
PharmaSUG 2016 –Paper AD09

I Object: SAS® Does Objects with DS2

Peter Eberhardt, Fernwood Consulting Group Inc.

Xue Yao, Winnipeg Regional Health Authority, Winnipeg, MB

ABSTRACT

The DATA step has served SAS® programmers well over the years, and although it is powerful, it has not fundamentally changed.

With DS2, SAS has introduced a significant alternative to the DATA step by introducing an object-oriented programming

environment. In this paper, we share our experiences with getting started with DS2 and learning to use it to access, manage,

and share data in a scalable, threaded, and standards-based way.

INTRODUCTION

DS2 is a new programming language that is a powerful tool for advanced data manipulation. DS2 is based on object-oriented

concepts wherein objects are instances of classes and methods are basic program execution units. It is designed to be simpler to

develop programs as well as easier to understand programs to ease maintenance down the road thus, lending itself to more

robust programs. As a part of Base SAS, the PROC DS2 enables you to submit DS2 language statements; as a part of SAS High-

Performance Analytics environment, the PROC HPDS2 executes DS2 language statements.

We are first going to look at some of the basic components of DS2. This will not be a comprehensive review of the 1,000+ page

reference document, rather a review of those parts we feel are salient to getting started. From there we will do a comparison of

DS2 and the DATA step followed by a discussion on when you may want to use DS2. We will wrap up with an example DS2

program and compare it to the original DATA step program.

DS2 OVERVIEW

DS2 has many features. Since this can be overwhelming to the SAS programmer getting started with DS2 we will cover some of

the features of DS2 we think are critical to know. As your progress with your DS2 programming you will find there are more

features of which you can take advantage. Here we will review four components: Methods, DATA program, Package, and

Thread. Before we do that we will look at scope and data types.

SCOPE

In programming, scope is used to mean where a variable is “visible”; put another way, where its value can be accessed. If you

write SAS macro functions you will be familiar with local (%local) and global (%global) macro variables. A variable declared

within a macro function as:

%local macVar

is only available in the macro function; when the function completes the variables declared as %local are no longer available. On

the other hand, macro variables defined as:

%global macVar;

are available to PROCs, macros (variables or functions) and DATA steps during the entire SAS session. What sometimes will

confuse a SAS programmer learning macro programming is the ability to have two macro variables with the same name but with

different scope – one global and one local. When a macro variable is defined local in a macro function, its value will take

I Object: SAS® Does Objects with DS2, continued

2

precedence over a global macro variable with the same name while the macro function is executing. When the macro function

completes execution, then the global macro variable is once again available.

The DATA step has no concept of scope; all variables are accessible from in any part of the DATA step (of course if the variable

has yet to be assigned a value, accessing the variable will result in a missing value). We could say the variables are global to the

DATA step.

In DS2 scope an attribute of identifiers where identifiers refer to program entities:

 method names

 functions

 data names

 labels

 program variables

Although we use program variables as examples, all identifiers are subject to scoping rules.

Scope describes where in a program a variable can be accessed. Global variables have global scope and are accessible from

anywhere in the program while local variables have local scope, that is, are accessible only from within the block in which the

variable was declared while that block is executing. Each variable in any given scope must have a unique name, but variables in

different scopes can have the same name. When scopes are nested, if a variable in an outer scope has the same name as a

variable in an inner scope, the variable within the outer scope is hidden by the variable within the inner scope. For example, in

the following program two different variables share the same name, x. Global variables x and y (declared outside all method

blocks) have global scope, and local variable x (declared in INIT) has local scope. Within the local scope of method INIT, local

variable x hides global variable x therefore the assignment statement assigns 5 to local variable x; since y is a global variable it is

accessible in all methods.

proc ds2;

data _null_;

declare int x; /* global x in global scope */

declare int y; /* global y in global scope */

method init();

 declare int x; /* local x in local scope */

 x = 5; /* local x assigned 5 */

 y = 6; /* global y assigned 6 */

 put '0. in init() ' x= y=;

end;

method run();

 put '1. in run() ' x= y=;

 x = 1;

 put '2. in run() ' x= y=;

end;

I Object: SAS® Does Objects with DS2, continued

3

method term();

end;

enddata;

run;

quit;

the method INIT first runs, assigns a value (5) to the local variable x and prints x to the log. After method INIT runs, method RUN

executes. When we first print the value of x to the log in method RUN we see it is no longer 5 (actually has no value); the value

of 5 belonged to the variable x which was local to method INIT. Since INIT is no longer active, the variable with the value 5 is no

longer available. The LOG:

0. in init() x=5 y=6

1. in run() x= y=6

2. in run() x=1 y=6

When considering the scope of a variable, a good rule is to keep variables local as much as possible.

DATA TYPES

The SAS data step is a powerful programming language based on two data types: numeric (double precision floating point), and

fixed length character. The data type can be explicitly stated using the LENGTH, FORMAT, or ATTRIB statements, or it can be

implicitly determined based on the result of a calculation; implicit determination is very common in SAS programs. Because

there is no need to explicitly declare variables, subtle errors can creep into DATA step programs when variables are misspelled.

DS2 changes this.

First, DS2 provides a rich array of data types; these data types match the data types found in ANSI standard RDBMS. In addition,

there is a new DECLARE statement to define the variable. Data types available in DS2 are:

CHAR(n) a fixed length character string of maximum n characters. This is the same as using

LENGTH $n in the DATA step

NCHAR(n) a fixed-length character string like CHAR but uses a Unicode national character set,

here n is the maximum number of multi-byte characters to store. Depending on the

platform, Unicode characters use either two or four bytes per character and support all

international characters.

VARCHAR(n) a varying-length character string, where n is the maximum number of characters to

store. The maximum number of characters is not required to store each value. If

varchar(10) is specified and the character string is only five characters long, only five

characters are stored in the column.

I Object: SAS® Does Objects with DS2, continued

4

NVARCHAR(n) a varying-length character string like VARCHAR but uses a Unicode national character

set, where n is the maximum number of multi-byte characters to store. Depending on

the platform, Unicode characters use either two or four bytes per character and can

support all international characters.

BIGINT a signed, exact whole number, with a precision of 19 digits. The range of integers is -

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

INTEGER a signed, exact whole number, with a precision of ten digits. The range of integers is -

2,147,483,648 to 2,147,483,647. Integer data types do not store decimal values;

fractional portions are discarded.

SMALLINT a signed, exact whole number, with a precision of five digits. The range of integers is -

32,768 to 32,767.

TINYINT a very small signed, exact whole number, with a precision of three digits. The range of

integers is -128 to 127.

DECIMAL(p,s) /

NUMERIC(p,s)

a signed, exact, fixed-point decimal number, with user specified precision (p) and scale

(s). The precision and scale determines the position of the decimal point. The precision

is the maximum number of digits that can be stored to the left and right of the decimal

point, with a range of 1 to 52. The scale is the maximum number of digits that can be

stored following the decimal point. Scale must be less than or equal to the precision.

For example, decimal(9,2) stores decimal numbers up to nine digits, with a two-digit

fixed-point fractional portion, such as 1234567.89.

DOUBLE a signed, approximate, double-precision, floating-point number. Allows numbers of

large magnitude and permits computations that require many digits of precision to the

right of the decimal point. This is the DATA step numeric.

FLOAT(p) a signed, approximate, single-precision or double precision, floating-point number. The

user-specified precision determines whether the data type stores a single-precision or

double-precision number. If the specified precision is equal to or greater than 25, the

value is stored as a double-precision number, which is a DOUBLE. If the specified

precision is less

than 25, the value is stored as a single-precision number, which is a REAL. For

example, float(10) specifies to store up to ten digits, which results in a REAL data type.

REAL a signed, approximate, single-precision, floating-point number.

BINARY(n) a fixed-length binary data, where n is the maximum number of bytes to store. The

maximum number of bytes is required to store each value regardless of the actual size

of the value.

VARBINARY(n) stores varying-length binary data, where n is the maximum number of bytes to store.

The maximum number of bytes is not required to store each value. If varbinary(10) is

specified and the binary string uses only five bytes, only five bytes are stored in the

column.

I Object: SAS® Does Objects with DS2, continued

5

DATE a calendar date. A date literal is specified in the format yyyy-mm-dd: a four-digit year

(0001 to 9999), a two-digit month (01 to 12), and a two-digit day (01 to 31). For

example, the date September 24, 1975 is specified as 1975-09-24.

TIME(p) a time value. A time literal is specified in the format hh:mm:ss[.nnnnnnnnn]; a two-digit

hour 00 to 23, a two-digit minute 00 to 59, and a two-digit second 00 to 61 (supports

leap seconds), with an optional fraction value. For example, the time 6:30 a.m. is

specified as 06:30:00.

When supported by a data source, the p parameter specifies the seconds precision,

which is an optional fraction value that is up to nine digits long.

TIMESTAMP(p) stores both date and time values. A timestamp literal is specified in the format yyyy-

mm-dd:hh:mm:ss[.nnnnnnnnn]: a four-digit year 0001 to 9999, a two-digit month 01 to

12, a two-digit day 01 to 31, a two-digit hour 00 to 23, a two-digit minute 00 to 59, and a

two-digit second 00 to 61 (supports leap seconds), with an optional fraction value. For

example, the date and time September 24, 1975 6:30 a.m. is specified as 1975-09-

24:06:30:00.

When supported by a data source, the p parameter specifies the seconds precision,

which is an optional fraction value that is up to nine digits long.

Second, DS2 provides an option, SCOND=, which controls how undeclared variables are handled. The options are:

WARNING Implicit declaration of variables occurs. A WARNING: message is written to the SAS

log. This is the default behavior.

NONE Implicit declaration of variables occurs. No messages are written to the SAS log. This is

how the DATA step works.

NOTE Implicit declaration of variables occurs. A NOTE: is written to the SAS log.

ERROR Declaration by assignment does not occur. An ERROR: message is written to the SAS

log. This is also known as variable declaration strict mode. This is the behavior of most

programming languages.

Setting SCOND=ERROR is a good practice. Also note there is a new system option DS2COND which has the same effect. If both

the system option and the PROC option are set, the PROC option takes precedence.

Variables are defined using the DECLARE statement. Variables declared within a method are local to that method while variables

declared outside all methods are global; this makes them available to all methods. To explicitly declare variable use the

DECLARE statement, The DECLARE statement takes the form:

DECLARE dataType varName HAVING label ‘label text’ FORMAT sasfmt.

For example:

I Object: SAS® Does Objects with DS2, continued

6

DECLARE DOUBLE feeAgePrem65 HAVING label 'Age Premium (65+)' format

comma6.2;

DECLARE DECIMAL(10,2) feeAgePrem65X HAVING label 'Age Premium (65+) *

services';

DECLARE INTEGER i j; /* for DO loops */

We will touch on data types again later.

METHOD

Methods are the building blocks of DS2 programs, threads, and packages. A Method is a named unit consisting of related

program statements; in DS2, all executable code must reside in methods. A method can be invoked multiple times by name. In

its simplest a method has following form:

method method_name();

...

 DS2 statements

...

end;

To be more useful, methods can take arguments and also return a value; in this way they act the same as a SAS function. The

following example shows a method that converts temperature from degrees Fahrenheit to degrees Celsius:

method F_to_C(DOUBLE F) returns DOUBLE;

/* convert degrees fahrenheit to degrees celsius */

return (F - 32.) * (5. / 9.)

end;

This method takes one argument, a DOUBLE, representing the temperature measured in Fahrenheit; it returns a DOUBLE, the

equivalent temperature in Celsius. To invoke the method, you call it as you would a SAS function:

DECLARE float c having label ‘Celsius degrees’ format 5.1;

c = F_to_C(212.);

Methods are global in scope . There are two types of methods: predefined and user-defined. First, there are four predefined

methods: INIT, RUN, TERM, and SETPARMS. Every DS2 program will contain, either implicitly or explicitly, the three methods

INIT, RUN and TERM; if you do not explicitly define them the DS2 compiler will generate them. The INIT method is automatically

called once at the beginning of the program and the TERM method is automatically called once at the end of the program; this

provides an efficient and structured mechanism to invoke start-up and clean-up code. After the INIT method runs, the RUN is

called; by default, this method will iterate once for each input row. The SETPARMS method is used in a thread to initialize

parameters.

When the built-in methods INIT, RUN, TERM are explicitly defined, they must be defined without any parameters and without a

return value; adding parameters and/or returning a value will result in a compile error. These three methods provide a more

structured framework than the SAS DATA Step implicit loop concept.

I Object: SAS® Does Objects with DS2, continued

7

As noted above, user-defined methods can take parameters and return values; each parameter must have a data type. DS2

allows for method overloading, that is using the same method name but different parameter lists (the method signature). When

the method is called, DS2 determines which instance to use based on the arguments passed in. The best match will be the one

for which the number of method parameters is equal to the number of arguments, and such that no other method signature

has as many exact parameter type matches for the given argument list. If a best match is not found, an error occurs. The

following example shows the F_to_C method with two signatures: one for a double precision argument and one for an integer:

method F_to_C(DOUBLE F) returns DOUBLE;

 /* convert degrees fahrenheit to degrees celsius */

 return (F - 32) * (5. / 9.);

 end;

 method F_to_C(INTEGER F) returns DOUBLE;

 /* convert degrees fahrenheit to degrees celsius */

 return (F - 32) * (5. / 9.);

 end;

The RETURN statement is used to return a value. And each RETURN statement that appears in the method must have an

associated return expression.

Methods can also return values in through the parameter list; in this case there can be no RETURN statement in the method. To

return values through the parameter list use the IN_OUT modifier:

method F_to_C(IN_OUT INTEGER F, IN_OUT DOUBLE C);

 /* convert degrees fahrenheit to degrees celsius */

 C = (F - 32) * (5. / 9.);

 end;

Methods can have the same name as a SAS function; if this is the case the SAS function is hidden. To access the SAS function you

need to use the SYSTEM modifier:

td = SYSTEM.date();

PACKAGES

DS2 packages are collections of logically related methods and variables that can be shared and re-used in DS2 programs and

threads; for example, you may have a set of measurement conversion functions tested and validated that can then be used

through- out the organization. These packages can be thought of as a library that contains the methods. The method stored in a

package can be accessed by creating an instance of the package and then using dot notation to call the method. SAS also

provides packages for your use; these include: FCMP, Hash, Logger, Matrix and SQLSTMT.

 The FCMP package supports calls to FCMP functions and subroutines from within the DS2 language.

 The Hash package enables you to quickly and efficiently store, search, and retrieve data based on unique lookup keys .

 The Logger package provides a basic interface to the SAS logging facility.

I Object: SAS® Does Objects with DS2, continued

8

 The Matrix package provides a powerful and flexible matrix programming capability.

 SQLSTMT provides a way to pass FedSQL statements to a DBMS for execution and to access the result set returned by

the DBMS.

The PACKAGE statement defines a package, and the DECLARE PACKAGE statement constructs an instance of the package. The

following example shows a package definition as well as use of the package:

 PACKAGE convert / overwrite = yes;

method C_to_F(INTEGER C) returns DOUBLE;

 /* convert degrees fahrenheit to degrees celsius */

 return 32 + (C * (9. / 5.));

end;

method IN_to_CM(DOUBLE inch) returns double;

 return inch * 2.54;

end;

...

ENDPACKAGE;

DATA measures (overwrite=YES);

declare package convert cnv();

 method init();

 type = 'C';

 do C = 0. to 100.;

 F = cnv.C_to_F(C);

 output;

end;

end;

ENDDATA;

1. PACKAGE convert / overwrite = yes;

All methods between the PACKAGE/ENDPACKAGE are included. overwrite=yes will recreate the package if it exists;

DS2 will not automatically overwrite packages

2. DATA measures (overwrite=YES);

Starts the DATA program block. overwrite=yes will recreate the package if it exists; DS2 will not automatically overwrite

data tables

3. DECLARE PACKAGE convert cnv();

Instantiates an instance of the package convert. The instance is called cnv. Since this is declared outside all methods it

has global scope

4. cnv.C_to_F(C);
Calls the C_to_F() method through the package instance cnv.

1

4

3

2

I Object: SAS® Does Objects with DS2, continued

9

A package instance can be created two ways. First, as shown above, the instance variable has parenthesis; the parenthesis tells

DS2 to automatically instantiate the package instance:

DECLARE PACKAGE convert cnv();

Second, the instance variable is declared without parenthesis and later it the program it is instantiated with the _NEW_

operator.

DECLARE PACKAGE convert cnv;

 ...

cnv = _NEW_ [THIS] convert();

The scope of a package instance follows the same rules as the scope for variables; that is, if it declared within a method it is local

to that method and if it is declared outside of a method it has global scope. The scope of the package instance can also be set

with the _NEW_ operator. In the example above, the keyword THIS tells DS2 to make cnv global in scope. In addition to the THIS

keyword, you can also supply the name of another variable and the new package instance will have the same scope as that

variable.

THREAD

A DS2 program can run in two different ways: as a program and as a thread. Using threaded processing, sections of the code can

run concurrently; each section that executes concurrently is said to be running in a thread. When running in a thread, input data

can only come from database tables, not other threads, and output data are returned to the DS2 program that started the

thread. If running as a program, input data can include both rows from database tables and rows from DS2 program threads and

output data can be both database tables and rows returned to the program. A thread is defined by the THREAD statement and

ended by ENDTHREAD statement. The instance of a thread is created by using the DECLARE THREAD statement. To execute the

thread, use the SET FROM statement. In the following example, a simple thread t is created. Then the instance t_instance is

declared, and two threads are executed, using the SET FROM statement in the RUN method.

thread t;

 dcl int x;

 method init();

 dcl int i;

 do i=1 to 3;

 x=i;

 output;

 end;

 end;

endthread;

data;..

 dcl thread t t_instance;

 method run();

 set from t_instance threads=2;

 put ‘x= ’ x;

I Object: SAS® Does Objects with DS2, continued

10

 end;

enddata;

Threads are most effective when used in a threaded multi-processing environment.

PROGRAMMING BLOCKS

We have seen all the main programming blocks above. To reiterate, the main programming blocks in DS2 include with the block

delimiters are:

Block Delimiters

DS2 program PROC DS2 … QUIT

DATA program DATA … ENDATA

Only one DATA program is allowed

Method METHOD … RUN

Methods must be defined before they are called either explicitly or with

a FORWARD reference

Package PACKAGE … ENDPACKAGE

Thread THREAD … ENDTHREAD

Using DS2, new variables are expected to be declared by using DECLARE statement. The DECLARE statement assigns a name,

designates the type of data and allocates a specified amount of memory to the variable. More than one variable can be declared

in one DECLARE statement. A variable declared in the outermost programming block has global scope in the block. Scope

describes where in a program a variable can be accessed. Global variables have global scope and can be accessed anywhere in

the programming block; by default, in a DATA program all global variables are sent to the data table being created. DS2 supports

three types of global scope: program, package, and thread. A variable declared in any method has local scope and are accessible

only from within the program or block in which the variable was declared. Implicitly declared variables are added to the global

set of a DS2 program and thus also sent to the data table being created, variables declared in method, package or thread are

not. Each variable in any given scope must have a unique name, but variables in different scopes can have the same name. In

this example, any reference to X in the INIT method will refer to the local declaration of X, but any reference to X in the RUN

method will refer to the global declaration of X.

declare int x;

method init();

 declare int x;

end;

method run();

end;

I Object: SAS® Does Objects with DS2, continued

11

In the following example, the DECLARE statement out of the method assigns the datatype CHAR which has 15 characters to

variable FIRSTNAME and LASTNAME. In the first DATA statement, the table example1 is created with specified values for two

variables and the OVERWRITE=YES option enables you to re-create the table at each execution. In the second DATA statement,

the table example1 is used as input for the table names.

proc ds2;

data example1 (OVERWRITE=YES);

dcl char(15) firstname lastname;

 method init();

 firstname='Stephanie'; lastname='Oraternisky'; output;

 firstname='Chunjiao'; lastname='Zhang'; output;

 firstname='William'; lastname='Green'; output;

 end;

enddata;

run;

data names (OVERWRITE=YES);

 method run();

 set example1;

 if lastname='Green';

 end;

enddata;

run;

quit;

A DS2 program can have multiple subprograms followed by an optional data program, but there can be only one data program

and the data program must be the last subprogram.

Earlier we noted that you can access a hidden SAS function by using the SYSTEM modifier; we can do something similar with

global variables. If a variable is named as both global and local then when the block where the variable is local is executing,

accessing the variable name means you are accessing the local instance. If you want to access the global instance you use the

THIS modifier:

data x;

 declare double x;

 method run();

 declare double x;

 this.x=1.0; /*assign 1.0 to global x*/

 x=0.0; /*assign 0.0 to local x*/

 output;

 end;

enddata;

run;

1

2

I Object: SAS® Does Objects with DS2, continued

12

 In this code block we have a variable called x defined as global (1) and local (2) and the use of this.x to access the global

instance.

I Object: SAS® Does Objects with DS2, continued

13

WHEN TO USE DS2

There are many technical reasons that would compel you to learn and use DS2, but possibly the most important reason is DS2

allows you to modular, robust, and reusable code.

Of course there are technical features in DS2 that will compel you to start implementing your solutions in DS2, most important

among these are:

 precision

o DS2 has several new data types that will allow greater precision in calculation.

 reusable methods

o PROC FCMP brought the ability to write our own functions in DATA step language. These functions are still

available to us.

o Packages and methods extend the ability of FCMP functions into the object oriented realm,

 SQL

o SQL code can now be submitted directly

 offload processing

o When you have access to High-Performance Analytics technologies such as Grid Manager, SAS In Database,

and SAS Embedded Process capable databases

 threading

o if you work in threaded processing environments that are configured either as a Symmetric Multiprocessing

(SMP) environment, or a Massively Parallel Processing (MPP) environment engineered specifically to support

high-volume parallel processing and high-performance computing.

As noted above, even if no technical reason will compel you to move to DS2, the ability to write more robust programs should

compel you.

DS2 EXPERIENCES

To look at how some of the features of DS2 work, we converted an existing DATA step program to DS2; this program was chosen

because its structure suited the use of DS2 method. In addition, this is one of a set of programs that have a common set of

programming blocks so the re-use of packages can be evaluated. The original program is in Appendix A and the converted

program is in Appendix B.

WHAT’S MISSING

The current implementation of DS2 does not support the input statement; this means programs which read raw data and create

data tables are not candidates for DS2. In our case this is a disappointment since we have several programs which create tables

from raw data files and many these programs would benefit from DS2. We tried tricking DS2 by creating a data set view, but

DS2 was not tricked.

DS2 has a rich variety of data types. Base SAS tables still only support fixed length character and double precision numeric

variables. If your DS2 programs will be accessing RDBMS data you will be better able to match the data types in your DS2

I Object: SAS® Does Objects with DS2, continued

14

programs. If you are using SAS data tables, you can use the new data types in your programs, but when the tables are saved the

variables are converted to fixed length character or double precision numeric as appropriate. Be sure you read and understand

the SAS rules for data type conversion.

MERGE. We so have the SET statement but MERGE is not available (although MERGE is listed as one of the reserved DS2 words).

The basic functionality of a merger statement can be accomplished in SQL, however a common validation/cleaning process we

use looks something like:

data inBoth inOne inTwo;

 merge one (in=in1) two (in=in2);

 by j;

 if in1 and in2 then do; /* more statements */ output inBoth; end;

 else if in1 then do; /* more statements */ output inOne; end;

 else do; /* more statements */ output inTwo; end;

 end;

run;

this allows us to process the incoming data once and create several output tables.

MISSING VALUES

DS2 still supports SAS missing values. The SQL concept of null has been added to DS2 in addition to the usual SAS missing values.

If you deal with missing values you will have to understand how DS2 treats SAS missing values and null values. In DS2, only the

two base SAS data types (CHAR, DOUBLE) can have missing values while all the new data types can have null values. DS2

provides a NULL() function to test for a null value and a MISSING() function to test for a SAS missing value or a null value. In

addition, DS2 provides two modes for processing null data: ANSI mode and SAS mode. In SAS mode missing values read from a

table are handled as SAS missing values; in ANSI mode all SAS numeric missing values are converted to null. If you make use of

SAS special missing values (._, .A - .Z) then you will need to process in SAS mode otherwise they will all be converted to null and

you will lose information. SAS character variables are considered missing if the character string contains blanks; in ANSI mode

this would not be converted to null, rather it is just left as a blank string. The reference manual has six pages dealing with the

null/missing values so the description here is simplified but sufficient for most uses.

DATES

For many SAS programmers, and particularly new programmers, SAS dates are usually a source of confusion. With DS2 we now

have date data types and these data types are not compatible with SAS dates. To use one of the new date data types with the

SAS date functions you need to cast the date variable to a double using the to_double() function:

ageDays = intck('day', to_double(patientDOB), to_double(servdate));

When DS2 reads a variable from a SAS dataset that has a date format, it converts it to DS2 date variable thus making it

necessary to cast the variables.

I Object: SAS® Does Objects with DS2, continued

15

CONCLUSION

This has been a quick overview of the DS2 procedure and its main components. Our experience has shown that the learning

curve for DS2 is not steep, however there are two areas in which you initially need attention: data type conversion, and missing

values. The use of methods and packages will make it easier to build more robust code. For programmers working in a threaded

multi-processing environment and/or using SAS High-Performance Analytics technologies can take advantage of threaded

processing. For many programmers there is not ‘need’ to move to DS2 programming, but the move will be worthwhile.

REFERENCES

SAS® 9.4 DS2 Language Reference. SAS Institute Inc. 2013. Cary, NC: SAS Institute Inc.

Your comments and questions are valued and encouraged. Contact the authors at:

Peter Eberhardt

Fernwood Consulting Group

Toronto, ON, Canada

peter@fernwood.ca

www.fernwood.ca

Twitter: rkinRobin

Xue Yao

Winnipeg Regional Health Authority

Winnipeg, MB, Canada

xueyao.statistic@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:peter@fernwood.ca
http://www.fernwood.ca/
mailto:xueyao.statistic@gmail.com

I Object: SAS® Does Objects with DS2, continued

16

APPENDIX A – THE SAS DATA STEP PROGRAM

data flow.adjustments;

 retain gnum phynum hnum servdate

 feecode feesufix diagcode

 feepaid feebilled feeapproved

 services patientDOB;

 set source (where=(fiscalyear='2014' AND TYPE = 'SB'));

 drop x;

 length codeSuffix $5.;

 drop codeSuffix;

 ageDays = servdate - patientDOB;

 ageCatYoung = input(put(ageDays, kage.), 1.);

 ageCatOld = input(put(ageDays, aage.), 1.);

 flowType = 0;

 format CompareFeeTotal comma9.2;

* SA and AN regular rate increase amount;

* SA ;

 if feesufix = 'B'

 then

 do;

 x = input(put(feecode, $SACD.), 8.2);

 if x NE .

 then

 do;

 feeSARate = input(put(feesufix, $SART.), 8.2); /* * services */

 feeSARate = feeSARate * services;

 feeSAExtra = x;

 flowType = flowType + 4;

 end;

 end;

* AN ;

 else if feesufix = 'C'

 then

 do;

 x = input(put(feecode, $ANCD.), 8.2);

 if x NE .

 then

 do;

 feeANRate = input(put(feesufix, $AURT.), 8.2);

I Object: SAS® Does Objects with DS2, continued

17

 feeAnRate = feeANRate * services;

 feeANExtra = x;

 flowType = flowType + 8;

 end;

 end;

* SA and AN regular increase amount;

* SA ;

/***

 if feesufix = 'B'

 then

 do;

 x = input(put(feecode, $SACD.), 8.2);

 if x NE .

 then

 do;

 feeSARate = input(put(feesufix, $SART.), 8.2); /* * services

 flowType = flowType + 4;

 end;

 end;

* AN ;

 else if feesufix = 'C'

 then

 do;

 x = input(put(feecode, $ANCD.), 8.2);

 if x NE .

 then

 do;

 feeANRate = input(put(feesufix, $AURT.), 8.2);

 flowType = flowType + 8;

 end;

 end;

***/

* the regular premium increases;

 codeSuffix = feecode || feesufix;

 if flowType = 0

 then

 do;

I Object: SAS® Does Objects with DS2, continued

18

 feePREM = input(put(codeSuffix, $regprem.), 8.2);

 if feePREM ne .

 then

 do;

 feePREMX = feePrem * feeBilled;

 flowType = flowType + 2;

 end;

 end;

* the regular increases;

 if flowType = 0

 then

 do;

 feeREG = input(put(feecode, $reg.), 8.);

 if feeREG ne .

 then

 do;

 feeREGX = feeREG * services;

 flowType = flowtype + 1;

 end;

 end;

 x = input(put(diagcode, $cdmDiag.), 8.2);

 if x ne .

 then

 do;

 feeDiagExtra = input(put(feecode, $cdmDgRT.), 8.2);

 end;

 if (feesufix = 'A') and (ageCatYoung < 6) /* under 18 */

 then

 do;

 x = input(put(feecode, $cdmPSB.), 8.2); /* SOB */

 if x NE .

 then

 do;

 feePaedSOB = input(put(ageCatYoung, cdmKage.), 8.2);

 feePaedSOBX = feePaedSOB * feeBilled;

I Object: SAS® Does Objects with DS2, continued

19

 end;

 x = input(put(feecode, $cdmPS.), 8.2); /* SEL */

 if x NE .

 then

 do;

 feePaedSEL = input(put(ageCatYoung, cdmKage.), 8.2);

 feePaedSELX = feePaedSEL * feeBilled;

 end;

 end;

 if feesufix = 'A'

 then

 do;

 feeEPrem = input(put(feecode, $cdmeye.), 8.2);

 feeEPremX = (feeEPrem) * feeBilled;

 end;

/* age premiums */

 if ageCatOld NE .

 then

 do;

 x = input(put(feecode, $ageCode.), 1.);

 if x = 1

 then

 do;

 if ageCatOld <= 2 /* (was agecat = 1) 65+ */

 then

 do;

 if feecode = 'Axxx'

 then

 do;

 feeAgePrem65 = input(put('Exxx', $cdmAAGE.), 8.);

 feeAgePrem65X = feeAgePrem65 * services;

 end;

 if feecode = 'Axxx'

 then

 do;

 feeAgePrem66 = input(put('Exxx', $cdmAAGE.), 8.);

I Object: SAS® Does Objects with DS2, continued

20

 feeAgePrem66X = feeAgePrem71 * services;

 end;

 end;

 if ageCatOld = 2 /* 70+ */

 then

 do;

 if feecode = 'Axxx'

 then

 do;

 feeAgePrem70 = input(put('Exxx', $cdmAAGE.), 8.);

 feeAgePrem70X = feeAgePrem70 * services;

 end;

 if feecode = 'Axxx'

 then

 do;

 feeAgePrem71 = input(put('Exxx', $cdmAAGE.), 8.);

 feeAgePrem71X = feeAgePrem71 * services;

 end;

 end;

 end;

 feeAgePremTot = sum(0, feeAgePrem65X,

 feeAgePrem66X,

 feeAgePrem70X,

 feeAgePrem71X

);

 end;

 CompareFeeTotal = sum(0, feeREGX,

 feePREMX,

 feeSARate,

 feeANRate,

 feeSAExtra,

 feeANExtra

);

 FeeTotal = sum(0, CompareFeeTotal,

 feeAgePremTot,

 feeDiagExtra,

 feeEPremX,

I Object: SAS® Does Objects with DS2, continued

21

 feeE411PremX,

 feeE411Amt,

 feePaedSOBX,

 feePaedSELX

);

run;

I Object: SAS® Does Objects with DS2, continued

22

APPENDIX B – THE DS2 PROGRAM

Note the use of FORWARD declaration of the methods. This was done so the run() method is quickly spotted near the top.

proc ds2 SCOND=ERROR ;

data adjustments (overwrite = yes);

/* FORWARD declare the methods - they follow method run() in the code */

 FORWARD regularSA_AN;

 FORWARD regularIncrease;

 FORWARD regularPremium;

 FORWARD diagnosticExtra;

 FORWARD PPremium;

 FORWARD EPremium;

 FORWARD APremium;

 FORWARD agePremiums;

/* these were initially declared INT, but this lead to different results */

/* because of the way SAS missing values are handled in INT */

 DECLARE DOUBLE ageDays ageCatYoung ageCatOld flowType;

 DECLARE DOUBLE CompareFeeTotal FlowFeeTotal feeREG feeREGX feePREM feePREMX feeSARate ;

 DECLARE DOUBLE feeANRate feeSAExtra feeANExtra feeSARate feeANRate feeDiagExtra ;

 DECLARE DOUBLE feePSOB feePSOBX feePSEL feePSELX feeEPrem feeEPremX ;

 DECLARE DOUBLE feeEAmt feeAPrem feeAPremX feeAgePrem65 feeAgePrem65X feeAgePrem66;

 DECLARE DOUBLE feeAgePrem66X feeAgePrem70 feeAgePrem70X feeAgePrem71 feeAgePrem71X feeAgePremTot;

 DECLARE CHAR(5) codeSuffix ;

 DROP codeSuffix;

 DECLARE DOUBLE x;

 DROP x;

 method run();

 set {select * from source where fiscalyear='2014' AND TYPE = 'SB'};

 flowType = 0;

 ageDays = intck('day', to_double(patientDOB), to_double(servdate));

 codeSuffix = put(ageDays, kage.);

 ageCatYoung = inputn(put(ageDays, kage.), '3.');

 x = inputn(put(ageDays, kage.), '3.');

 ageCatOld = inputn(put(ageDays, aage.), '3.');

 flowType = 0;

I Object: SAS® Does Objects with DS2, continued

23

 regularSA_AN();

 regularPremium();

 regularIncrease();

 diagnosticExtra();

 PPremium();

 EPremium();

 EPremium();

 agePremiums();

 CompareFeeTotal = sum(0, feeREGX,

 feePREMX,

 feeSARate,

 feeANRate,

 feeSAExtra,

 feeANExtra

);

 FeeTotal = sum(0, CompareFeeTotal,

 feeAgePremTot,

 feeDiagExtra,

 feeAPremX,

 feeEPremX,

 feeEAmt,

 feePSOBX,

 feePSELX

);

 end;

/***/

 method regularSA_AN();

 if feesufix = 'B'

 then

 do;

 x = inputn(put(feecode, $SACD.), '8.2');

 if x NE .

 then

 do;

 feeSARate = inputn(put(feesufix, $SART.), '8.2'); /* * services */

 feeSARate = feeSARate * services;

 feeSAExtra = x;

I Object: SAS® Does Objects with DS2, continued

24

 flowType = flowType + 4;

 end;

 end;

* AN ;

 else if feesufix = 'C'

 then

 do;

 x = inputn(put(feecode, $ANCD.), '8.2');

 if x NE .

 then

 do;

 feeANRate = inputn(put(feesufix, $AURT.), '8.2');

 feeAnRate = feeANRate * services;

 feeANExtra = x;

 flowType = flowType + 8;

 end;

 end;

 end;

/***/

 method regularPremium();

* the regular premium increases;

 codeSuffix = feecode || feesufix;

 if flowType = 0

 then

 do;

 feePREM = inputn(put(codeSuffix, $regprem.), '8.2');

 if feePREM ne .

 then

 do;

 feePREMX = feePrem * feeBilled;

 flowType = flowType + 2;

 end;

 end;

 end;

/***/

 method regularIncrease();

I Object: SAS® Does Objects with DS2, continued

25

* the regular increases;

 if flowType = 0

 then

 do;

 feeREG = inputn(put(feecode, $reg.), '8.');

 if feeREG ne .

 then

 do;

 feeREGX = feeREG * services;

 flowType = flowtype + 1;

 end;

 end;

 end;

/***/

 method diagnosticExtra();

 x = inputn(put(diagcode, $cdmDiag.), '8.2');

 if x ne .

 then

 do;

 feeDiagExtra = inputn(put(feecode, $cdmDgRT.), '8.2');

 end;

 end;

/***/

 method PPremium();

 if (feesufix = 'A') and (ageCatYoung < 6) /* under 18 */

 then

 do;

 x = inputn(put(feecode, $cdmPSB.), '8.2'); /* SOB */

 if x NE .

 then

 do;

 feePSOB = inputn(put(ageCatYoung, cdmKage.), '8.2');

 feePSOBX = feePSOB * feeBilled;

 end;

 x = inputn(put(feecode, $cdmPS.), '8.2'); /* SEL */

 if x NE .

 then

I Object: SAS® Does Objects with DS2, continued

26

 do;

 feePSEL = inputn(put(ageCatYoung, cdmKage.), '8.2');

 feePSELX = feePSEL * feeBilled;

 end;

 end;

 end;

/***/

 method EPremium();

 feeEPrem = inputn(put(feecode, $cdm411P.), '8.2');

 feeEPremX = (feeEPrem) * feeBilled;

 feeEAmt = inputn(put(feecode, $cdm411A.), '8.2');

 end;

/***/

 method APremium();

 if feesufix = 'A'

 then

 do;

 feeAPrem = inputn(put(feecode, $cdmeye.), '8.2');

 feeAPremX = (feeAPrem) * feeBilled;

 end;

 end;

/***/

 method agePremiums();

/* age premiums */

 if ageCatOld NE .

 then

 do;

 x = inputn(put(feecode, $ageCode.), '1.');

 if x = 1

 then

 do;

 if ageCatOld <= 2 /* (was agecat = 1) 65+ */

 then

 do;

 if feecode = 'Axxx'

I Object: SAS® Does Objects with DS2, continued

27

 then

 do;

 feeAgePrem65 = inputn(put('Exxx', $cdmAAGE.), '8.');

 feeAgePrem65X = feeAgePrem65 * services;

 end;

 if feecode = 'Ayyy'

 then

 do;

 feeAgePrem66 = inputn(put('Eyyy', $cdmAAGE.), '8.');

 feeAgePrem66X = feeAgePrem71 * services;

 end;

 end;

 if ageCatOld = 2 /* 70+ */

 then

 do;

 if feecode = 'Axxx'

 then

 do;

 feeAgePrem70 = inputn(put('Ezzz', $cdmAAGE.), '8.');

 feeAgePrem70X = feeAgePrem70 * services;

 end;

 if feecode = 'Ayyy'

 then

 do;

 feeAgePrem71 = inputn(put('Exxx', $cdmAAGE.), '8.');

 feeAgePrem71X = feeAgePrem71 * services;

 end;

 end;

 end;

 feeAgePremTot = sum(0, feeAgePrem65X,

 feeAgePrem66X,

 feeAgePrem70X,

 feeAgePrem71X

);

 end;

 end;

enddata;

run;

quit;

