

Executing SAS® Functions
with the %SYSFUNC Macro

Function

Transcript

Executing SAS® Functions with the %SYSFUNC Macro Function Transcript was developed by Lise
Cragen. Additional contributions were made by Michelle Buchecker, Lynn Mackay, Kathy Passarella, and
Russ Tyndall. Editing and production support was provided by the Curriculum Development and Support
Department.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

Executing SAS® Functions with the %SYSFUNC Macro Function Transcript

Copyright © 2009 SAS Institute Inc. Cary, NC, USA. All rights reserved. Printed in the United States of
America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

Book code E1626, course code RLSPSYSF, prepared date 21Dec2009. RLSPSYSF_001

 ISBN 978-1-60764-374-6

 For Your Information iii

Table of Contents

Lecture Description ... iv

Prerequisites ... v

Accessibility Tips ... v

Executing SAS Functions with the %SYSFUNC Macro Function 1

1. %SYSFUNC Syntax and Usage ... 8

2. Creating Macro Variable Values in a %LET Statement .. 39

3. Manipulating Macro Variable Values in a SAS Language Statement 49

4. Manipulating Macro Variable Values in a Macro Program Statement 65

Appendix A Lecture and Demonstration Programs .. A-1

1. Creating Macro Variables in a %LET Statement .. A-3

2. Manipulating Macro Variable Values in a SAS Language Statement A-4

3. Manipulating Macro Variable Values in a SAS Language Statement A-5

4. Manipulating Macro Variable Values in a Macro Program Statement A-6

5. Manipulating Macro Variable Values in a Macro Program Statement A-7

Appendix B SAS Functions Not Available with %SYSFUNC B-1

iv For Your Information

Lecture Description

This e-lecture describes how to use the %SYSFUNC macro function to manipulate text in the SAS macro
facility.

To learn more…

For information on other courses in the curriculum, contact the SAS Education
Division at 1-800-333-7660, or send e-mail to training@sas.com. You can also
find this information on the Web at support.sas.com/training/ as well as in the
Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this
Course Notes, USA customers can contact our SAS Publishing Department at
1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside the
USA, please contact your local SAS office.

Also, see the Publications Catalog on the Web at HsupportH.sas.com/pubs for a
complete list of books and a convenient order form.

 For Your Information v

Prerequisites

Before listening to this e-lecture, you should be familiar with the SAS macro facility. This includes
knowing how to create macro variables using %LET statements, the CALL SYMPUTX routine, and the
INTO clause in the SQL procedure. It also includes the ability to generate SAS log messages, apply
macro functions, create and invoke macro programs, and use conditional macro logic. You should also
have experience using SAS language functions.

Accessibility Tips

If you are using a screen reader, such as Freedom Scientific’s JAWS, you may want to configure your
punctuation settings so that characters used in code samples (comma, ampersand, semicolon, percent) are
announced. Typically, the screen reader default for the character & is to read “and.” For clarity in code
samples, you may want to configure your screen reader to read & as “ampersand.” In addition, depending
on your verbosity options, the character & might be omitted. The same is true for some commas before a
code variable. To confirm code lines, you may choose to read some lines character by character. When
testing this scenario with Adobe Acrobat Reader 9.1 and JAWS 10, ampersands before SAS macro names
were announced only when in character-reading mode.

vi For Your Information

Executing SAS Functions with the
%SYSFUNC Macro Function

1. %SYSFUNC Syntax and Usage .. 8

2. Creating Macro Variable Values in a %LET Statement ... 39

3. Manipulating Macro Variable Values in a SAS Language Statement 49

4. Manipulating Macro Variable Values in a Macro Program Statement 65

2 Executing SAS Functions with the %SYSFUNC Macro Function

 1. %SYSFUNC Syntax and Usage 3

Executing SAS® Functions
with the
%SYSFUNC Macro Function

Welcome to this SAS e-Lecture on Executing SAS® Functions with the %SYSFUNC Macro Function. My
name is Lise and I’m an instructor with SAS Education.

4 Executing SAS Functions with the %SYSFUNC Macro Function

Reference Materials

To access the transcript for this
lecture:

1. Go to the table of contents
on the left side of the viewer.

2. Select Reference.

3. Select Transcript.

2

Before we begin the lecture, let me mention that we have included a transcript so that you can print all of
the technical information provided in this lecture. To access the transcript, select UReferenceU and then
UTranscriptU in the table of contents on the left side of the viewer, as in the example shown here. You can
print this transcript now for use when viewing the lecture or print it later to keep as a reference. Also, note
that Appendix A in the transcript contains copies of the programs used for the demonstrations in this
lecture.

 1. %SYSFUNC Syntax and Usage 5

Navigation Help

For information on how to navigate
this lecture:

1. Go to the upper right corner
of the browser.

2. Select Help.

3

If you need help with the navigation of this lecture, please select UHelpU in the upper right corner of the
browser.

6 Executing SAS Functions with the %SYSFUNC Macro Function

1. %SYSFUNC Syntax and Usage

2. Creating Macro Variable Values in a %LET Statement

3. Manipulating Macro Variable Values
in a SAS Language Statement

4. Manipulating Macro Variable Values
in a Macro Program Statement

4

Executing SAS Functions with the %SYSFUNC Macro Function

Let’s start with an overview of the topics we’ll be covering in this lecture. In the first section, we’ll begin
with a discussion of macro function concepts in general. Then we’ll discuss the specifics of %SYSFUNC
macro function in terms of syntax and usage. In Sections 2, 3, and 4, we’ll focus on using %SYSFUNC in
three different programming contexts.

 1. %SYSFUNC Syntax and Usage 7

Background Information Sources for this e-Lecture

SAS® Programming 2: Data Manipulation Techniques

– Using SAS functions

SAS® Macro Language 1: Essentials

– Creation of macro variables using %LET statements,
the SYMPUTX routine, and PROC SQL

– Using indirect macro variable references

– Writing macro definitions including %DO and %IF statements

5

For this e-lecture, I’ll assume that you have quite a bit of SAS programming and macro programming
knowledge and experience. First, I’ll assume that you know how to use SAS language functions. I’ll
expect that you know how to create macro variables using %LET statements, the SYMPUTX routine in
the DATA step, and the INTO clause in PROC SQL, and that you know how to use indirect macro
variable references. Finally, I’ll assume that you’re familiar with how to write macro definitions including
both %DO and %IF statements. The use of SAS functions is covered in detail in the SAS® Programming
2 course. All of the macro topics that I mentioned are addressed in the SAS® Macro Language 1 course.

8 Executing SAS Functions with the %SYSFUNC Macro Function

1. %SYSFUNC Syntax and Usage

1. %SYSFUNC Syntax and Usage

2. Creating Macro Variable Values in a %LET Statement

3. Manipulating Macro Variable Values
in a SAS Language Statement

4. Manipulating Macro Variable Values
in a Macro Program Statement

6

Executing SAS Functions with the %SYSFUNC Macro Function

So let’s begin with our first section, an introduction to %SYSFUNC.

 1. %SYSFUNC Syntax and Usage 9

Objectives

Identify the purpose of the %SYSFUNC function.

Examine SAS language functions versus macro language functions.

Become familiar with %SYSFUNC syntax and usage.

7

In this first section, we’ll begin by identifying the purpose of %SYSFUNC. Then we’ll have a general
discussion of SAS language functions versus macro functions in general. Finally we’ll cover some of the
details of the syntax and usage of %SYSFUNC.

10 Executing SAS Functions with the %SYSFUNC Macro Function

The %SYSFUNC Function

The %SYSFUNC function enables the macro facility to execute
SAS language functions or user-written functions.

8

What is the purpose of %SYSFUNC? Well, it allows you to take advantage of SAS functions from within
the macro facility. Those functions can be functions supplied by SAS, or they can be functions that you
write. In order to understand why that’s so valuable, it’s helpful to review some concepts regarding SAS
functions versus macro functions.

 1. %SYSFUNC Syntax and Usage 11

Function Comparison

9

SAS Functions Macro Functions

Manipulate values of SAS
variables

Manipulate values of macro
variables

Executed when the DATA or
PROC step in which they are
included is executed

Executed at word scanning time
by the Macro Processor

Over 500 available in SAS 9.2 About 30 available in SAS 9.2

This table highlights some of the key differences between SAS functions and macro functions. Let’s go
through these differences one by one.

12 Executing SAS Functions with the %SYSFUNC Macro Function

Function Comparison

10

SAS Functions Macro Functions

Manipulate values of SAS
variables

Manipulate values of macro
variables

Executed when the DATA or
PROC step in which they are
included is executed

Executed at word scanning time
by the Macro Processor

Over 500 available in SAS 9.2 About 30 available in SAS 9.2

First of all, SAS functions are used to create or manipulate SAS variable values. Macro functions, on the
other hand, are typically used to manipulate values of macro variables.

 1. %SYSFUNC Syntax and Usage 13

Function Comparison

11

SAS Functions Macro Functions

Manipulate values of SAS
variables

Manipulate values of macro
variables

Executed when the DATA or
PROC step in which they are
included is executed

Executed at word scanning time
by the Macro Processor

Over 500 available in SAS 9.2 About 30 available in SAS 9.2

A key difference between SAS functions and macro functions has to do with timing. SAS functions are
executed when the DATA or PROC step in which they are included is executed. Macro functions are
processed earlier, at word-scanning time. If your program has a step that includes both a SAS language
function and a macro function, the macro function happens first. We’ll review that in a little more detail
shortly.

14 Executing SAS Functions with the %SYSFUNC Macro Function

Function Comparison

12

SAS Functions Macro Functions

Manipulate values of SAS
variables

Manipulate values of macro
variables

Executed when the DATA or
PROC step in which they are
included is executed

Executed at word scanning time
by the Macro Processor

Over 500 available in SAS 9.2 About 30 available in SAS 9.2

The last difference here is the number of functions available. In SAS 9.2, there are over 500 SAS
functions included, and you can also add to those by creating your own functions. In contrast, there are
about 30 macro functions. Now, these 30 macro functions include several that mimic the functionality of
a similar SAS language function. You’ll probably find that the available macro functions address many of
the key capabilities that you need when manipulating macro variables, but probably not all.

 1. %SYSFUNC Syntax and Usage 15

Function Comparison

13

data subset;
set orion.employee_addresses;
where upcase(state)="%upcase(&subset_state)";

. . .

run;

Let’s take a quick look at the differences between SAS language functions and macro functions in action.
Here we have a DATA step in which the WHERE statement includes both a SAS language function and a
macro function. Let’s talk about the differences.

16 Executing SAS Functions with the %SYSFUNC Macro Function

Function Comparison

14

where upcase(state)="%upcase(&subset_state)";

SAS Function

Let’s drill into the WHERE statement. On the left side of the expression, we’re using the SAS language
function UPCASE. The argument to this function is the SAS variable state.

 1. %SYSFUNC Syntax and Usage 17

where upcase(state)="%upcase(&subset_state)";

Function Comparison

15

Macro Function

On the right side of the expression, we’re using the macro function %UPCASE. Its argument is the macro
variable &SUBSET_STATE.

18 Executing SAS Functions with the %SYSFUNC Macro Function

where upcase(state)="%upcase(&subset_state)";

Function Comparison

16

Executed once for each observation in orion.employee_addresses

The SAS language function will be executed when the WHERE statement is executed. It will be
processed once for each observation in the source data set to determine whether that observation will be
read.

 1. %SYSFUNC Syntax and Usage 19

where upcase(state)="%upcase(&subset_state)";

Function Comparison

17

Executed once by the macro processor prior to
the compilation and execution of the DATA step

The macro function will be executed by the macro processor at word-scanning time. This happens before
the compilation and execution of the DATA step. It will be executed only one time. Suppose the value of
the macro variable &SUBSET_STATE is pa, the code for Pennsylvania, in lowercase. When the
program is submitted, the word scanner sends the %UPCASE function to be processed by the macro
processor. The macro processor converts the value of &SUBSET_STATE to uppercase and returns it to
the input stack.

20 Executing SAS Functions with the %SYSFUNC Macro Function

Function Comparison

18

data subset;
set orion.employee_addresses;
where upcase(state)="PA";

. . .

run;

When the value of &SUBSET_STATE is pa (in lower, upper, or mixed case),
this is the program that ultimately goes to the SAS compiler.

This is the program that ultimately goes to the SAS compiler. The right side of the WHERE expression is
only a character constant, that is, the state code for Pennsylvania in uppercase.

Now in this case, it happens that both the SAS and macro function are doing the same task, specifically
converting to uppercase, but that’s not the point of this example. We could use a different SAS function
or a different macro function (such as %SYSFUNC) in an expression like this one. The timing would be
the same. Macro functions are executed prior to compilation, and DATA step functions are executed
during DATA step execution.

Also, converting to uppercase is clearly not a situation where we need %SYSFUNC because we already
have a macro function that handles this task. %UPCASE is one of the macro functions that I referred to
that mimic the capabilities of a SAS language function. As we proceed we’ll see several cases where
%SYSFUNC is needed.

 1. %SYSFUNC Syntax and Usage 21

The %SYSFUNC Function (Review)

The %SYSFUNC function enables the macro facility to execute
SAS language functions or user-written functions.

19

So let’s get back to %SYSFUNC. We already highlighted the fact that there are many more SAS
functions than macro functions, and you can create your own functions to supplement those provided by
SAS. So, %SYSFUNC gives you access to a very broad range of capabilities to manipulate macro
variable values.

22 Executing SAS Functions with the %SYSFUNC Macro Function

Selected SAS Language Function Categories

Character

Date and Time

Descriptive Statistics

External Files

Mathematical

SAS File I/O

Special

FCMP Procedure

20

We talked about the number of SAS language functions available. Let’s talk about some of the categories
of functions. Now this is not a full list of all function categories, just some that you might be most likely
to use with %SYSFUNC.

The first category shown here is Character. There are a great many character functions available in SAS.
You’re very likely to find these handy to manipulate text in the macro facility.

You might use Date and Time functions with %SYSFUNC to create or manipulate macro variables that
contain a calendar date or clock time.

There are External File functions that you can use to return information about or manipulate external files
such as a spreadsheet. You might use these functions with %SYSFUNC in a program that accesses these
files.

I’ve mentioned a couple of times that you can use %SYSFUNC to access functions that you’ve written
yourself. The FCMP procedure, which is new to SAS 9.2, provides the capability to write your own
functions.

 1. %SYSFUNC Syntax and Usage 23

%SYSFUNC Syntax

SAS function(argument-1 < . . .argument-n>) is the name of the
function and its corresponding arguments.

The second argument is an optional format for the value returned by
the specified SAS function.

21

%SYSFUNC (SAS function(argument-1 <...argument-n>)<, format>)

Let’s take a look at the syntax of %SYSFUNC. There are only two arguments. The first is the SAS
function that you want to access, specified with its own arguments as appropriate. The second argument
to %SYSFUNC, which is optional, specifies a format to be applied to the value calculated by the function
before it is returned to the macro facility.

24 Executing SAS Functions with the %SYSFUNC Macro Function

%SYSFUNC Syntax

The function called using %SYSFUNC

can be a SAS language function, with some exceptions.

can be a function created using the FCMP procedure.

cannot be a macro function.

22

%SYSFUNC (SAS function(argument-1 <...argument-n>)<, format>)

The function that you specify as the first argument can be a SAS function or it can be a function created
using PROC FCMP. You can’t specify a macro function here. Also, there are some SAS language
functions that are not accessible using %SYSFUNC. For example, you can’t use array functions. Arrays
are valid only in the context of the DATA step, so they’re not available here. There’s a full list of the SAS
9.2 functions that can’t be used with %SYSFUNC in the handout for this e-lecture.

 1. %SYSFUNC Syntax and Usage 25

%SYSFUNC (SAS function(argument-1 <...argument-n>)<, format>)

%SYSFUNC Syntax

The optional format passed to %SYSFUNC can be a format supplied by
SAS, or it can be a user-written format.

If no format is specified, %SYSFUNC does not apply a format and
returns the default format for the specific function.

23

The second argument to %SYSFUNC is a format, and it can be either a SAS format or one that you’ve
written. It is optional, though in many cases you will want to specify a format. If you don’t, %SYSFUNC
returns the value in the default format for the specific function.

26 Executing SAS Functions with the %SYSFUNC Macro Function

Using %SYSFUNC

Omit quotation marks on character arguments.

24

So we’ve seen the basic syntax of %SYSFUNC. Let’s talk about some of the considerations to remember
when using it. The first issue to discuss is the use of quotation marks for character arguments. You can
use %SYSFUNC with a function whose arguments would be quoted if it were used in a DATA step.
However, because %SYSFUNC is a macro function, character arguments to the function being called are
not enclosed in quotation marks.

 1. %SYSFUNC Syntax and Usage 27

Using %SYSFUNC

Omit quotation marks on character arguments.

DATA step usage

25

Source=COMPRESS(source,,'ps');

Let’s look at the way character constant arguments are specified in the context of a DATA step. Here
we’re using the COMPRESS function in an assignment statement. If you haven’t used it before, this
function removes specified characters from the string that’s named in the first argument. You can list
specific individual characters to remove as the second argument to the function. You can also use various
modifiers in the third argument to remove categories of characters. In this instance, we’re using the
function with the modifiers ”p,” which removes punctuation marks, and ”s,” which removes space
characters such as spaces and tabs. In this situation, the list of modifiers is a character constant and must
be quoted.

28 Executing SAS Functions with the %SYSFUNC Macro Function

Using %SYSFUNC

Omit quotation marks on character arguments.

DATA step usage

%SYSFUNC usage

26

%let source=%sysfunc(compress(&source,,ps));

Source=COMPRESS(source,,'ps');

Now let’s switch to the context of the macro facility. Here we’re using %SYSFUNC to access the
COMPRESS function in a %LET statement. We’re using COMPRESS with the same modifiers, but here
quotation marks are not used. Remember that the macro facility is a text processor, so there is no need to
use quotation marks to differentiate text from variable names or mnemonics as is the case in the DATA
step. Including them will likely cause a WARNING message in the SAS log at best, and might cause
errors or unintended results.

 1. %SYSFUNC Syntax and Usage 29

Using %SYSFUNC

When nesting, use a %SYSFUNC for each SAS function called.

27

%let x=%sysfunc(trim(%sysfunc(left(&num))));

You might need to nest calls to multiple SAS functions. For example, here we’re passing the result of the
LEFT function to the TRIM function. In this situation, you can’t use a single %SYSFUNC call. You need
one for each SAS function to be invoked.

30 Executing SAS Functions with the %SYSFUNC Macro Function

Using %SYSFUNC

When nesting, use a %SYSFUNC for each SAS function called.

28

...

%let x=%sysfunc(trim(%sysfunc(left(&num))));

%SYSFUNC to execute
the TRIM function

So here we see the %SYSFUNC that is used to access the TRIM function.

 1. %SYSFUNC Syntax and Usage 31

Using %SYSFUNC

When nesting, use a %SYSFUNC for each SAS function called.

29

%let x=%sysfunc(trim(%sysfunc(left(&num))));

%SYSFUNC to execute
the TRIM function

%SYSFUNC to execute
the LEFT function

Nested within that is a second use of %SYSFUNC to access the LEFT function. So here we have two
SAS functions to call, and therefore we need two references to %SYSFUNC. Notice that the innermost
function, in this case LEFT, is called first and the results are passed to the TRIM function.

32 Executing SAS Functions with the %SYSFUNC Macro Function

%SYSFUNC Details

%SYSFUNC can return non-integer values.

30

The Square Root of 27 is 5.19615242270663

%put The Square Root of 27 is %sysfunc(sqrt(27));

You might have observed that the macro facility will perform mathematical operations in some situations,
but those operations typically return integer values only. However, in the case of %SYSFUNC, a floating
point number will be returned if the function being called supports floating point numbers. Here we’re
calculating the square root of a number, and we can see that the default value returned by the SQRT
function is showing many places to the right of the decimal point. Now of course, to the macro facility
this is only text, not an actual floating point number. However, we’re not limited to an integer
representation only.

 1. %SYSFUNC Syntax and Usage 33

%SYSFUNC Details

%SYSFUNC can return non-integer values.

Use a format to control the value returned.

31

The Square Root of 27 is 5.19615242270663

%put The Square Root of 27 is %sysfunc(sqrt(27));

The Square Root of 27 is 5.2

%put The Square Root of 27 is %sysfunc(sqrt(27),3.1);

This example illustrates a case where you might want to take advantage of the optional second argument
to %SYSFUNC, that is, the format. In the second case shown on this slide, we’re using a format to
control the number of decimal places returned.

34 Executing SAS Functions with the %SYSFUNC Macro Function

%SYSFUNC Details

There is no need to convert numeric arguments.

32

%let min=%sysfunc(min(&x,&y,&z,0));

Numeric arguments required

If you’re using a function with macro variable references in place of numeric arguments, you might
wonder if you need to do some kind of conversion. After all, macro variable values are only text. No
conversion is necessary. When a function called by %SYSFUNC requires a numeric argument, as with
the MIN function shown here, the macro facility passes the argument to the function as a numeric value.

 1. %SYSFUNC Syntax and Usage 35

%SYSFUNC Details

The value returned by %SYSFUNC could include characters that
could be interpreted as macro syntax.

– AT&T

– NE

– ;

33

...

In some situations, the value that is returned by %SYSFUNC can contain characters that could be
interpreted as macro syntax. Let’s look at a few examples. The text AT&T might refer to a company name.
However, it could also be seen as text followed by a macro variable reference that the macro processor
would attempt to resolve. The characters NE could be the abbreviation for the state of Nebraska. In some
situations this text might be interpreted as the Not Equal to operator. A semicolon might be meant to be
only text, but it would very likely be seen as the end of a statement. In all of these cases, these characters
could cause unintended behavior in a program if they are intended as text rather than macro syntax. There
are many more examples of characters that can cause these kinds of problems.

36 Executing SAS Functions with the %SYSFUNC Macro Function

%SYSFUNC Details

The value returned by %SYSFUNC could include characters
that could be interpreted as macro syntax.

– AT&T

– NE

– ;

Certain macro functions, called quoting functions, can be used
to mask such characters and avoid misinterpretation.

– %QSYSFUNC is a macro quoting function.

34

These issues can occur in a variety of situations. There’s a class of macro functions, called quoting
functions, that you can use to handle these kinds of problems. You can use a quoting function when you
want certain characters that could be seen as macro syntax to be masked. Then, those characters are only
seen as text. There are many different quoting functions available. One of them is %QSYSFUNC.

 1. %SYSFUNC Syntax and Usage 37

The %QSYSFUNC Function

The %QSYSFUNC function

can be used instead of %SYSFUNC when macro quoting is needed

has the same purpose and syntax as %SYSFUNC

masks the following characters in its result:

– & % ' " () + - * / < > = ¬ ^ ~ ; , # blank

– AND OR NOT EQ NE LE LT GE GT IN

35

%QSYSFUNC is an alternative to %SYSFUNC when you need to quote the result returned by the
function. It does the same thing that %SYSFUNC does, and has the same syntax, but it masks the
characters shown here in its result. Macro quoting is a significant topic on its own, and we don’t have
time to discuss it further in this lecture. If you want to know more about macro quoting functions, they are
discussed in detail in the SAS Macro Language 2 course. There’s also an e-lecture that covers this topic.
I’ll mention that again at the end of this lecture. Of course you can also investigate the section on macro
quoting that’s in SAS 9.2 Macro Language: Reference.

38 Executing SAS Functions with the %SYSFUNC Macro Function

Summary

%SYSFUNC enables powerful capabilities so that the macro facility
can manipulate values.

%SYSFUNC enables you to specify a format for the value returned
by the function.

%QSYSFUNC is an alternative to %SYSFUNC when macro quoting
is needed.

36

To summarize, %SYSFUNC opens up all kinds of capabilities for you to manipulate macro variable
values. You can specify a format with %SYSFUNC to control the value returned. %QSYSFUNC is an
alternative to %SYSFUNC when you need to mask certain characters in the results.

 2. Creating Macro Variable Values in a %LET Statement 39

2. Creating Macro Variable Values in a %LET Statement

1. %SYSFUNC Syntax and Usage

2. Creating Macro Variable Values
in a %LET Statement

3. Manipulating Macro Variable Values
in a SAS Language Statement

4. Manipulating Macro Variable Values
in a Macro Program Statement

37

Executing SAS Functions with the %SYSFUNC Macro Function

Well, we’ve talked a bit about what %SYSFUNC does and how to use it. Now let’s see it in action.

40 Executing SAS Functions with the %SYSFUNC Macro Function

Objectives

Create macro variables using %SYSFUNC in a %LET statement.

Use formats to control the returned value.

38

In this section, we’re going to use %SYSFUNC to create values for macro variables in a %LET
statement. We’re also going to take advantage of the ability to apply a format to the returned value.

 2. Creating Macro Variable Values in a %LET Statement 41

Business Scenario

A report is run on a monthly basis to list employees with anniversary
dates in the current month.

39

Here’s the problem that we need to solve. We need to create a report that lists the employees with
anniversary dates in the current month. Here we see a version of the report that was run in the month of
June, so it shows employees who were hired during that month of the year. The title indicates that the
report displays employees with anniversaries in June, and although only a portion of the report is shown
here, it includes only employees hired in June.

42 Executing SAS Functions with the %SYSFUNC Macro Function

Business Scenario Considerations

The current month will be determined dynamically using
%SYSFUNC and a SAS DATE/TIME function.

Two versions of the month value are needed to create
the desired report.

40

We want the program that creates the report to be dynamic and not require editing each month in order to
get the current month’s report. We’re going to have the macro facility determine the appropriate month
depending on when we submit the program. We can do that using %SYSFUNC to access a SAS
DATE/TIME function. For this program, we’ll need two different versions of the month value in order to
create the report that we want.

 2. Creating Macro Variable Values in a %LET Statement 43

Creating Macro Variable Values in a %LET Statement

The desired program, when executed in June:

41

proc sort data=orion.employee_status out=June_Anniv;
by employee_hire_date;
where month(employee_hire_date)=6;

run;

title "Employees with Anniversaries in June";
footnote "Report Generated on 11JUN2009";

proc print data=June_Anniv label;
id employee_hire_date;
by employee_hire_date;
var employee_id employee_name job_title department;

run;

This slide shows the final program that we want to be executed after the macro facility has done its job
filling in the appropriate month values. This version of the program was generated in June.

44 Executing SAS Functions with the %SYSFUNC Macro Function

Creating Macro Variable Values in a %LET Statement

Month values are needed in two different formats.

42

proc sort data=orion.employee_status out=June_Anniv;
by employee_hire_date;
where month(employee_hire_date)=6;

run;

title "Employees with Anniversaries in June";
footnote "Report Generated on 11JUN2009";

proc print data=June_Anniv label;
id employee_hire_date;
by employee_hire_date;
var employee_id employee_name job_title department;

run;
The month name is appropriate for data set names and the title.

If we look at the code, we’ll see the month is referenced in two different ways. First, we’re using the
month name. The month name is used to name a data set containing employees with anniveraries in the
current month and also to specify the current month in the report title.

 2. Creating Macro Variable Values in a %LET Statement 45

Creating Macro Variable Values in a %LET Statement

Two references to the month are needed.

43

proc sort data=orion.employee_status out=June_Anniv;
by employee_hire_date;
where month(employee_hire_date)=6;

run;

title "Employees with Anniversaries in June";
footnote "Report Generated on 11JUN2009";

proc print data=June_Anniv label;
id employee_hire_date;
by employee_hire_date;
var employee_id employee_name job_title department;

run;
The month number is appropriate for the WHERE statement.

Secondly, we’re using the month number in the WHERE statement. We need a value to compare to the
employee’s month of hire, which is calculated here by the MONTH function. The MONTH function
returns a numeric value from 1 to 12, so we need a numeric value for this comparison.

So this is the final program that we want the macro facility to generate for us in June.

46 Executing SAS Functions with the %SYSFUNC Macro Function

Creating Macro Variables
in a %LET statement

This demonstration illustrates the use of %SYSFUNC
to generate macro variable values in a %LET statement.

44

Let’s switch over to a SAS session and take a look at the program that we’ll submit to get that result.

So here’s the program. At the top of the program we have an OPTIONS statement. Notice that we’re
turning on the SYMBOLGEN option so that we’ll see messages about macro variable resolution in the
log. Then we have two %LET statements creating the two macro variables that we’ll use to reference the
current month. They’re both calling the TODAY function, but they’re specifying different formats to
apply to the returned value. The first %LET, which is creating a macro variable named MONTHNAME,
is using the MONNAME. format. That format returns the name of the month such as January, February,
and so on. Because we haven’t specified a width for the format, we’ll get the default of 9, which
accommodates the longest possible month name. The second %LET statement is creating a macro
variable named MONTHNUM and it is using the format MONTH. The MONTH. format returns a
number from 1 to 12.

Next, we have the SAS code to create the desired results. First is a PROC SORT step. We’re using this
step both to sort the data, because we want to see the employees in order by hire date on the final report,
and also to subset for the current month. We’re referencing the &MONTHNAME macro variable in the
OUT= option so that the sorted data will be named using the current month. Notice that we’re using the
period delimiter following the reference to &MONTHNAME so that we append the text _ANNIV to the
resolved value of month to generate the data set name. The &MONTHNUM macro variable is specified
in the WHERE statement so that we’ll only get employees with anniversary dates in the current month in
the output data set.

 2. Creating Macro Variable Values in a %LET Statement 47

Following the PROC SORT step, there are ODS statements to route the output to an HTML file and to
close the listing destination. Then we have a TITLE statement that references the &MONTHNAME
macro variable so the name of the current month will appear in the report title. Notice that we’re also
using the automatic macro variable &SYSDATE9 in the footnote.

Finally, the PROC PRINT step generates the desired report. We’ve got a reference to the
&MONTHNAME variable to build the appropriate data set name in the DATA= option in the PROC
PRINT statement. Lastly, we have an OPTIONS statement to turn the SYMBOLGEN option off.

Let’s go ahead and submit the report. I’m submitting this program in August, and we can see from the
results that I did get a listing for employees with August anniversaries. Also notice that the month of
August is referenced in the title.

Let’s take a look at the log. Because we had the SYMBOLGEN option turned on, we see messages telling
us how each macro variable reference resolved. So we see that &MONTHNAME resolved to August and
that &MONTHNUM resolved to the digit 8. So, we got the results that we wanted.

Now, you might notice here, particularly when looking at the log, that although we had repeated
references to the macro variable &MONTHNAME, we only used &MONTHNUM one time. It was only
used here in the WHERE statement. We certainly can delete these macro variables from the symbol table
to free that memory, but in the case of &MONTHNUM we might choose not to create a macro variable at
all. Let’s go back to the program. I’m going to take the reference to %SYSFUNC that was previously in
the %LET statement and put it directly in the WHERE statement. I’m going to highlight what’s on the
right side of the equal sign in the %LET, copy it, and paste it over the reference to monthnum in the
WHERE statement. Now let’s rerun the PROC SORT step, and we can see that we got the same result as
we did previously. So, it’s not necessary in this case to create a macro variable at all. In this instance of
&MONTHNAME, it makes sense to do so because we’re using it several times, but you can also use
%SYSFUNC without necessarily creating a macro variable. We’ll see more of that in the following
sections.

You might notice some blank hire dates on this report. I should probably point out that those are not
missing values. HireDate was used as both a BY and ID variable on this PROC PRINT report, and
therefore the HireDate is printed only for the first employee when multiple employees were hired on the
same day.

48 Executing SAS Functions with the %SYSFUNC Macro Function

Summary

%SYSFUNC can be used to create macro variables using
SAS functions in a %LET statement.

Use a format to create a value appropriate for your purpose.

45

So we’ve seen that you can use %SYSFUNC to create macro variable values in a %LET statement.
We’ve used formats to return a value appropriate for our purpose.

 3. Manipulating Macro Variable Values in a SAS Language Statement 49

3. Manipulating Macro Variable Values in a SAS Language
Statement

1. %SYSFUNC Syntax and Usage

2. Creating Macro Variable Values in a %LET Statement

3. Manipulating Macro Variable Values
in a SAS Language Statement

4. Manipulating Macro Variable Values
in a Macro Program Statement

46

Executing SAS Functions with the %SYSFUNC Macro Function

We saw, at the end of the last demo, that you can use %SYSFUNC directly in a SAS language statement.
Let’s go on and look at that in more detail.

50 Executing SAS Functions with the %SYSFUNC Macro Function

Objectives

Use %SYSFUNC to generate desired values
in SAS language statements.

47

Specifically in this section, we’re going to use %SYSFUNC to generate portions of DATA step
statements. You could also use the function to generate text in a PROC step or in a global statement.

 3. Manipulating Macro Variable Values in a SAS Language Statement 51

Business Scenario

Separate data sets must be generated for each office in the U.S.,
containing just information for employees in that city.

48

Here’s the problem that we need to address. Our company has offices and employees all over the world.
For each U.S. location, we need to create a separate data set that contains only the employees for that city.
So suppose we currently have offices in San Diego, Philadelphia, and Miami-Dade. We want to create
three data sets: one containing the San Diego employee information, one for Philadelphia, and one for
Miami-Dade.

52 Executing SAS Functions with the %SYSFUNC Macro Function

Business Scenario Considerations

Office locations might change over time.

Data sets to be created must be determined dynamically
at the time that the program is run.

Data sets must be named based on office location.

The city names might not be valid names for the SAS data
sets to be created.

– San Diego

– Miami-Dade

– St. Louis

– Washington, D.C.

49

Now, our office locations can change over time. We might open new offices or close existing ones.
Therefore, we want to write a program that will determine the data sets to be created dynamically, based
on the U.S. locations that are currently in the source data. We also want to use the name of each location
to create the name for the corresponding data set. However, the city names as stored in the data might not
be appropriate to use directly as data set names. For example, we could have city names such as the ones
shown here. They include special characters, for example, spaces, dashes, or punctuation characters that
aren’t allowed by default in the name of a SAS data set. Now not all of these examples are currently in
our data, but we need to write a program that will address these kinds of values.

 3. Manipulating Macro Variable Values in a SAS Language Statement 53

Manipulating Macro Variable Values
in a SAS Language Statement

The desired program to be generated by the macro facility.

50

...

data MiamiDade Philadelphia SanDiego ;
set orion.employee_addresses;
where country='US';
select (city);

when ("Miami-Dade") output MiamiDade;
when ("Philadelphia") output Philadelphia;
when ("San Diego") output SanDiego;
otherwise putlog 'ERROR: CITY NAME MISMATCH';

end;
run;

So here’s an example of the program that we want the macro facility to generate. The source data set,
orion.employee_addresses, contains information for all employees globally, so we’re subsetting
it for country equal to US in this program. At the time this program was generated, there were three
U.S. locations in our source data. So, this DATA step specifies three data sets in the DATA statement.
Then, we’re using a SELECT statement to output the observations to the appropriate data set based on the
value of the variable city.

54 Executing SAS Functions with the %SYSFUNC Macro Function

Manipulating Macro Variable Values
in a SAS Language Statement

The city names are not necessarily valid names for the SAS data sets
to be created.

51

data MiamiDade Philadelphia SanDiego ;
set orion.employee_addresses;
where country='US';
select (city);

when ("Miami-Dade") output MiamiDade;
when ("Philadelphia") output Philadelphia;
when ("San Diego") output SanDiego;
otherwise putlog 'ERROR: CITY NAME MISMATCH';

end;
run;

Notice that the city names currently in the data aren’t all valid for use directly as a data set name. We
have a value of Miami-Dade, which includes a hyphen, and a value of San Diego, which includes a
space. We want to remove these special characters in order to create a valid data set name for each
location. There is no available macro function that does that, but we can achieve that result using
%SYSFUNC with a SAS function.

 3. Manipulating Macro Variable Values in a SAS Language Statement 55

Manipulating Macro Variable Values
in a SAS Language Statement

This demonstration illustrates the use of %SYSFUNC with
a character function to generate valid data set names for
a DATA step.

52

Let’s go to a SAS session to look at the program that will generate this final result.

So here’s our program. Now I’m going to start with a simplified version of the program. In this simplified
version, we’ve manually assigning the city names to macro variables rather than looking them up
dynamically. We’re going to walk through the process of building the DATA step code. Then we’ll come
back and add the part that will determine the city names from the data.

First of all, notice that the program includes a macro definition. That’s because we need to do some
iterative processing with %DO statements and that can only happen inside a macro definition.

Here at the top we have a %LOCAL statement naming the macro variables that we’ll be creating here.
NUMCITIES will store the total number of office locations in the data, and CITYCOUNT will be used to
loop through each city in some %DO loops. CITYNAME1, CITYNAME2, and CITYNAME3 will store
the names of the three cities currently in our data. We want to make sure that these variables are stored in
the local table for this macro definition. That way, if we happen to have a macro variable of the same
name in another table, it won’t be overwritten.

Below that, we have %LET statements that assign values to all of those macro variables except for the
index variable for the loop. So we’re manually specifying that we have three cities and that the city names
are Miami-Dade, Philadelphia, and San Diego. As I mentioned, we’re going to make this part dynamic in
the final version of the program, but for now we’ll specify these values manually.

56 Executing SAS Functions with the %SYSFUNC Macro Function

Now we can use that set of variables to build the appropriate DATA step code. First, we’re going to write
the DATA statement itself. It begins with the keyword DATA, so we’ve specified that here. Now we need
to name the data sets that we want to create, and we’re going to use the macro variables that we created to
do so. We’re using a %DO statement to loop through the values from one to the value of &NUMCITIES.
Remember, &NUMCITIES contains the number of cities in our data. However, we can’t write out the
city names as is because those names might not be appropriate data set names. As we saw, they might
contain blanks or punctuation characters that are not allowed by default in SAS data set names. So, we’re
going to use %SYSFUNC with the COMPRESS function to build valid data set names from the city
names.

The COMPRESS function removes specified characters from a character string. The first argument is the
string that you want to modify. In this case it’s our city names. We’re generating those using indirect
references to the CITYNAME macro variables. The indirect reference here is made up of two
ampersands, followed by the variable prefix, which is CITYNAME, followed by a reference to the index
variable for the %DO loop, which is &CITYCOUNT. Remember that when this goes to the macro
processor, it will see &&CITYNAME and resolve to &CITYNAME because two ampersands together
resolve to one. Then it will resolve &CITYCOUNT to the value for the current iteration of the %DO
loop. For example, on the first iteration it would be the digit 1. So we put those two resolved items
together to get &CITYNAME1, which is then resolved to return the name of the first city in our data.

The second argument to the COMPRESS function is the specific characters that you want to remove.
Here, we’ve omitted that argument because we’re going to use the third argument instead. The third
argument specifies modifiers that remove categories of characters. The modifier P specifies that
punctuation marks, such as the hyphen or period, are removed. The modifier S includes blanks. Those
two modifiers should take care of the characters that we identified to be removed. Notice that these
modifier values P and S are not quoted here. If we were using the COMPRESS function in the DATA
step, then we would need to specify these values in quotation marks. Here the quotation marks aren’t
necessary, and if we did include them, they could cause errors or unintended results.

Let’s walk through the generation of that DATA statement. First, we have the DATA keyword. Then, the
%DO loop begins. We are on iteration one, so we write out the value of the macro variable
&CITYNAME1 with spaces and punctuation marks removed. When we reach the %END statement,
control goes back to the top of the loop. On the second iteration we write out the value of &CITYNAME2
with spaces and punctuation removed. We repeat with &CITYNAME3, and then we looped through all
the cities. Next we write out the semicolon that ends the DATA statement.

Following the DATA statement we have SET and WHERE statements. There’s no macro content there.
Then we have a SELECT statement. This is the conditional step that will output the observations to the
appropriate data set depending on the value of the variable CITY in the data. Here, the SELECT
statement names the variable that we’re going to use. In this case it’s CITY. Following that, we need to
generate the WHEN statements that check the value of CITY and output matching observations to the
appropriate data set. As before, we’re going to use a %DO statement with indirect macro variable
references to generate the desired code.

Each statement begins with the keyword WHEN followed by an open parenthesis. Then we want to
specify the value of the CITY variable to be matched. The DATA step requires that this value appear in
quotation marks, so we’re specifying them. We’re using double quotation marks because the quoted
string will contain macro triggers that we want to resolve. Within the double quotation marks we have an
indirect macro variable reference, with no use of %SYSFUNC. Here, we want to write out the value of
the city as it exists in the data. Those values are stored in the CITYNAME macro variable series, so

 3. Manipulating Macro Variable Values in a SAS Language Statement 57

there’s no need to modify them. Following the closing parenthesis we’re going to specify what we want
to happen when the value of CITY matches what we’ve written out. Well, when there’s a match, we want
to output to the appropriate data set. So, we complete this statement with OUTPUT and the code to
generate the appropriate data set name. This is using %SYSFUNC with the COMPRESS function just as
we used it in the DATA statement.

Let’s walk through the creation of the series of WHEN statements. On the first iteration, we write out the
WHEN statement with an opening parenthesis and a quotation mark, and then the value of the macro
variable &CITYNAME1. Then we have the closing quotation mark and the parenthesis, then OUTPUT,
and then the value of &CITYNAME1 with spaces and punctuation removed. Then type a semicolon to
end the WHEN statement. Then we’re finished with the first iteration of the %DO loop. We continue until
we’ve looped through all the values.

Then we have OTHERWISE and END statements to finish the SELECT block and a RUN statement to
end the DATA step. That’s the end of the macro definition. Now technically we probably could omit the
OTHERWISE statement in this situation. The OTHERWISE statement enables you to specify a statement
to be executed if no WHEN condition is met. We looked up all of the values of CITY in the data when we
built this code, so as long as we’ve written the code correctly, one of our WHEN conditions should
always be met unless a new city was added between the time the program code was generated and
executed. That’s very unlikely, but I would say that it’s a best practice to have the OTHERWISE
statement there. If we did have an observation that didn’t meet any of the WHEN conditions and didn’t
have an OTHERWISE statement, then the step would fail. Here, in the unlikely event that we have that
situation, the step will run, but a customized error message will be written to the log.

Let’s go ahead and run it and see what happens. We’ll turn the MPRINT option on so that we can see the
code that is being generated.

Now this particular program didn’t create any kind of report, so there’s nothing to see in the OUTPUT
window. Let’s go the log to see what happened. Focus on the generated DATA step code. We see the
original city names in the WHEN statement. For example, we have Miami-Dade with a hyphen and San
Diego with a space. The corresponding data set names, here in the DATA statement for example, have
those characters removed.

Now let me switch over to the final version of the program. In this version, we’re identifying the
appropriate locations from the data rather than specifying them manually. First, we have a %LOCAL
statement, but this time we’re only naming CITYCOUNT and NUMCITIES here. We also want our
CITYNAME macro variables to be stored locally, but we don’t know how many of those there will be
yet, so we’ll have to specify that later. Following that, we’ve replaced the %LET statements that we had
previously with a PROC SQL step that will assign values to the macro variables. We’re using the first
query in this PROC SQL step to count the number of unique values of CITY for the U.S. locations in the
source data set and saving the result to a macro variable named &NUMCITIES.

Next, we want to create a series of macro variables that contain the city name for each distinct city in the
data. That’s what we’re doing down here. First of all, we want to store these variables in the local symbol
table as before, so we’re using a %DO loop to generate a %LOCAL statement for each of the macro
variables that we’ll be creating. We’re looping from 1 up to the value of &NUMCITIES, which we
calculated. Then we’re writing a %LOCAL statement. The series of macro variables will be named with
the prefix CITYNAME followed by a number. The number is being generated by the index variable
&CITYCOUNT.

58 Executing SAS Functions with the %SYSFUNC Macro Function

Now let’s look at the query that generates the values of these macro variables. Here we’re naming the
series of macro variables in the INTO clause. Each macro variable name begins with the prefix
CITYNAME followed by a number from 1 up to the value of &NUMCITIES. This is another place in this
program where we’re taking advantage of %SYSFUNC. We need to make sure that the value of
&NUMCITIES appears in the final code immediately following the word CITYNAME, with no spaces in
between, because macro variable names cannot contain spaces. It’s possible that the value of
&NUMCITIES contains leading blanks. We need to delete those or we won’t have a valid macro variable
range specified in this INTO clause. We’ll get an error. There are a couple ways to handle those leading
blanks, but here we’re using %SYSFUNC to access the LEFT function.

After the PROC SQL step runs, we will have the series of macro variables with the prefix CITYNAME
for each value of city in the data. The rest of the program that generates the DATA step is identical to the
previous version. Let’s run this version, and then take a look at the log. We get the same results as before,
but now the locations are determined dynamically.

 3. Manipulating Macro Variable Values in a SAS Language Statement 59

Business Scenario

Build a data set containing the last N months of historical data.

53

Let’s take a look at another example. Here we need to access historical sales data, which has been
separated and stored in separate data sets by the month and year of the sale. We need to create a data set
containing the last N months of history. The number of months requested, N, will vary from run to run.
We’re going to dynamically build a list of the input data sets to include, based on the current date and the
number of months of history that is requested.

60 Executing SAS Functions with the %SYSFUNC Macro Function

Business Scenario Considerations

The naming convention for the data sets is MONYY.

March 2009 ORION.MAR09

You need to create a data set containing all of the sales information
for the last N months.

The data sets to be included depend on the date that the program
is run and the number of months requested.

54

Let’s take a look at some of the details.The data sets that we’ll need to use as input are stored in the
ORION library, and named based on the month and year. The first three characters of the data set name
are the abbreviation for the month, such as JAN for January, and the last two characters are the year. We
need to combine these into a data set containing sales information for the past N months. The specific data
sets to include will depend on when the program is run and the number of months of history requested.

 3. Manipulating Macro Variable Values in a SAS Language Statement 61

Manipulating Macro Variable Values
in a SAS Language Statement

The desired program, when run in June 2009 with a request
for six months of data:

55

data Last6Months;
set ORION.DEC08 ORION.JAN09 ORION.FEB09 ORION.MAR09

ORION.APR09 ORION.MAY09 ;
run;

Let’s take a look at the program that we want the macro facility to generate for us. This particular version
of the program was run during June of 2009 and based on a request for six months of data. In this
scenario, we want full months only, and the month of June could have additional sales at the time that the
program was run. May was the last full month of data. Therefore, we have six monthly data sets listed in
the SET statement, beginning with December of 2008 and ending with May of 2009.

62 Executing SAS Functions with the %SYSFUNC Macro Function

Manipulating Macro Variable Values
in a SAS Language Statement

This demonstration illustrates the use of %SYSFUNC with
a SAS DATE/TIME function to generate a list of data set
names in a SET statement.

56

I’m going to switch to a SAS session so that we can take a look at the program that generated this result.

Here’s the program that dynamically generates the desired code. As in the last program, we’re using a
macro definition here because we need to do some iterative processing with a %DO loop. The macro
definition has one parameter, which is the number of months of data that we want to retrieve. First we
have a %LOCAL statement to specify that the macro variable DIFF, which we’ll be using as the index
variable for the %DO loop, be stored in the local symbol table. As before, that’s only a precaution to
prevent a macro variable of the same name in another symbol table from being overwritten.

Next we’ve got a DATA step to build the desired data table. We’re using the parameter &MONTHS in
the DATA statement to include the number of months requested in the name of the data set that we’re
building. Then we’ve got the SET keyword to begin the SET statement. Now we need to generate the list
of data sets to appear in the SET statement. That list depends on the current date and the number of
months requested. We’re going to use a %DO loop to iterate through the number of months requested,
from the total number of months down to 1, iterating by -1. We could have iterated in the other direction,
but we’re doing it in this order so that we get the oldest month listed first in the SET statement. You can
do it in either order.

Now let’s drill into the text that each iteration of this %DO is generating. First we have a reference to the
library that we’re reading from; in this case, it’s ORION. That’s followed by the period delimiter that we
need to separate the libref from the data set name. Then we need to generate the name of the data set for
this iteration. We’re using %SYSFUNC with the INTNX function to do that. INTNX is a DATE/TIME

 3. Manipulating Macro Variable Values in a SAS Language Statement 63

function. It increments a SAS date, time, or datetime value by a specified increment. For example, we can
use it to calculate the previous month and year values based on the current month and year. The first
argument to INTNX is the increment that you want to use. We’re specifying months to increment through
the previous N months. Notice that the word months is not quoted here. It would be if you were using
INTNX in the DATA step, but as we already discussed, quotation marks are not appropriate with
%SYSFUNC. The second argument to INTNX is the starting point. We’re using the TODAY function to
capture the current date, and we need another %SYSFUNC to access this second function. Finally, the
third argument sets the increment amount. We’re using our loop variable, which is &DIFF. We’re
preceding &DIFF with a negative sign because we want to generate past months. Because we’re using it
here, INTNX is going to return a date at the beginning of the requested interval; in this case, the interval
is months. When the current date is in the month of June and the increment is -1, INTNX will return the
first day of the previous month, which is May 1. That ends the call to INTNX, but we are specifying the
optional argument to %SYSFUNC, which is the format that we want to apply to the results. INTNX will
return a numeric SAS date value by default in this situation. We want the formatted month and year to
match the data set names so we’re using the MONYY. format.

Let’s walk through an example. Suppose, as in the example program, we submit this code in June of 2009
and request six months of history. On the first iteration of the %DO loop, the value of &DIFF is 6. The
TODAY() function returns a date in June of 2009, and based on that, the INTNX function will return the
first day of the month six months previous, which will be December of 2008. We apply the MONYY.
format and get ORION.DEC08, the name of the first data set that we need. On the next iteration, we get
ORION.JAN09, and so on up to ORION.MAY09. Then the %DO loop is finished. Following the %END
statement, we have the semicolon to end the SET statement and then the RUN statement to end the
DATA step.

Let’s run this program with a request for six months. Notice that I’ve got the MPRINT option on, so we’ll
see the code that the macro definition is generating in the log. Let’s look at the log to see that code. We’re
running this program in August of 2009, and we can see here that we get six months of history beginning
with February of 2009 and ending with July. Let’s go back to the program and submit it again. I’ll change
the number of months requested from 6 to 12. Look at the log for this run. Now we get the data sets for
August of 2008 through July of 2009.

I just realized that in that last submission I submitted everything in my editor window, including both the
macro definition and the macro call. That wasn’t necessary. I just needed to call the macro, but that’s
okay.

64 Executing SAS Functions with the %SYSFUNC Macro Function

Summary

%SYSFUNC can be used to generate text directly
in a SAS language statement.

57

We saw a couple examples using %SYSFUNC to generate text directly in a SAS language statement.
Specifically, we used these capabilities in the context of the DATA step, but you could use these methods
with any SAS language statement.

 4. Manipulating Macro Variable Values in a Macro Program Statement 65

4. Manipulating Macro Variable Values in a Macro Program
Statement

1. %SYSFUNC Syntax and Usage

2. Creating Macro Variable Values in a %LET Statement

3. Manipulating Macro Variable Values
in a SAS Language Statement

4. Manipulating Macro Variable Values
in a Macro Program Statement

58

Executing SAS Functions with the %SYSFUNC Macro Function

Let’s move on to the final section.

66 Executing SAS Functions with the %SYSFUNC Macro Function

Objectives

Use %SYSFUNC to manipulate macro variable values
for use in a macro language statement.

59

Here we’re going to use %SYSFUNC to manipulate values in a macro program statement.

 4. Manipulating Macro Variable Values in a Macro Program Statement 67

Business Scenario

Build a data set containing the last N months of available historical data.

60

In the first scenario for this section, we’re going to revisit our last demonstration. That was where we
built a list of historical data sets based on the current date and the number of months of history requested.
However, we want to make a change to the previous program. It’s possible that a user could request more
months of historical data than are available. If that happened with the previous program, the DATA step
would fail because not all of the data sets listed in the SET statement would exist.

68 Executing SAS Functions with the %SYSFUNC Macro Function

Business Scenario

Build a data set containing the last N months of available historical data.

61

For example, let’s suppose a user requests nine months of data, but there are only eight available. The
DATA step would fail because the data set for the ninth month doesn’t exist.

 4. Manipulating Macro Variable Values in a Macro Program Statement 69

Business Scenario Considerations

The naming convention for the data sets is MONYY.

March 2006 ORION.MAR06

You need to create a data set containing all of the sales information
for the last N months.

The data sets to be included depend on the date that the program
is run and the number of months requested.

The program should write a warning message if more months
of history are requested than are available.

62

Our scenario here is pretty much as before, but we’re adding this final requirement. We’re going to
modify the previous program to verify that the data sets exist, and write a warning message to the SAS
log for any that don’t.

70 Executing SAS Functions with the %SYSFUNC Macro Function

Manipulating Macro Variable Values
in a Macro Language Statement

Desired log messages to be generated by the macro facility:

63

WARNING: The data set ORION.DEC05 does not
exist and will not be included in the results.
WARNING: The data set ORION.JAN06 does not
exist and will not be included in the results.
WARNING: The data set ORION.FEB06 does not
exist and will not be included in the results.

We want the program to work pretty much as before. However, if more months of history are requested
than exist, the data set should be created with the number of months available, and warning messages
should be written to the log for each data set that isn’t found.

 4. Manipulating Macro Variable Values in a Macro Program Statement 71

Manipulating Macro Variable Values
in a Macro Program Statement

This demonstration illustrates the use of %SYSFUNC
to check for data set existence in a %IF statement.

64

Let’s switch to SAS and look at the modified program.

Here’s the modified program. First of all, we have a %LOCAL statement to specify that all of the macro
variables created in this macro definition be stored in the local table. The macro variable DIFF will be the
index variable for the %DO loop, DSNAME will be the name of the data set for each iteration of the loop,
and DSLIST will be used to build a list of the valid data set names. Next comes the %DO loop, which
increments in the same way as in the last program. However, what we’re doing within the %DO loop here
is different. We’re not generating the list of data sets directly in the SET statement as we did before,
because some of them might not exist. Instead, we’re using a %LET statement to build each data set
name. We’re using %SYSFUNC with the INTNX and TODAY functions as we did before, so we won’t
talk about that. The only difference is that we’re using these %SYSFUNC calls in a %LET statement.
Next we see what’s new here. We have a %IF with a %SYSFUNC call. We’re using %SYSFUNC here to
access the EXIST function. The argument to the EXIST function is the data set name that we built, stored
in the macro variable &DSNAME. The EXIST function will return a 1 if the data set exists and a 0 if not.
If it returns a value of 0, we’ll write a warning message to the log. Otherwise, we’ll append the data set
name for the given iteration to the list of valid data set names contained in the macro variable &DSLIST.
After we’ve iterated through all of the selected months, &DSLIST will contain the existing data sets
within the number of months requested. We can use that macro variable in the SET statement in the
DATA step that ends this program.

Let’s run this program requesting six months of history as we did before. If we look at the log, we see that
we get the same results as before. Now let’s run it again requesting 36 months of data. This time, we see

72 Executing SAS Functions with the %SYSFUNC Macro Function

warning messages in the log because we don’t have that much history. However, the data set is still
created with the history that we do have.

I just realized that in that last submission I submitted everything in my editor window, including both the
macro definition and the macro call. That wasn’t necessary. I just needed to call the macro, but that’s
okay.

 4. Manipulating Macro Variable Values in a Macro Program Statement 73

Business Scenario

A sales report for current store locations includes tabular and graphical
components.

65

A table is included for
every store location.

A graph is included for
some but not all locations.

In the final scenario, we want to generate some SAS code conditionally. We want to create a report that
includes tabular and graphical summaries of sales for the current store locations. The table is a summary
of this year’s sales for the particular store, while the graph is a summary of quarterly sales since the store
has been open. The tabular summary will be included in the report for every store, but the graph will be
included only for stores that have historical sales data spanning at least the last four quarters. This slide
shows the results for the Ann Arbor store, which opened in 2007. It has more than four quarters of
historical data, so it meets the requirement to create the graph.

74 Executing SAS Functions with the %SYSFUNC Macro Function

Business Scenario Considerations

Historical sales for current store locations are stored in the data set
ORION.STORE_SALES_HISTORY.

A tabular summary should be generated for each location.

For locations with sales data spanning at least the last four quarters,
a graphical summary should immediately follow the table.

66

Let’s take a look at some of the details. The source data for all of the stores is stored in the data set
orion.store_sales_history. We want the report to contain a separate tabular summary for each
store, immediately followed by the graphical summary if that store meets the four-quarter condition. So,
we’re going to need to loop through each store location in the data. We’ll generate the code to produce the
tabular summary and then, if the particular location meets the condition, we’ll follow that with the code to
produce the graphical summary.

 4. Manipulating Macro Variable Values in a Macro Program Statement 75

Manipulating Macro Variable Values
in a Macro Program Statement

The Ann Arbor store has several years of history, so the program should
generate both report steps.

67

proc tabulate data=orion.store_sales_history;
title "This Year’s Sales for the Ann Arbor Store";
title2 "First Sales Reported 04/04/2007";
where year(sale_date)=year(today()) and

location="Ann Arbor";
. . .

run;

proc gchart data=orion.store_sales_history;
title "Historical Sales for the Ann Arbor Store";
where location="Ann Arbor";
. . .

run;

Now this program will actually generate quite a bit of code, so we’ll only look at a couple of sections.
We’re using PROC TABULATE to generate the tabular summary and PROC GCHART for the graphical
portion. We have a store located in Ann Arbor that’s been open for a few years. We have more than
enough data to meet the four-quarter requirement to create the graph. So, the code for Ann Arbor includes
both the PROC TABULATE and the PROC GCHART steps.

76 Executing SAS Functions with the %SYSFUNC Macro Function

Manipulating Macro Variable Values
in a Macro Program Statement

The Madison store does not have four quarters of history, so the
program should generate only the tabular step.

68

proc tabulate data=orion.store_sales_history;
title "This Year’s Sales for the Madison Store";
title2 "First Sales Reported 01/01/2009";
where year(sale_date)=year(today()) and

location="Madison";
. . .

run;

We have another store, located in Madison, that opened more recently and doesn’t have four quarters of
historical data. The code for Madison, therefore, includes only the PROC TABULATE step. According to
our criteria, there isn’t enough historical data to create the graph. The PROC GCHART code wasn’t
generated for the Madison store because the condition wasn’t met.

 4. Manipulating Macro Variable Values in a Macro Program Statement 77

Manipulating Macro Variable Values
in a Macro Program Statement

This demonstration illustrates the use of %SYSFUNC
to access a DATE/TIME function in an %IF statement.

69

Let’s switch to the SAS session to look at the program that generates this code.

Here’s the program to create the report. We’re using a macro definition because we’re going to be using
both %DO and %IF statements in this case. First, we’re using PROC SUMMARY to determine the
earliest sale date for each location. We need that date so that we can determine whether there is enough
historical data for the graphical part of the report. We’re using the CLASS statement to request statistics
for each location, and specifying the MIN statistic to get the earliest sale date. I’m going to run this one
step so that we can take a quick look at the data set that’s generated because we’re going to be using it to
create several macro variables. It’s stored in the Work library, so I’ll navigate there and we can take a
look. Here’s the data. Now I’ll switch the view so that we’re seeing the variable names rather than the
labels. We’ve got one observation for each store location and a variable named FIRST_SALE, which is
the earliest sale date for that store. We’re going to use this data to create two series of macro variables.
The first series will contain the location name stored here in the variable LOCATION. The second series
will contain the first sale date for each location, which is stored here in the variable FIRST_SALE. Here
we’re seeing values with a date format applied, but the underlying values are numeric SAS dates.

Let’s close the data set and go back to the program. To create those macro variables, we’re using the
output data set from PROC SUMMARY in a DATA _NULL_ step with calls to the SYMPUTX routine.
Remember that the first argument to CALL SYMPUTX determines the name of the macro variable and
the second argument determines its value.

78 Executing SAS Functions with the %SYSFUNC Macro Function

So the first series of variables will be created in this first call to SYMPUTX. They will be named
&LOCATION1, &LOCATION2, and so on, up to the number of locations in the data. We’re using the
automatic variable _N_ to append an appropriate number to the prefix LOCATION. The value for this
series of macro variables, specified here in the second argument, will be the value of the variable
LOCATION for the current observation. We’re also using the optional third argument to SYMPUTX to
specify that this series of variables be stored in the local symbol table.

Down here, the second series of macro variables will be named &FIRSTSALE1, &FIRSTSALE2, and so
on, and will have values corresponding to the earliest sale date for the given location, which is the value
of the variable FIRST_SALE. Remember that the variable FIRST_SALE is a SAS date value, so the
macro variables will store those numeric values as text.

Finally, we want to capture the total number of store locations. We need to loop through each store
location to create the report, so we’ll use that value as the ending point for the %DO loop. Here, we’re
using the variable DONE, which was named in the END= option in the SET statement. It will have a value
of 1 when we’ve read the last observation from the data set. At that point, _N_ will be equal to the total
number of locations in the data, so we have a final call to SYMPUTX to create a macro variable named
&NUMLOCS with that value.

Next we’ve got a %DO loop to iterate through each of the locations in the data. We want to create the
tabular report for every location, so the PROC TABULATE step is next, and it’s not conditional. We
won’t look at the details of this step, except to say that we’re using indirect macro variable references
using the index variable from the %DO loop to subset the data for the appropriate location here in the
WHERE statement. This WHERE statement is also selecting the current year’s sales only.

Let’s talk a little about this TITLE statement. Here, we’re using %SYSFUNC with the PUTN function to
write out the date of the first sale for this location as a calendar date. We’re using the MMDDYY10.
format to write that date in the form of a numeric month, day, and year. Remember that the FIRSTSALE
macro variables are storing unformatted SAS date values as text. We will need them in that form shortly,
but here we want to write a calendar date. If you’ve used the PUT function before, you might wonder why
we’re using PUTN instead of PUT. The reason is that PUT is one of the functions that can’t be used with
%SYSFUNC. However, there are two alternative functions, PUTN and PUTC, that can be used with
%SYSFUNC. You use PUTN to return a value using a numeric format and PUTC to apply a character
format. Similarly, the INPUT function can’t be used with %SYSFUNC, but INPUTN and INPUTC can
be.

Let’s move on. Following the PROC TABULATE report, we want to generate a bar chart only if the time
between the first sale at the store and today’s date spans at least four quarters. Here we’re using
%SYSFUNC again. Previously we used the DATE/TIME function INTNX to increment a SAS date value
by a specified amount. Here, we’re using a different DATE/TIME function, INTCK. It will return the
number of intervals between two dates. So INTNX and INTCK are opposites, in a sense. In this case, the
type of interval that we want to increment is quarters, so that’s the first argument to the function. The
second argument is the date we want to start with. In this case we have an indirect reference to the
FIRSTSALE macro variable for this location. The third argument is the date that we want to end with.
Here we have another instance of %SYSFUNC to return the current date using the TODAY function.
These stores are all currently open and generating sales, so we’re only going to use the current date
although we could do something more complicated if necessary. Now, the INTCK function will return the
number of times that a new quarter started between the first sale date for the current store location and
today’s date. As long as that value is greater than or equal to 3, we will have data spanning four quarters.
Although the first and last quarter might be incomplete, we can have only part of the first quarter and part
of the fourth, but the data will span four quarters. So, if the value returned by INTCK is greater than or

 4. Manipulating Macro Variable Values in a Macro Program Statement 79

equal to 3, we’ll generate the PROC GCHART code. Notice that this step includes the same WHERE
condition to subset the data for the current store location that we had in the PROC TABULATE step.

Following the GCHART step, we have a %END statement to end the %IF statement. Now we’re finished
with processing for the current store location, so we have another %END statement to end the %DO loop.
That completes the macro definition, so we’ve got the %MEND statement. Down here at the bottom,
we’re directing the output to HTML, closing the listing destination, and then calling the macro.

Let’s run the program and see what happens. Notice that we’ve got the MPRINT and MLOGIC options
turned on. It will take a few seconds for the program to run.

There, it’s finished, so let’s take a look at the log. I’ll scroll down to where the macro begins executing.
Here we see the MLOGIC message that tells us that the macro is beginning execution. After that we see
the PROC SUMMARY and DATA _NULL_ steps that we used to capture the location names and dates.
Next we see the %DO loop beginning with the first location. We can see from the MPRINT messages that
the first location is Ann Arbor. Here’s the generated PROC TABULATE step. Following that, we see in
the MLOGIC message that the %IF condition based on the date was true for Ann Arbor. We have four or
more quarters of data, so the macro facility adds the PROC GCHART step for this location. Next we go
to the next iteration, which is for the Bloomington store. This location also has enough data so we see that
both steps are generated. On the third iteration, however, which is Columbus, the %IF condition is false.
So the macro facility does not generate the bar chart code for Columbus, and we go on to the next
location. It’s Madison, which also has insufficient data, so we only see the PROC TABULATE step.
Let’s look at the HTML output. Here we see that we did get both elements of the report for Ann Arbor
and Bloomington. If we scroll down further, we see that only the tabular report was created for Columbus
and Madison.

80 Executing SAS Functions with the %SYSFUNC Macro Function

Summary

%SYSFUNC can be used to generate values for use in a macro
programming statement such as %IF or %DO.

70

Here in the final section, we’ve seen a couple examples using %SYSFUNC to generate values for use in
macro programming statements.

 4. Manipulating Macro Variable Values in a Macro Program Statement 81

Lecture Summary

%SYSFUNC enables powerful capabilities for the macro facility
to manipulate values.

You can use %SYSFUNC in a variety of contexts to achieve your
programming goals.

71

Even though we’ve seen only a few examples of applications for %SYSFUNC, I hope you’re excited
about the possibilities it opens up for you in your SAS programs. It enables you to take advantage of a
broad range of SAS language function capabilities in the macro facility. As we’ve seen, you can use
%SYSFUNC in a variety of programming situations: to create macro variables, to generate text in a SAS
language statement, or to generate results for use in a macro language statement.

82 Executing SAS Functions with the %SYSFUNC Macro Function

Related e-Lectures

These e-lectures might also be of interest to you:

SAS® 9.2 Changes and Enhancements for Base SAS, Session 2:
The Macro Facility

The Ins and Outs of Macro Quoting Functions

For a complete list of available e-lectures and other SAS training
products, visit

support.sas.com/training

7272

Listed here are other lectures that might interest you. For a complete list of available e-lectures and other
SAS training products, please visit the SAS Web site at support.sas.com/training.

 4. Manipulating Macro Variable Values in a Macro Program Statement 83

Credits

Executing SAS® Functions with the %SYSFUNC Macro Function was
developed by Lise Cragen. Additional contributions were made by
Michelle Buchecker, Lynn Mackay, Kathy Passarella, and Russ Tyndall.

73

This concludes the SAS e-Lecture Executing SAS® Functions with the %SYSFUNC Macro Function. I
hope you will find the material in this lecture to be helpful in your SAS programming efforts.

I’d like to close by thanking everyone who contributed to the creation of this e-lecture.

84 Executing SAS Functions with the %SYSFUNC Macro Function

Comments?

We would like to hear what you think.

Do you have any comments about this lecture?

Did you find the information in this lecture useful?

What other e-lectures would you like SAS to develop in the future?

Please e-mail your comments to

EDULectures@sas.com

Or you can fill out the short evaluation form at the end of this lecture.

74

If you have any comments about this lecture or e-lectures in general, we would appreciate receiving your
input. You can use the e-mail address listed here to provide that feedback, or you can complete the short
evaluation form available at the end of this lecture.

 4. Manipulating Macro Variable Values in a Macro Program Statement 85

Copyright

SAS and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries.

® indicates USA registration. Other brand and product names
are trademarks of their respective companies.

Copyright © 2009 by SAS Institute Inc., Cary, NC 27513, USA.
All rights reserved.

75

Thank you for your time.

86 Executing SAS Functions with the %SYSFUNC Macro Function

Appendix A Lecture and
Demonstration Programs

1. Creating Macro Variables in a %LET Statement ... A-3

2. Manipulating Macro Variable Values in a SAS Language Statement A-4

3. Manipulating Macro Variable Values in a SAS Language Statement A-5

4. Manipulating Macro Variable Values in a Macro Program Statement A-6

5. Manipulating Macro Variable Values in a Macro Program Statement A-7

A-2 Appendix A Lecture and Demonstration Programs

 1. Creating Macro Variables in a %LET Statement A-3

1. Creating Macro Variables in a %LET Statement

Section 2, Slide 44
%let monthname=%sysfunc(today(),monname.);
%let monthnum=%sysfunc(today(),month.);
options symbolgen;

proc sort data=orion.employee_payroll out=&monthname._Anniv;
 by employee_hire_date;
 where month(employee_hire_date)=&monthnum;
run;

title "Employees with Anniversaries in &monthname";

proc print data=&monthname._Anniv label;
 id employee_id;
 var employee_hire_date;
 format employee_hire_date worddate.;
 label employee_id='Employee ID' employee_hire_date='Date of Hire';
run;

options nosymbolgen;

A-4 Appendix A Lecture and Demonstration Programs

2. Manipulating Macro Variable Values in a SAS Language
Statement

Section 3, Slide 52
%macro USCityData;

proc sql noprint;
 select count(distinct city) into :numcities
 from orion.employee_addresses
 where country='US';
 select distinct city into :cityname1-:cityname%sysfunc(left(&numcities))
 from orion.employee_addresses
 where country='US';
quit;

data
 %do citycount=1 %to &numcities;
 %sysfunc(compress(&&cityname&citycount,,ps))
 %end;
 ;
 set orion.employee_addresses;
 where country='US';
 select (city);
 %do citycount=1 %to &numcities;
 when ("&&cityname&citycount") output
 %sysfunc(compress(&&cityname&citycount,,ps));
 %end;
 otherwise;
 end;
run;

%mend;

options mprint;
%uscitydata

 3. Manipulating Macro Variable Values in a SAS Language Statement A-5

3. Manipulating Macro Variable Values in a SAS Language
Statement

Section 3, Slide 56
%macro builddata(months);

data Last&months.Months;
set
 %do diff=&months %to 1 %by -1;
 ORION.%sysfunc(intnx(months,%sysfunc(today()),-&diff),monyy.)
 %end;
 ;
run;

%mend;

options mprint;
%builddata(6)

A-6 Appendix A Lecture and Demonstration Programs

4. Manipulating Macro Variable Values in a Macro Program
Statement

Section 4, Slide 64
%macro builddataw(months);
 %local dslist;

 %do diff=&months %to 1 %by -1;
 %let dsname=ORION.%sysfunc(intnx(months,%sysfunc(today()),
 -&diff),monyy.);
 %if %sysfunc(exist(&dsname))=0 %then %do;
 %put WARNING: The dataset &dsname does not exist and will
 not be included in the results.;
 %end;
 %else %do;
 %let dslist=&dslist &dsname;
 %end;
 %end;

data Last&months.Months;
 set &dslist;
run;

%mend;

%builddataw(36)

 5. Manipulating Macro Variable Values in a Macro Program Statement A-7

5. Manipulating Macro Variable Values in a Macro Program
Statement

Section 4, Slide 69
%macro SalesReport;

proc summary data=orion.store_order_history nway;
 var sale_date;
 class location;
 output out=First_Order Min=First_Order;
run;

data _null_;
set first_order end=done;
 call symputx('Location'!!left(_n_),Location);
 call symputx('FirstOrder'!!left(_n_),First_order);
 if done then call symputx('NumLocs',_n_);
run;

%do locno=1 %to &numlocs;

proc tabulate data=orion.store_order_history;
 title "This Year's Sales for the &&Location&locno Store";
 title2 "First Sales Reported %sysfunc(putn(&&firstorder&locno,mmddyy10.))";
 where year(sale_date)=year(today()) and
 location="&&location&locno";
 class product_category;
 var quantity total_retail_price sale_date;
 tables product_category='' all='All Products',
 quantity='Total Quantity'*sum=''*f=8.
 total_retail_price='Total Retail Price'*sum=''*f=dollar8.
 /box='Product Category';
run;

%if %sysfunc(intck(quarters,&&firstorder&locno,%sysfunc(today())))>4
 %then %do;

proc gchart data=orion.store_order_history;
 title "Historical Sales for the &&location&locno Store";
 where location="&&location&locno";
 vbar sale_date / sumvar=total_retail_price type=sum discrete;
 format sale_date yyq.;
run;

%end;

%end;

%mend salesreport;

options symbolgen mprint mlogic;
ods listing close;
ods html;

%salesreport

ods html close;
ods listing;

A-8 Appendix A Lecture and Demonstration Programs

Appendix B SAS Functions Not
Available with %SYSFUNC

B-2 Appendix B SAS Functions Not Available with %SYSFUNC

SAS Functions Not Available with %SYSFUNC and %QSYSFUNC

All Variable Information
Functions

ALLCOMB ALLPERM

DIF DIM HBOUND

IORCMSG INPUT LAG

LBOUND LEXCOMB LEXCOMBI

LEXPERK LEXPERM MISSING

PUT RESOLVE SYMGET

Note: Instead of INPUT and PUT, which are not available with %SYSFUNC and %QSYSFUNC, use
INPUTN, INPUTC, PUTN, and PUTC.

Note: The Variable Information functions include functions such as VNAME and VLABEL. For a
complete list, see Definitions of Functions and CALL Routines in SAS Language Reference: Dictionary.

	Executing SAS® Functions with the %SYSFUNC Macro Function
	Chapter 1 - Executing SAS Functions with the %SYSFUNC Macro Function
	 1.1 %SYSFUNC Syntax and Usage
	 1.2 Creating Macro Variable Values in a %LET Statement
	 1.3 Manipulating Macro Variable Values in a SAS Language Statement
	 1.4 Manipulating Macro Variable Values in a Macro Program Statement

	Appendix A - Lecture and Demonstration Programs
	A.1 Creating Macro Variables in a %LET Statement
	A.2 Manipulating Macro Variable Values in a SAS Language Statement
	A.3 Manipulating Macro Variable Values in a SAS Language Statement
	A.4 Manipulating Macro Variable Values in a Macro Program Statement
	A.5 Manipulating Macro Variable Values in a Macro Program Statement

	Appendix B - SAS Functions Not Available with %SYSFUNC

