box 6199
Oceanside, CA 92058-6199

(760) 945-0613
art@caloxy.com
www.caloxy.com

®

Easy, Cary, NC: SAS Institute, Inc., 1998, 280 pp.

Carpenter, Arthur L., Carpenter's Complete Guide to the
SAS  Macro Language, Cary, NC: SAS Institute Inc.,®

1998, 242 pp.

Carpenter, Arthur L., "Macro Quoting Functions, Other
Special Character Masking Tools, and How to Use
Them", Proceedings of the Twenty-Fourth Annual SUGI
Conference, 1999, pp237-241.

SAS Institute Inc., SAS  Macro Language: Reference,®

First Edition, Cary, NC: SAS Institute Inc., 1997, 304 pp.

TRADEMARK INFORMATION

SAS, SAS/ACCESS, SAS Certified Professional, and
SAS Quality Partner are registered trademarks of SAS
Institute, Inc. in the USA and other countries.
.® indicates USA registration

DBMS/Engines is a registered trademark of Conceptual
Software, Inc. in the USA and other countries.
® indicates USA registration

Excel is a registered trademark of Microsoft Corporation
in the USA and other countries.
® indicates USA registration

Advanced TutorialsAdvanced Tutorials


	CD Table of Contents

	4-25m: Using Macro Functions


