
SQL

#sql

Steve Nouri
Typewriter
Steve Nouri



Table of Contents

About 1

Chapter 1: Getting started with SQL 2

Remarks 2

Versions 2

Examples 2

Overview 2

Chapter 2: ALTER TABLE 4

Introduction 4

Syntax 4

Examples 4

Add Column(s) 4

Drop Column 4

Drop Constraint 4

Add Constraint 4

Alter Column 5

Add Primary Key 5

Chapter 3: AND & OR Operators 6

Syntax 6

Examples 6

AND OR Example 6

Chapter 4: Cascading Delete 7

Examples 7

ON DELETE CASCADE 7

Chapter 5: CASE 9

Introduction 9

Syntax 9

Remarks 9

Examples 9

Searched CASE in SELECT (Matches a boolean expression) 9

Use CASE to COUNT the number of rows in a column match a condition. 10



Shorthand CASE in SELECT 11

CASE in a clause ORDER BY 11

Using CASE in UPDATE 12

CASE use for NULL values ordered last 12

CASE in ORDER BY clause to sort records by lowest value of 2 columns 13

Sample data 13

Query 13

Results 14

Explanation 14

Chapter 6: Clean Code in SQL 15

Introduction 15

Examples 15

Formatting and Spelling of Keywords and Names 15

Table/Column Names 15

Keywords 15

SELECT * 15

Indenting 16

Joins 17

Chapter 7: Comments 19

Examples 19

Single-line comments 19

Multi-line comments 19

Chapter 8: Common Table Expressions 20

Syntax 20

Remarks 20

Examples 20

Temporary query 20

recursively going up in a tree 21

generating values 21

recursively enumerating a subtree 22

Oracle CONNECT BY functionality with recursive CTEs 23



Recursively generate dates, extended to include team rostering as example 24

Refactoring a query to use Common Table Expressions 25

Example of a complex SQL with Common Table Expression 25

Chapter 9: CREATE Database 27

Syntax 27

Examples 27

CREATE Database 27

Chapter 10: CREATE FUNCTION 28

Syntax 28

Parameters 28

Remarks 28

Examples 28

Create a new Function 28

Chapter 11: CREATE TABLE 30

Introduction 30

Syntax 30

Parameters 30

Remarks 30

Examples 30

Create a New Table 30

Create Table From Select 31

Duplicate a table 31

CREATE TABLE With FOREIGN KEY 31

Create a Temporary or In-Memory Table 32

PostgreSQL and SQLite 32

SQL Server 32

Chapter 12: cross apply, outer apply 34

Examples 34

CROSS APPLY and OUTER APPLY basics 34

Chapter 13: Data Types 36

Examples 36



DECIMAL and NUMERIC 36

FLOAT and REAL 36

Integers 36

MONEY and SMALLMONEY 36

BINARY and VARBINARY 37

CHAR and VARCHAR 37

NCHAR and NVARCHAR 37

UNIQUEIDENTIFIER 38

Chapter 14: DELETE 39

Introduction 39

Syntax 39

Examples 39

DELETE certain rows with WHERE 39

DELETE all rows 39

TRUNCATE clause 39

DELETE certain rows based upon comparisons with other tables 39

Chapter 15: DROP or DELETE Database 41

Syntax 41

Remarks 41

Examples 41

DROP Database 41

Chapter 16: DROP Table 42

Remarks 42

Examples 42

Simple drop 42

Check for existence before dropping 42

Chapter 17: Example Databases and Tables 43

Examples 43

Auto Shop Database 43

Relationships between tables 43

Departments 43

Employees 44



Customers 44

Cars 45

Library Database 46

Relationships between tables 46

Authors 46

Books 47

BooksAuthors 48

Examples 49

Countries Table 49

Countries 49

Chapter 18: EXCEPT 51

Remarks 51

Examples 51

Select dataset except where values are in this other dataset 51

Chapter 19: Execution blocks 52

Examples 52

Using BEGIN ... END 52

Chapter 20: EXISTS CLAUSE 53

Examples 53

EXISTS CLAUSE 53

Get all customers with a least one order 53

Get all customers with no order 53

Purpose 54

Chapter 21: EXPLAIN and DESCRIBE 55

Examples 55

DESCRIBE tablename; 55

EXPLAIN Select query 55

Chapter 22: Filter results using WHERE and HAVING 56

Syntax 56

Examples 56

The WHERE clause only returns rows that match its criteria 56



Use IN to return rows with a value contained in a list 56

Use LIKE to find matching strings and substrings 56

WHERE clause with NULL/NOT NULL values 57

Use HAVING with Aggregate Functions 58

Use BETWEEN to Filter Results 58

Equality 59

AND and OR 60

Use HAVING to check for multiple conditions in a group 61

Where EXISTS 62

Chapter 23: Finding Duplicates on a Column Subset with Detail 63

Remarks 63

Examples 63

Students with same name and date of birth 63

Chapter 24: Foreign Keys 64

Examples 64

Creating a table with a foreign key 64

Foreign Keys explained 64

A few tips for using Foreign Keys 65

Chapter 25: Functions (Aggregate) 66

Syntax 66

Remarks 66

Examples 67

SUM 67

Conditional aggregation 67

AVG() 68

EXAMPLE TABLE 68

QUERY 68

RESULTS 69

List Concatenation 69

MySQL 69

Oracle & DB2 69

PostgreSQL 69



SQL Server 69

SQL Server 2016 and earlier 70

SQL Server 2017 and SQL Azure 70

SQLite 70

Count 70

Max 72

Min 72

Chapter 26: Functions (Analytic) 73

Introduction 73

Syntax 73

Examples 73

FIRST_VALUE 73

LAST_VALUE 74

LAG and LEAD 74

PERCENT_RANK and CUME_DIST 75

PERCENTILE_DISC and PERCENTILE_CONT 76

Chapter 27: Functions (Scalar/Single Row) 79

Introduction 79

Syntax 79

Remarks 79

Examples 80

Character modifications 80

Date And Time 80

Configuration and Conversion Function 82

Logical and Mathmetical Function 83

SQL has two logical functions – CHOOSE and IIF. 83

SQL includes several mathematical functions that you can use to perform calculations on in 84

Chapter 28: GRANT and REVOKE 85

Syntax 85

Remarks 85

Examples 85



Grant/revoke privileges 85

Chapter 29: GROUP BY 86

Introduction 86

Syntax 86

Examples 86

USE GROUP BY to COUNT the number of rows for each unique entry in a given column 86

Filter GROUP BY results using a HAVING clause 88

Basic GROUP BY example 88

ROLAP aggregation (Data Mining) 89

Description 89

Examples 90

With cube 90

With roll up 90

Chapter 30: Identifier 92

Introduction 92

Examples 92

Unquoted identifiers 92

Chapter 31: IN clause 93

Examples 93

Simple IN clause 93

Using IN clause with a subquery 93

Chapter 32: Indexes 94

Introduction 94

Remarks 94

Examples 94

Creating an Index 94

Clustered, Unique, and Sorted Indexes 95

Inserting with a Unique Index 96

SAP ASE: Drop index 96

Sorted Index 96

Dropping an Index, or Disabling and Rebuilding it 96

Unique Index that Allows NULLS 97



Rebuild index 97

Clustered index 97

Non clustered index 97

Partial or Filtered Index 98

Chapter 33: Information Schema 99

Examples 99

Basic Information Schema Search 99

Chapter 34: INSERT 100

Syntax 100

Examples 100

Insert New Row 100

Insert Only Specified Columns 100

INSERT data from another table using SELECT 100

Insert multiple rows at once 101

Chapter 35: JOIN 102

Introduction 102

Syntax 102

Remarks 102

Examples 102

Basic explicit inner join 102

Implicit Join 103

Left Outer Join 103

So how does this work? 104

Self Join 106

So how does this work? 106

CROSS JOIN 108

Joining on a Subquery 109

CROSS APPLY & LATERAL JOIN 109

FULL JOIN 111

Recursive JOINs 112

Differences between inner/outer joins 112



Inner Join 113

Left outer join 113

Right outer join 113

Full outer join 113

JOIN Terminology: Inner, Outer, Semi, Anti... 113

Inner Join 113

Left Outer Join 113

Right Outer Join 113

Full Outer Join 113

Left Semi Join 113

Right Semi Join 113

Left Anti Semi Join 113

Right Anti Semi Join 114

Cross Join 114

Self-Join 115

Chapter 36: LIKE operator 116

Syntax 116

Remarks 116

Examples 116

Match open-ended pattern 116

Single character match 118

Match by range or set 118

Match ANY versus ALL 119

Search for a range of characters 119

ESCAPE statement in the LIKE-query 119

Wildcard characters 120

Chapter 37: Materialized Views 122

Introduction 122

Examples 122

PostgreSQL example 122



Chapter 38: MERGE 123

Introduction 123

Examples 123

MERGE to make Target match Source 123

MySQL: counting users by name 123

PostgreSQL: counting users by name 124

Chapter 39: NULL 125

Introduction 125

Examples 125

Filtering for NULL in queries 125

Nullable columns in tables 125

Updating fields to NULL 126

Inserting rows with NULL fields 126

Chapter 40: ORDER BY 127

Examples 127

Use ORDER BY with TOP to return the top x rows based on a column's value 127

Sorting by multiple columns 128

Sorting by column number (instead of name) 128

Order by Alias 129

Customizeed sorting order 129

Chapter 41: Order of Execution 131

Examples 131

Logical Order of Query Processing in SQL 131

Chapter 42: Primary Keys 133

Syntax 133

Examples 133

Creating a Primary Key 133

Using Auto Increment 133

Chapter 43: Relational Algebra 135

Examples 135

Overview 135

SELECT 135



PROJECT 136

GIVING 136

NATURAL JOIN 137

ALIAS 138

DIVIDE 138

UNION 138

INTERSECTION 138

DIFFERENCE 138

UPDATE ( := ) 138

TIMES 138

Chapter 44: Row number 140

Syntax 140

Examples 140

Row numbers without partitions 140

Row numbers with partitions 140

Delete All But Last Record (1 to Many Table) 140

Chapter 45: SELECT 141

Introduction 141

Syntax 141

Remarks 141

Examples 141

Using the wildcard character to select all columns in a query. 141

Simple select statement 142

Dot notation 142

When Can You Use *, Bearing The Above Warning In Mind? 143

Selecting with Condition 144

Select Individual Columns 144

SELECT Using Column Aliases 145

All versions of SQL 145

Different Versions of SQL 146

All Versions of SQL 147



Different Versions of SQL 147

Selection with sorted Results 148

Select columns which are named after reserved keywords 149

Selecting specified number of records 150

Selecting with table alias 151

Select rows from multiple tables 152

Selecting with Aggregate functions 152

Average 152

Minimum 152

Maximum 153

Count 153

Sum 153

Selecting with null 153

Selecting with CASE 154

Selecting without Locking the table 154

Select distinct (unique values only) 155

Select with condition of multiple values from column 155

Get aggregated result for row groups 155

Selecting with more than 1 condition. 156

Chapter 46: Sequence 158

Examples 158

Create Sequence 158

Using Sequences 158

Chapter 47: SKIP TAKE (Pagination) 159

Examples 159

Skipping some rows from result 159

Limiting amount of results 159

Skipping then taking some results (Pagination) 160

Chapter 48: SQL CURSOR 161

Examples 161

Example of a cursor that queries all rows by index for each database 161



Chapter 49: SQL Group By vs Distinct 163

Examples 163

Difference between GROUP BY and DISTINCT 163

Chapter 50: SQL Injection 165

Introduction 165

Examples 165

SQL injection sample 165

simple injection sample 166

Chapter 51: Stored Procedures 168

Remarks 168

Examples 168

Create and call a stored procedure 168

Chapter 52: String Functions 169

Introduction 169

Syntax 169

Remarks 169

Examples 169

Trim empty spaces 169

Concatenate 170

Upper & lower case 170

Substring 170

Split 171

Stuff 171

Length 171

Replace 172

LEFT - RIGHT 172

REVERSE 173

REPLICATE 173

REGEXP 173

Replace function in sql Select and Update query 173

PARSENAME 174

INSTR 175



Chapter 53: Subqueries 176

Remarks 176

Examples 176

Subquery in WHERE clause 176

Subquery in FROM clause 176

Subquery in SELECT clause 176

Subqueries in FROM clause 176

Subqueries in WHERE clause 177

Subqueries in SELECT clause 177

Filter query results using query on different table 178

Correlated Subqueries 178

Chapter 54: Synonyms 179

Examples 179

Create Synonym 179

Chapter 55: Table Design 180

Remarks 180

Examples 180

Properties of a well designed table. 180

Chapter 56: Transactions 182

Remarks 182

Examples 182

Simple Transaction 182

Rollback Transaction 182

Chapter 57: Triggers 183

Examples 183

CREATE TRIGGER 183

Use Trigger to manage a "Recycle Bin" for deleted items 183

Chapter 58: TRUNCATE 184

Introduction 184

Syntax 184

Remarks 184

Examples 184



Removing all rows from the Employee table 184

Chapter 59: TRY/CATCH 186

Remarks 186

Examples 186

Transaction In a TRY/CATCH 186

Chapter 60: UNION / UNION ALL 187

Introduction 187

Syntax 187

Remarks 187

Examples 187

Basic UNION ALL query 187

Simple explanation and Example 188

Chapter 61: UPDATE 190

Syntax 190

Examples 190

Updating All Rows 190

Updating Specified Rows 190

Modifying existing values 190

UPDATE with data from another table 191

Standard SQL 191

SQL:2003 191

SQL Server 191

Capturing Updated records 192

Chapter 62: Views 193

Examples 193

Simple views 193

Complex views 193

Chapter 63: Window Functions 194

Examples 194

Adding the total rows selected to every row 194

Setting up a flag if other rows have a common property 194



Getting a running total 195

Getting the N most recent rows over multiple grouping 196

Finding "out-of-sequence" records using the LAG() function 196

Chapter 64: XML 198

Examples 198

Query from XML Data Type 198

Credits 199



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: sql

It is an unofficial and free SQL ebook created for educational purposes. All the content is extracted 
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack 
Overflow. It is neither affiliated with Stack Overflow nor official SQL.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1



Chapter 1: Getting started with SQL

Remarks

SQL is Structured Query Language used to manage data in a relational database system. 
Different vendors have improved upon the language and have variety of flavors for the language.

NB: This tag refers explicitly to the ISO/ANSI SQL standard; not to any specific implementation of 
that standard.

Versions

Version Short Name Standard Release Date

1986 SQL-86 ANSI X3.135-1986, ISO 9075:1987 1986-01-01

1989 SQL-89 ANSI X3.135-1989, ISO/IEC 9075:1989 1989-01-01

1992 SQL-92 ISO/IEC 9075:1992 1992-01-01

1999 SQL:1999 ISO/IEC 9075:1999 1999-12-16

2003 SQL:2003 ISO/IEC 9075:2003 2003-12-15

2006 SQL:2006 ISO/IEC 9075:2006 2006-06-01

2008 SQL:2008 ISO/IEC 9075:2008 2008-07-15

2011 SQL:2011 ISO/IEC 9075:2011 2011-12-15

2016 SQL:2016 ISO/IEC 9075:2016 2016-12-01

Examples

Overview

Structured Query Language (SQL) is a special-purpose programming language designed for 
managing data held in a Relational Database Management System (RDBMS). SQL-like languages 
can also be used in Relational Data Stream Management Systems (RDSMS), or in "not-only SQL" 
(NoSQL) databases.

SQL comprises of 3 major sub-languages:

Data Definition Language (DDL): to create and modify the structure of the database;1. 
Data Manipulation Language (DML): to perform Read, Insert, Update and Delete operations 2. 

https://riptutorial.com/ 2



on the data of the database;
Data Control Language (DCL): to control the access of the data stored in the database.3. 

SQL article on Wikipedia

The core DML operations are Create, Read, Update and Delete (CRUD for short) which are 
performed by the statements INSERT, SELECT, UPDATE and DELETE. 
There is also a (recently added) MERGE statement which can perform all 3 write operations 
(INSERT, UPDATE, DELETE).

CRUD article on Wikipedia

Many SQL databases are implemented as client/server systems; the term "SQL server" describes 
such a database. 
At the same time, Microsoft makes a database that is named "SQL Server". While that database 
speaks a dialect of SQL, information specific to that database is not on topic in this tag but belongs 
into the SQL Server documentation.

Read Getting started with SQL online: https://riptutorial.com/sql/topic/184/getting-started-with-sql

https://riptutorial.com/ 3



Chapter 2: ALTER TABLE

Introduction

ALTER command in SQL is used to modify column/constraint in a table

Syntax

ALTER TABLE [table_name] ADD [column_name] [datatype]•

Examples

Add Column(s)

ALTER TABLE Employees 
ADD StartingDate date NOT NULL DEFAULT GetDate(), 
    DateOfBirth date NULL

The above statement would add columns named StartingDate which cannot be NULL with default 
value as current date and DateOfBirth which can be NULL in Employees table.

Drop Column

ALTER TABLE Employees 
DROP COLUMN salary;

This will not only delete information from that column, but will drop the column salary from table 
employees(the column will no more exist).

Drop Constraint

ALTER TABLE Employees 
DROP CONSTRAINT DefaultSalary

This Drops a constraint called DefaultSalary from the employees table definition.

Note:- Ensure that constraints of the column are dropped before dropping a column.

Add Constraint

ALTER TABLE Employees 
ADD CONSTRAINT DefaultSalary DEFAULT ((100)) FOR [Salary]

This adds a constraint called DefaultSalary which specifies a default of 100 for the Salary column.

https://riptutorial.com/ 4



A constraint can be added at the table level.

Types of constraints

Primary Key - prevents a duplicate record in the table•
Foreign Key - points to a primary key from another table•
Not Null - prevents null values from being entered into a column•
Unique - uniquely identifies each record in the table•
Default - specifies a default value•
Check - limits the ranges of values that can be placed in a column•

To learn more about constraints, see the Oracle documentation.

Alter Column

ALTER TABLE Employees 
ALTER COLUMN StartingDate DATETIME NOT NULL DEFAULT (GETDATE())

This query will alter the column datatype of StartingDate and change it from simple date to datetime 
and set default to current date.

Add Primary Key

ALTER TABLE EMPLOYEES ADD pk_EmployeeID PRIMARY KEY (ID)

This will add a Primary key to the table Employees on the field ID. Including more than one column 
name in the parentheses along with ID will create a Composite Primary Key. When adding more 
than one column, the column names must be separated by commas.

ALTER TABLE EMPLOYEES ADD pk_EmployeeID PRIMARY KEY (ID, FName)

Read ALTER TABLE online: https://riptutorial.com/sql/topic/356/alter-table

https://riptutorial.com/ 5



Chapter 3: AND & OR Operators

Syntax

SELECT * FROM table WHERE (condition1) AND (condition2);1. 

SELECT * FROM table WHERE (condition1) OR (condition2);2. 

Examples

AND OR Example

Have a table

Name Age City

Bob 10 Paris

Mat 20 Berlin

Mary 24 Prague

select Name from table where Age>10 AND City='Prague'

Gives

Name

Mary

select Name from table where Age=10 OR City='Prague'

Gives

Name

Bob

Mary

Read AND & OR Operators online: https://riptutorial.com/sql/topic/1386/and---or-operators

https://riptutorial.com/ 6



Chapter 4: Cascading Delete

Examples

ON DELETE CASCADE

Assume you have a application that administers rooms.  
Assume further that your application operates on a per client basis (tenant).  
You have several clients.  
So your database will contain one table for clients, and one for rooms.

Now, every client has N rooms.  

This should mean that you have a foreign key on your room table, referencing the client table.

ALTER TABLE dbo.T_Room  WITH CHECK ADD  CONSTRAINT FK_T_Room_T_Client FOREIGN KEY(RM_CLI_ID) 
REFERENCES dbo.T_Client (CLI_ID) 
GO

Assuming a client moves on to some other software, you'll have to delete his data in your 
software. But if you do

DELETE FROM T_Client WHERE CLI_ID = x 

Then you'll get a foreign key violation, because you can't delete the client when he still has rooms.

Now you'd have write code in your application that deletes the client's rooms before it deletes the 
client. Assume further that in the future, many more foreign key dependencies will be added in 
your database, because your application's functionality expands. Horrible. For every modification 
in your database, you'll have to adapt your application's code in N places. Possibly you'll have to 
adapt code in other applications as well (e.g. interfaces to other systems).

There is a better solution than doing it in your code. 
You can just add ON DELETE CASCADE to your foreign key.

ALTER TABLE dbo.T_Room  -- WITH CHECK -- SQL-Server can specify WITH CHECK/WITH NOCHECK 
ADD  CONSTRAINT FK_T_Room_T_Client FOREIGN KEY(RM_CLI_ID) 
REFERENCES dbo.T_Client (CLI_ID) 
ON DELETE CASCADE 

Now you can say

DELETE FROM T_Client WHERE CLI_ID = x 

and the rooms are automagically deleted when the client is deleted.  
Problem solved - with no application code changes.

https://riptutorial.com/ 7



One word of caution: In Microsoft SQL-Server, this won't work if you have a table that references 
itselfs. So if you try to define a delete cascade on a recursive tree structure, like this:

IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_T_FMS_Navigation_T_FMS_Navigation]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[T_FMS_Navigation]')) 
ALTER TABLE [dbo].[T_FMS_Navigation]  WITH CHECK ADD  CONSTRAINT 
[FK_T_FMS_Navigation_T_FMS_Navigation] FOREIGN KEY([NA_NA_UID]) 
REFERENCES [dbo].[T_FMS_Navigation] ([NA_UID]) 
ON DELETE CASCADE 
GO 
 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_T_FMS_Navigation_T_FMS_Navigation]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[T_FMS_Navigation]')) 
ALTER TABLE [dbo].[T_FMS_Navigation] CHECK CONSTRAINT [FK_T_FMS_Navigation_T_FMS_Navigation] 
GO

it won't work, because Microsoft-SQL-server doesn't allow you to set a foreign key with ON DELETE 
CASCADE on a recursive tree structure. One reason for this is, that the tree is possibly cyclic, and 
that would possibly lead to a deadlock.

PostgreSQL on the other hand can do this;  
the requirement is that the tree is non-cyclic.  
If the tree is cyclic, you'll get a runtime error.  
In that case, you'll just have to implement the delete function yourselfs.

A word of caution:  
This means you can't simply delete and re-insert the client table anymore, because if you do this, 
it will delete all entries in "T_Room"... (no non-delta updates anymore)

Read Cascading Delete online: https://riptutorial.com/sql/topic/3518/cascading-delete

https://riptutorial.com/ 8



Chapter 5: CASE

Introduction

The CASE expression is used to implement if-then logic.

Syntax

CASE input_expression
 WHEN compare1 THEN result1
[WHEN compare2 THEN result2]...
[ELSE resultX]
END

•

CASE
 WHEN condition1 THEN result1
[WHEN condition2 THEN result2]...
[ELSE resultX]
END

•

Remarks

The simple CASE expression returns the first result whose compareX value is equal to the 
input_expression.

The searched CASE expression returns the first result whose conditionX is true.

Examples

Searched CASE in SELECT (Matches a boolean expression)

The searched CASE returns results when a boolean expression is TRUE.

(This differs from the simple case, which can only check for equivalency with an input.)

SELECT Id, ItemId, Price, 
  CASE WHEN Price < 10 THEN 'CHEAP' 
       WHEN Price < 20 THEN 'AFFORDABLE' 
       ELSE 'EXPENSIVE' 
  END AS PriceRating 
FROM ItemSales

Id ItemId Price PriceRating

1 100 34.5 EXPENSIVE

2 145 2.3 CHEAP

https://riptutorial.com/ 9



Id ItemId Price PriceRating

3 100 34.5 EXPENSIVE

4 100 34.5 EXPENSIVE

5 145 10 AFFORDABLE

Use CASE to COUNT the number of rows in a column match a condition.

Use Case

CASE can be used in conjunction with SUM to return a count of only those items matching a pre-
defined condition. (This is similar to COUNTIF in Excel.)

The trick is to return binary results indicating matches, so the "1"s returned for matching entries 
can be summed for a count of the total number of matches.

Given this table ItemSales, let's say you want to learn the total number of items that have been 
categorized as "Expensive":

Id ItemId Price PriceRating

1 100 34.5 EXPENSIVE

2 145 2.3 CHEAP

3 100 34.5 EXPENSIVE

4 100 34.5 EXPENSIVE

5 145 10 AFFORDABLE

Query

SELECT 
    COUNT(Id) AS ItemsCount, 
    SUM ( CASE 
            WHEN PriceRating = 'Expensive' THEN 1 
            ELSE 0 
          END 
        ) AS ExpensiveItemsCount 
FROM ItemSales 

Results:

ItemsCount ExpensiveItemsCount

5 3

https://riptutorial.com/ 10



Alternative:

SELECT 
    COUNT(Id) as ItemsCount, 
    SUM ( 
        CASE PriceRating 
            WHEN 'Expensive' THEN 1 
            ELSE 0 
        END 
       ) AS ExpensiveItemsCount 
FROM ItemSales 

Shorthand CASE in SELECT

CASE's shorthand variant evaluates an expression (usually a column) against a series of values. 
This variant is a bit shorter, and saves repeating the evaluated expression over and over again. 
The ELSE clause can still be used, though:

SELECT Id, ItemId, Price, 
  CASE Price WHEN 5  THEN 'CHEAP' 
             WHEN 15 THEN 'AFFORDABLE' 
             ELSE         'EXPENSIVE' 
  END as PriceRating 
FROM ItemSales

A word of caution. It's important to realize that when using the short variant the entire statement is 
evaluated at each WHEN. Therefore the following statement:

SELECT 
    CASE ABS(CHECKSUM(NEWID())) % 4 
        WHEN 0 THEN 'Dr' 
        WHEN 1 THEN 'Master' 
        WHEN 2 THEN 'Mr' 
        WHEN 3 THEN 'Mrs' 
    END

may produce a NULL result. That is because at each WHEN NEWID() is being called again with a new 
result. Equivalent to:

SELECT 
    CASE 
        WHEN ABS(CHECKSUM(NEWID())) % 4 = 0 THEN 'Dr' 
        WHEN ABS(CHECKSUM(NEWID())) % 4 = 1 THEN 'Master' 
        WHEN ABS(CHECKSUM(NEWID())) % 4 = 2 THEN 'Mr' 
        WHEN ABS(CHECKSUM(NEWID())) % 4 = 3 THEN 'Mrs' 
    END

Therefore it can miss all the WHEN cases and result as NULL.

CASE in a clause ORDER BY

We can use 1,2,3.. to determine the type of order:

https://riptutorial.com/ 11



SELECT * FROM DEPT 
ORDER BY 
CASE DEPARTMENT 
      WHEN 'MARKETING' THEN  1 
      WHEN 'SALES' THEN 2 
      WHEN 'RESEARCH' THEN 3 
      WHEN 'INNOVATION' THEN 4 
      ELSE        5 
      END, 
      CITY

ID REGION CITY DEPARTMENT EMPLOYEES_NUMBER

12 New England Boston MARKETING 9

15 West San Francisco MARKETING 12

9 Midwest Chicago SALES 8

14 Mid-Atlantic New York SALES 12

5 West Los Angeles RESEARCH 11

10 Mid-Atlantic Philadelphia RESEARCH 13

4 Midwest Chicago INNOVATION 11

2 Midwest Detroit HUMAN RESOURCES 9

Using CASE in UPDATE

sample on price increases:

UPDATE ItemPrice 
SET Price = Price * 
  CASE ItemId 
    WHEN 1 THEN 1.05 
    WHEN 2 THEN 1.10 
    WHEN 3 THEN 1.15 
    ELSE 1.00 
  END

CASE use for NULL values ordered last

in this way '0' representing the known values are ranked first, '1' representing the NULL values are 
sorted by the last:

SELECT ID 
      ,REGION 
      ,CITY 
      ,DEPARTMENT 
      ,EMPLOYEES_NUMBER 

https://riptutorial.com/ 12



  FROM DEPT 
  ORDER BY 
  CASE WHEN REGION IS NULL THEN 1 
  ELSE 0 
  END, 
  REGION

ID REGION CITY DEPARTMENT EMPLOYEES_NUMBER

10 Mid-Atlantic Philadelphia RESEARCH 13

14 Mid-Atlantic New York SALES 12

9 Midwest Chicago SALES 8

12 New England Boston MARKETING 9

5 West Los Angeles RESEARCH 11

15 NULL San Francisco MARKETING 12

4 NULL Chicago INNOVATION 11

2 NULL Detroit HUMAN RESOURCES 9

CASE in ORDER BY clause to sort records by lowest value of 2 columns

Imagine that you need sort records by lowest value of either one of two columns. Some databases 
could use a non-aggregated MIN() or LEAST() function for this (... ORDER BY MIN(Date1, Date2)), but 
in standard SQL, you have to use a CASE expression.

The CASE expression in the query below looks at the Date1 and Date2 columns, checks which 
column has the lower value, and sorts the records depending on this value.

Sample data

Id Date1 Date2

1 2017-01-01 2017-01-31

2 2017-01-31 2017-01-03

3 2017-01-31 2017-01-02

4 2017-01-06 2017-01-31

5 2017-01-31 2017-01-05

6 2017-01-04 2017-01-31

https://riptutorial.com/ 13



Query

SELECT Id, Date1, Date2 
FROM YourTable 
ORDER BY CASE 
           WHEN COALESCE(Date1, '1753-01-01') < COALESCE(Date2, '1753-01-01') THEN Date1 
           ELSE Date2 
         END

Results

Id Date1 Date2

1 2017-01-01 2017-01-31

3 2017-01-31 2017-01-02

2 2017-01-31 2017-01-03

6 2017-01-04 2017-01-31

5 2017-01-31 2017-01-05

4 2017-01-06 2017-01-31

Explanation

As you see row with Id = 1 is first, that because Date1 have lowest record from entire table 2017-
01-01, row where Id = 3 is second that because Date2 equals to 2017-01-02 that is second lowest 
value from table and so on.

So we have sorted records from 2017-01-01 to 2017-01-06 ascending and no care on which one 
column Date1 or Date2 are those values.

Read CASE online: https://riptutorial.com/sql/topic/456/case

https://riptutorial.com/ 14



Chapter 6: Clean Code in SQL

Introduction

How to write good, readable SQL queries, and example of good practices.

Examples

Formatting and Spelling of Keywords and Names

Table/Column Names

Two common ways of formatting table/column names are CamelCase and snake_case:

SELECT FirstName, LastName 
FROM Employees 
WHERE Salary > 500;

SELECT first_name, last_name 
FROM employees 
WHERE salary > 500;

Names should describe what is stored in their object. This implies that column names usually 
should be singular. Whether table names should use singular or plural is a heavily discussed 
question, but in practice, it is more common to use plural table names.

Adding prefixes or suffixes like tbl or col reduces readability, so avoid them. However, they are 
sometimes used to avoid conflicts with SQL keywords, and often used with triggers and indexes 
(whose names are usually not mentioned in queries).

Keywords

SQL keywords are not case sensitive. However, it is common practice to write them in upper case.

SELECT *

SELECT * returns all columns in the same order as they are defined in the table.

When using SELECT *, the data returned by a query can change whenever the table definition 
changes. This increases the risk that different versions of your application or your database are 
incompatible with each other.

Furthermore, reading more columns than necessary can increase the amount of disk and network 
I/O.

https://riptutorial.com/ 15



So you should always explicitly specify the column(s) you actually want to retrieve:

--SELECT *                                 don't 
  SELECT ID, FName, LName, PhoneNumber  -- do 
  FROM Emplopees;

(When doing interactive queries, these considerations do not apply.)

However, SELECT * does not hurt in the subquery of an EXISTS operator, because EXISTS ignores 
the actual data anyway (it checks only if at least one row has been found). For the same reason, it 
is not meaningful to list any specific column(s) for EXISTS, so SELECT * actually makes more 
sense:

-- list departments where nobody was hired recently 
SELECT ID, 
       Name 
FROM Departments 
WHERE NOT EXISTS (SELECT * 
                  FROM Employees 
                  WHERE DepartmentID = Departments.ID 
                    AND HireDate >= '2015-01-01');

Indenting

There is no widely accepted standard. What everyone agrees on is that squeezing everything into 
a single line is bad:

SELECT d.Name, COUNT(*) AS Employees FROM Departments AS d JOIN Employees AS e ON d.ID = 
e.DepartmentID WHERE d.Name != 'HR' HAVING COUNT(*) > 10 ORDER BY COUNT(*) DESC;

At the minimum, put every clause into a new line, and split lines if they would become too long 
otherwise:

SELECT d.Name, 
       COUNT(*) AS Employees 
FROM Departments AS d 
JOIN Employees AS e ON d.ID = e.DepartmentID 
WHERE d.Name != 'HR' 
HAVING COUNT(*) > 10 
ORDER BY COUNT(*) DESC;

Sometimes, everything after the SQL keyword introducing a clause is indented to the same 
column:

SELECT   d.Name, 
         COUNT(*) AS Employees 
FROM     Departments AS d 
JOIN     Employees AS e ON d.ID = e.DepartmentID 
WHERE    d.Name != 'HR' 
HAVING   COUNT(*) > 10 
ORDER BY COUNT(*) DESC;

https://riptutorial.com/ 16



(This can also be done while aligning the SQL keywords right.)

Another common style is to put important keywords on their own lines:

SELECT 
    d.Name, 
    COUNT(*) AS Employees 
FROM 
    Departments AS d 
JOIN 
    Employees AS e 
    ON d.ID = e.DepartmentID 
WHERE 
    d.Name != 'HR' 
HAVING 
    COUNT(*) > 10 
ORDER BY 
    COUNT(*) DESC;

Vertically aligning multiple similar expressions improves readability:

SELECT Model, 
       EmployeeID 
FROM Cars 
WHERE CustomerID = 42 
  AND Status     = 'READY';

Using multiple lines makes it harder to embed SQL commands into other programming languages. 
However, many languages have a mechanism for multi-line strings, e.g., @"..." in C#, """...""" in 
Python, or R"(...)" in C++.

Joins

Explicit joins should always be used; implicit joins have several problems:

The join condition is somewhere in the WHERE clause, mixed up with any other filter 
conditions. This makes it harder to see which tables are joined, and how.

•

Due to the above, there is a higher risk of mistakes, and it is more likely that they are found 
later.

•

In standard SQL, explicit joins are the only way to use outer joins:

SELECT d.Name, 
       e.Fname || e.LName AS EmpName 
FROM      Departments AS d 
LEFT JOIN Employees   AS e ON d.ID = e.DepartmentID;

•

Explicit joins allow using the USING clause:

SELECT RecipeID, 

•

https://riptutorial.com/ 17



       Recipes.Name, 
       COUNT(*) AS NumberOfIngredients 
FROM      Recipes 
LEFT JOIN Ingredients USING (RecipeID);

(This requires that both tables use the same column name. 
USING automatically removes the duplicate column from the result, e.g., the join in this 
query returns a single RecipeID column.)

Read Clean Code in SQL online: https://riptutorial.com/sql/topic/9843/clean-code-in-sql

https://riptutorial.com/ 18



Chapter 7: Comments

Examples

Single-line comments

Single line comments are preceded by --, and go until the end of the line:

SELECT * 
FROM Employees -- this is a comment 
WHERE FName = 'John'

Multi-line comments

Multi-line code comments are wrapped in /* ... */:

/* This query 
   returns all employees */ 
SELECT * 
FROM Employees

It is also possible to insert such a comment into the middle of a line:

SELECT /* all columns: */ * 
FROM Employees

Read Comments online: https://riptutorial.com/sql/topic/1597/comments

https://riptutorial.com/ 19



Chapter 8: Common Table Expressions

Syntax

WITH QueryName [(ColumnName, ...)] AS ( 
  SELECT ... 
) 
SELECT ... FROM QueryName ...;

•

WITH RECURSIVE QueryName [(ColumnName, ...)] AS ( 
  SELECT ... 
  UNION [ALL] 
  SELECT ... FROM QueryName ... 
) 
SELECT ... FROM QueryName ...;

•

Remarks

Official documentation: WITH clause

A Common Table Expression is a temporary result set, and it can be result of complex sub query. 
It is defined by using WITH clause. CTE improves readability and it is created in memory rather 
than TempDB database where Temp Table and Table variable is created.

Key concepts of Common Table Expressions:

Can be used to break up complex queries, especially complex joins and sub-queries.•
Is a way of encapsulating a query definition.•
Persist only until the next query is run.•
Correct use can lead to improvements in both code quality/maintainability and speed.•
Can be used to reference the resulting table multiple times in the same statement (eliminate 
duplication in SQL).

•

Can be a substitute for a view when the general use of a view is not required; that is, you do 
not have to store the definition in metadata.

•

Will be run when called, not when defined. If the CTE is used multiple times in a query it will 
be run multiple times (possibly with different results).

•

Examples

Temporary query

These behave in the same manner as nested subqueries but with a different syntax.

WITH ReadyCars AS ( 
  SELECT * 

https://riptutorial.com/ 20



  FROM Cars 
  WHERE Status = 'READY' 
) 
SELECT ID, Model, TotalCost 
FROM ReadyCars 
ORDER BY TotalCost;

ID Model TotalCost

1 Ford F-150 200

2 Ford F-150 230

Equivalent subquery syntax

SELECT ID, Model, TotalCost 
FROM ( 
  SELECT * 
  FROM Cars 
  WHERE Status = 'READY' 
) AS ReadyCars 
ORDER BY TotalCost

recursively going up in a tree

WITH RECURSIVE ManagersOfJonathon AS ( 
    -- start with this row 
    SELECT * 
    FROM Employees 
    WHERE ID = 4 
 
    UNION ALL 
 
    -- get manager(s) of all previously selected rows 
    SELECT Employees.* 
    FROM Employees 
    JOIN ManagersOfJonathon 
        ON Employees.ID = ManagersOfJonathon.ManagerID 
) 
SELECT * FROM ManagersOfJonathon;

Id FName LName PhoneNumber ManagerId DepartmentId

4 Johnathon Smith 1212121212 2 1

2 John Johnson 2468101214 1 1

1 James Smith 1234567890 NULL 1

generating values

Most databases do not have a native way of generating a series of numbers for ad-hoc use; 

https://riptutorial.com/ 21



however, common table expressions can be used with recursion to emulate that type of function.

The following example generates a common table expression called Numbers with a column i which 
has a row for numbers 1-5:

--Give a table name `Numbers" and a column `i` to hold the numbers 
WITH Numbers(i) AS ( 
    --Starting number/index 
    SELECT 1 
    --Top-level UNION ALL operator required for recursion 
    UNION ALL 
    --Iteration expression: 
    SELECT i + 1 
    --Table expression we first declared used as source for recursion 
    FROM Numbers 
    --Clause to define the end of the recursion 
    WHERE i < 5 
) 
--Use the generated table expression like a regular table 
SELECT i FROM Numbers;

i

1

2

3

4

5

This method can be used with any number interval, as well as other types of data.

recursively enumerating a subtree

WITH RECURSIVE ManagedByJames(Level, ID, FName, LName) AS ( 
    -- start with this row 
    SELECT 1, ID, FName, LName 
    FROM Employees 
    WHERE ID = 1 
 
    UNION ALL 
 
    -- get employees that have any of the previously selected rows as manager 
    SELECT ManagedByJames.Level + 1, 
           Employees.ID, 
           Employees.FName, 
           Employees.LName 
    FROM Employees 
    JOIN ManagedByJames 
        ON Employees.ManagerID = ManagedByJames.ID 
 
    ORDER BY 1 DESC   -- depth-first search 

https://riptutorial.com/ 22



) 
SELECT * FROM ManagedByJames;

Level ID FName LName

1 1 James Smith

2 2 John Johnson

3 4 Johnathon Smith

2 3 Michael Williams

Oracle CONNECT BY functionality with recursive CTEs

Oracle's CONNECT BY functionality provides many useful and nontrivial features that are not 
built-in when using SQL standard recursive CTEs. This example replicates these features (with a 
few additions for sake of completeness), using SQL Server syntax. It is most useful for Oracle 
developers finding many features missing in their hierarchical queries on other databases, but it 
also serves to showcase what can be done with a hierarchical query in general.

  WITH tbl AS ( 
       SELECT id, name, parent_id 
         FROM mytable) 
     , tbl_hierarchy AS ( 
       /* Anchor */ 
       SELECT 1 AS "LEVEL" 
            --, 1 AS CONNECT_BY_ISROOT 
            --, 0 AS CONNECT_BY_ISBRANCH 
            , CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 0 ELSE 1 END AS 
CONNECT_BY_ISLEAF 
            , 0 AS CONNECT_BY_ISCYCLE 
            , '/' + CAST(t.id   AS VARCHAR(MAX)) + '/' AS SYS_CONNECT_BY_PATH_id 
            , '/' + CAST(t.name AS VARCHAR(MAX)) + '/' AS SYS_CONNECT_BY_PATH_name 
            , t.id AS root_id 
            , t.* 
         FROM tbl t 
        WHERE t.parent_id IS NULL                            -- START WITH parent_id IS NULL 
       UNION ALL 
       /* Recursive */ 
       SELECT th."LEVEL" + 1 AS "LEVEL" 
            --, 0 AS CONNECT_BY_ISROOT 
            --, CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 1 ELSE 0 END AS 
CONNECT_BY_ISBRANCH 
            , CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 0 ELSE 1 END AS 
CONNECT_BY_ISLEAF 
            , CASE WHEN th.SYS_CONNECT_BY_PATH_id LIKE '%/' + CAST(t.id AS VARCHAR(MAX)) + 
'/%' THEN 1 ELSE 0 END AS CONNECT_BY_ISCYCLE 
            , th.SYS_CONNECT_BY_PATH_id   + CAST(t.id   AS VARCHAR(MAX)) + '/' AS 
SYS_CONNECT_BY_PATH_id 
            , th.SYS_CONNECT_BY_PATH_name + CAST(t.name AS VARCHAR(MAX)) + '/' AS 
SYS_CONNECT_BY_PATH_name 
            , th.root_id 
            , t.* 
         FROM tbl t 

https://riptutorial.com/ 23



              JOIN tbl_hierarchy th ON (th.id = t.parent_id) -- CONNECT BY PRIOR id = 
parent_id 
        WHERE th.CONNECT_BY_ISCYCLE = 0)                     -- NOCYCLE 
SELECT th.* 
     --, REPLICATE(' ', (th."LEVEL" - 1) * 3) + th.name AS tbl_hierarchy 
  FROM tbl_hierarchy th 
       JOIN tbl CONNECT_BY_ROOT ON (CONNECT_BY_ROOT.id = th.root_id) 
 ORDER BY th.SYS_CONNECT_BY_PATH_name;                       -- ORDER SIBLINGS BY name

CONNECT BY features demonstrated above, with explanations:

Clauses
CONNECT BY: Specifies the relationship that defines the hierarchy.○

START WITH: Specifies the root nodes.○

ORDER SIBLINGS BY: Orders results properly.○

•

Parameters
NOCYCLE: Stops processing a branch when a loop is detected. Valid hierarchies are 
Directed Acyclic Graphs, and circular references violate this construct.

○

•

Operators
PRIOR: Obtains data from the node's parent.○

CONNECT_BY_ROOT: Obtains data from the node's root.○

•

Pseudocolumns
LEVEL: Indicates the node's distance from its root.○

CONNECT_BY_ISLEAF: Indicates a node without children.○

CONNECT_BY_ISCYCLE: Indicates a node with a circular reference.○

•

Functions
SYS_CONNECT_BY_PATH: Returns a flattened/concatenated representation of the 
path to the node from its root.

○

•

Recursively generate dates, extended to include team rostering as example

DECLARE @DateFrom DATETIME = '2016-06-01 06:00' 
DECLARE @DateTo DATETIME = '2016-07-01 06:00' 
DECLARE @IntervalDays INT = 7 
 
-- Transition Sequence = Rest & Relax into Day Shift into Night Shift 
-- RR (Rest & Relax) = 1 
-- DS (Day Shift) = 2 
-- NS (Night Shift) = 3 
 
;WITH roster AS 
( 
   SELECT @DateFrom AS RosterStart, 1 AS TeamA, 2 AS TeamB, 3 AS TeamC 
   UNION ALL 
   SELECT DATEADD(d, @IntervalDays, RosterStart), 
          CASE TeamA WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamA, 
          CASE TeamB WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamB, 
          CASE TeamC WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamC 
   FROM roster WHERE RosterStart < DATEADD(d, -@IntervalDays, @DateTo) 
) 
 
SELECT RosterStart, 
       ISNULL(LEAD(RosterStart) OVER (ORDER BY RosterStart), RosterStart + @IntervalDays) AS 

https://riptutorial.com/ 24



RosterEnd, 
       CASE TeamA WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamA, 
       CASE TeamB WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamB, 
       CASE TeamC WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamC 
FROM roster

Result

I.e. For Week 1 TeamA is on R&R, TeamB is on Day Shift and TeamC is on Night Shift.

Refactoring a query to use Common Table Expressions

Suppose we want to get all product categories with total sales greater than 20.

Here is a query without Common Table Expressions:

SELECT category.description, sum(product.price) as total_sales 
FROM sale 
LEFT JOIN product on sale.product_id = product.id 
LEFT JOIN category on product.category_id = category.id 
GROUP BY category.id, category.description 
HAVING sum(product.price) > 20

And an equivalent query using Common Table Expressions:

WITH all_sales AS ( 
  SELECT product.price, category.id as category_id, category.description as 
category_description 
  FROM sale 
  LEFT JOIN product on sale.product_id = product.id 
  LEFT JOIN category on product.category_id = category.id 
) 
, sales_by_category AS ( 
  SELECT category_description, sum(price) as total_sales 
  FROM all_sales 
  GROUP BY category_id, category_description 
) 
SELECT * from sales_by_category WHERE total_sales > 20

Example of a complex SQL with Common Table Expression

Suppose we want to query the "cheapest products" from the "top categories".

Here is an example of query using Common Table Expressions

https://riptutorial.com/ 25



-- all_sales: just a simple SELECT with all the needed JOINS 
WITH all_sales AS ( 
  SELECT 
  product.price as product_price, 
  category.id as category_id, 
  category.description as category_description 
  FROM sale 
  LEFT JOIN product on sale.product_id = product.id 
  LEFT JOIN category on product.category_id = category.id 
) 
-- Group by category 
, sales_by_category AS ( 
  SELECT category_id, category_description, 
  sum(product_price) as total_sales 
  FROM all_sales 
  GROUP BY category_id, category_description 
) 
-- Filtering total_sales > 20 
, top_categories AS ( 
  SELECT * from sales_by_category WHERE total_sales > 20 
) 
-- all_products: just a simple SELECT with all the needed JOINS 
, all_products AS ( 
  SELECT 
  product.id as product_id, 
  product.description as product_description, 
  product.price as product_price, 
  category.id as category_id, 
  category.description as category_description 
  FROM product 
  LEFT JOIN category on product.category_id = category.id 
) 
-- Order by product price 
, cheapest_products AS ( 
  SELECT * from all_products 
  ORDER by product_price ASC 
) 
-- Simple inner join 
, cheapest_products_from_top_categories AS ( 
  SELECT product_description, product_price 
  FROM cheapest_products 
  INNER JOIN top_categories ON cheapest_products.category_id = top_categories.category_id 
) 
--The main SELECT 
SELECT * from cheapest_products_from_top_categories

Read Common Table Expressions online: https://riptutorial.com/sql/topic/747/common-table-
expressions

https://riptutorial.com/ 26



Chapter 9: CREATE Database

Syntax

CREATE DATABASE dbname;•

Examples

CREATE Database

A database is created with the following SQL command:

CREATE DATABASE myDatabase;

This would create an empty database named myDatabase where you can create tables.

Read CREATE Database online: https://riptutorial.com/sql/topic/2744/create-database

https://riptutorial.com/ 27



Chapter 10: CREATE FUNCTION

Syntax

CREATE FUNCTION function_name ( [list_of_paramenters] ) RETURNS return_data_type 
AS BEGIN function_body RETURN scalar_expression END

•

Parameters

Argument Description

function_name the name of function

list_of_paramenters parameters that function accepts

return_data_type type that function returs. Some SQL data type

function_body the code of function

scalar_expression scalar value returned by function

Remarks

CREATE FUNCTION creates a user-defined function that can be used when doing a SELECT, 
INSERT, UPDATE, or DELETE query. The functions can be created to return a single variable or 
a single table.

Examples

Create a new Function

CREATE FUNCTION FirstWord (@input varchar(1000)) 
RETURNS varchar(1000) 
AS 
BEGIN 
    DECLARE @output varchar(1000) 
    SET @output = SUBSTRING(@input, 0, CASE CHARINDEX(' ', @input) 
        WHEN 0 THEN LEN(@input) + 1 
        ELSE CHARINDEX(' ', @input) 
    END) 
 
    RETURN @output 
END

This example creates a function named FirstWord, that accepts a varchar parameter and returns 
another varchar value.

https://riptutorial.com/ 28



Read CREATE FUNCTION online: https://riptutorial.com/sql/topic/2437/create-function

https://riptutorial.com/ 29



Chapter 11: CREATE TABLE

Introduction

The CREATE TABLE statement is used create a new table in the database. A table definition 
consists of a list of columns, their types, and any integrity constraints.

Syntax

CREATE TABLE tableName( [ColumnName1] [datatype1] [, [ColumnName2] [datatype2] ...] 
)

•

Parameters

Parameter Details

tableName The name of the table

columns
Contains an 'enumeration' of all the columns that the table have. See Create a 

New Table for more details.

Remarks

Table names must be unique.

Examples

Create a New Table

A basic Employees table, containing an ID, and the employee's first and last name along with their 
phone number can be created using

CREATE TABLE Employees( 
    Id int identity(1,1) primary key not null, 
    FName varchar(20) not null, 
    LName varchar(20) not null, 
    PhoneNumber varchar(10) not null 
);

This example is specific to Transact-SQL

CREATE TABLE creates a new table in the database, followed by the table name, Employees

This is then followed by the list of column names and their properties, such as the ID

https://riptutorial.com/ 30



Id int identity(1,1) not null

Value Meaning

Id the column's name.

int is the data type.

identity(1,1)
states that column will have auto generated values starting at 1 and 
incrementing by 1 for each new row.

primary key states that all values in this column will have unique values

not null states that this column cannot have null values

Create Table From Select

You may want to create a duplicate of a table:

CREATE TABLE ClonedEmployees AS SELECT * FROM Employees;

You can use any of the other features of a SELECT statement to modify the data before passing it 
to the new table. The columns of the new table are automatically created according to the selected 
rows.

CREATE TABLE ModifiedEmployees AS 
SELECT Id, CONCAT(FName," ",LName) AS FullName FROM Employees 
WHERE Id > 10;

Duplicate a table

To duplicate a table, simply do the following:

CREATE TABLE newtable LIKE oldtable; 
INSERT newtable SELECT * FROM oldtable;

CREATE TABLE With FOREIGN KEY

Below you could find the table Employees with a reference to the table Cities.

CREATE TABLE Cities( 
    CityID INT IDENTITY(1,1) NOT NULL, 
    Name VARCHAR(20) NOT NULL, 
    Zip VARCHAR(10) NOT NULL 
); 
 
CREATE TABLE Employees( 
    EmployeeID INT IDENTITY (1,1) NOT NULL, 
    FirstName VARCHAR(20) NOT NULL, 

https://riptutorial.com/ 31



    LastName VARCHAR(20) NOT NULL, 
    PhoneNumber VARCHAR(10) NOT NULL, 
    CityID INT FOREIGN KEY REFERENCES Cities(CityID) 
);

Here could you find a database diagram.

The column CityID of table Employees will reference to the column CityID of table Cities. Below you 
could find the syntax to make this.

CityID INT FOREIGN KEY REFERENCES Cities(CityID)

Value Meaning

CityID Name of the column

int type of the column

FOREIGN KEY Makes the foreign key (optional)

REFERENCES 
Cities(CityID)

Makes the reference 
to the table Cities column CityID

Important: You couldn't make a reference to a table that not exists in the database. Be source to 
make first the table Cities and second the table Employees. If you do it vise versa, it will throw an 
error.

Create a Temporary or In-Memory Table

PostgreSQL and SQLite

To create a temporary table local to the session:

CREATE TEMP TABLE MyTable(...);

https://riptutorial.com/ 32



SQL Server

To create a temporary table local to the session:

CREATE TABLE #TempPhysical(...);

To create a temporary table visible to everyone:

CREATE TABLE ##TempPhysicalVisibleToEveryone(...);

To create an in-memory table:

DECLARE @TempMemory TABLE(...);

Read CREATE TABLE online: https://riptutorial.com/sql/topic/348/create-table

https://riptutorial.com/ 33



Chapter 12: cross apply, outer apply

Examples

CROSS APPLY and OUTER APPLY basics

Apply will be used when when table valued function in the right expression.

create a Department table to hold information about departments. Then create an Employee table 
which hold information about the employees. Please note, each employee belongs to a 
department, hence the Employee table has referential integrity with the Department table.

First query selects data from Department table and uses CROSS APPLY to evaluate the 
Employee table for each record of the Department table. Second query simply joins the 
Department table with the Employee table and all the matching records are produced.

SELECT * 
FROM Department D 
CROSS APPLY ( 
    SELECT * 
    FROM Employee E 
    WHERE E.DepartmentID = D.DepartmentID 
) A 
GO 
SELECT * 
FROM Department D 
INNER JOIN Employee E 
  ON D.DepartmentID = E.DepartmentID

If you look at the results they produced, it is the exact same result-set; How does it differ from a 
JOIN and how does it help in writing more efficient queries.

The first query in Script #2 selects data from Department table and uses OUTER APPLY to 
evaluate the Employee table for each record of the Department table. For those rows for which 
there is not a match in Employee table, those rows contains NULL values as you can see in case 
of row 5 and 6. The second query simply uses a LEFT OUTER JOIN between the Department 
table and the Employee table. As expected the query returns all rows from Department table; even 
for those rows for which there is no match in the Employee table.

SELECT * 
FROM Department D 
OUTER APPLY ( 
    SELECT * 
    FROM Employee E 
    WHERE E.DepartmentID = D.DepartmentID 
) A 
GO 
SELECT * 
FROM Department D 
LEFT OUTER JOIN Employee E 
  ON D.DepartmentID = E.DepartmentID 

https://riptutorial.com/ 34



GO

Even though the above two queries return the same information, the execution plan will be bit 
different. But cost wise there will be not much difference.

Now comes the time to see where the APPLY operator is really required. In Script #3, I am 
creating a table-valued function which accepts DepartmentID as its parameter and returns all the 
employees who belong to this department. The next query selects data from Department table and 
uses CROSS APPLY to join with the function we created. It passes the DepartmentID for each row 
from the outer table expression (in our case Department table) and evaluates the function for each 
row similar to a correlated subquery. The next query uses the OUTER APPLY in place of CROSS 
APPLY and hence unlike CROSS APPLY which returned only correlated data, the OUTER APPLY 
returns non-correlated data as well, placing NULLs into the missing columns.

CREATE FUNCTION dbo.fn_GetAllEmployeeOfADepartment (@DeptID AS int) 
RETURNS TABLE 
AS 
  RETURN 
  ( 
  SELECT 
    * 
  FROM Employee E 
  WHERE E.DepartmentID = @DeptID 
  ) 
GO 
SELECT 
  * 
FROM Department D 
CROSS APPLY dbo.fn_GetAllEmployeeOfADepartment(D.DepartmentID) 
GO 
SELECT 
  * 
FROM Department D 
OUTER APPLY dbo.fn_GetAllEmployeeOfADepartment(D.DepartmentID) 
GO

So now if you are wondering, can we use a simple join in place of the above queries? Then the 
answer is NO, if you replace CROSS/OUTER APPLY in the above queries with INNER 
JOIN/LEFT OUTER JOIN, specify ON clause (something as 1=1) and run the query, you will get 
"The multi-part identifier "D.DepartmentID" could not be bound." error. This is because with JOINs 
the execution context of outer query is different from the execution context of the function (or a 
derived table), and you can not bind a value/variable from the outer query to the function as a 
parameter. Hence the APPLY operator is required for such queries.

Read cross apply, outer apply online: https://riptutorial.com/sql/topic/2516/cross-apply--outer-apply

https://riptutorial.com/ 35



Chapter 13: Data Types

Examples

DECIMAL and NUMERIC

Fixed precision and scale decimal numbers. DECIMAL and NUMERIC are functionally equivalent.

Syntax:

DECIMAL ( precision [ , scale] ) 
NUMERIC ( precision [ , scale] )

Examples:

SELECT CAST(123 AS DECIMAL(5,2)) --returns 123.00 
SELECT CAST(12345.12 AS NUMERIC(10,5)) --returns 12345.12000

FLOAT and REAL

Approximate-number data types for use with floating point numeric data.

SELECT CAST( PI() AS FLOAT) --returns 3.14159265358979 
SELECT CAST( PI() AS REAL) --returns 3.141593

Integers

Exact-number data types that use integer data.

Data 

type
Range Storage

bigint
-2^63 (-9,223,372,036,854,775,808) to 2^63-1 
(9,223,372,036,854,775,807)

8 Bytes

int -2^31 (-2,147,483,648) to 2^31-1 (2,147,483,647) 4 Bytes

smallint -2^15 (-32,768) to 2^15-1 (32,767) 2 Bytes

tinyint 0 to 255 1 Byte

MONEY and SMALLMONEY

Data types that represent monetary or currency values.

https://riptutorial.com/ 36



Data type Range Storage

money -922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes

smallmoney -214,748.3648 to 214,748.3647 4 bytes

BINARY and VARBINARY

Binary data types of either fixed length or variable length.

Syntax:

BINARY [ ( n_bytes ) ] 
VARBINARY [ ( n_bytes | max ) ]

n_bytes can be any number from 1 to 8000 bytes. max indicates that the maximum storage space is 
2^31-1.

Examples:

SELECT CAST(12345 AS BINARY(10)) -- 0x00000000000000003039 
SELECT CAST(12345 AS VARBINARY(10)) -- 0x00003039

CHAR and VARCHAR

String data types of either fixed length or variable length.

Syntax:

CHAR [ ( n_chars ) ] 
VARCHAR [ ( n_chars ) ]

Examples:

SELECT CAST('ABC' AS CHAR(10)) -- 'ABC       ' (padded with spaces on the right) 
SELECT CAST('ABC' AS VARCHAR(10)) -- 'ABC' (no padding due to variable character) 
SELECT CAST('ABCDEFGHIJKLMNOPQRSTUVWXYZ' AS CHAR(10))  -- 'ABCDEFGHIJ' (truncated to 10 
characters)

NCHAR and NVARCHAR

UNICODE string data types of either fixed length or variable length.

Syntax:

NCHAR [ ( n_chars ) ] 
NVARCHAR [ ( n_chars | MAX ) ]

Use MAX for very long strings that may exceed 8000 characters.

https://riptutorial.com/ 37



UNIQUEIDENTIFIER

A 16-byte GUID / UUID.

DECLARE @GUID UNIQUEIDENTIFIER = NEWID(); 
SELECT @GUID -- 'E28B3BD9-9174-41A9-8508-899A78A33540' 
DECLARE @bad_GUID_string VARCHAR(100) = 'E28B3BD9-9174-41A9-8508-899A78A33540_foobarbaz' 
SELECT 
    @bad_GUID_string,   -- 'E28B3BD9-9174-41A9-8508-899A78A33540_foobarbaz' 
    CONVERT(UNIQUEIDENTIFIER, @bad_GUID_string) -- 'E28B3BD9-9174-41A9-8508-899A78A33540'

Read Data Types online: https://riptutorial.com/sql/topic/1166/data-types

https://riptutorial.com/ 38



Chapter 14: DELETE

Introduction

The DELETE statement is used to delete records from a table.

Syntax

DELETE FROM TableName [WHERE Condition] [LIMIT count]1. 

Examples

DELETE certain rows with WHERE

This will delete all rows that match the WHERE criteria.

DELETE FROM Employees 
WHERE FName = 'John'

DELETE all rows

Omitting a WHERE clause will delete all rows from a table.

DELETE FROM Employees

See TRUNCATE documentation for details on how TRUNCATE performance can be better 
because it ignores triggers and indexes and logs to just delete the data.

TRUNCATE clause

Use this to reset the table to the condition at which it was created. This deletes all rows and resets 
values such as auto-increment. It also doesn't log each individual row deletion.

TRUNCATE TABLE Employees

DELETE certain rows based upon comparisons with other tables

It is possible to DELETE data from a table if it matches (or mismatches) certain data in other tables.

Let's assume we want to DELETEdata from Source once its loaded into Target.

DELETE FROM Source 
WHERE  EXISTS ( SELECT 1 -- specific value in SELECT doesn't matter 
               FROM Target 
               Where Source.ID = Target.ID )

https://riptutorial.com/ 39



Most common RDBMS implementations (e.g. MySQL, Oracle, PostgresSQL, Teradata) allow 
tables to be joined during DELETE allowing more complex comparison in a compact syntax.

Adding complexity to original scenario, let's assume Aggregate is built from Target once a day and 
does not contain the same ID but contains the same date. Let us also assume that we want to 
delete data from Source only after the aggregate is populated for the day.

On MySQL, Oracle and Teradata this can be done using:

DELETE FROM Source 
WHERE  Source.ID = TargetSchema.Target.ID 
       AND TargetSchema.Target.Date = AggregateSchema.Aggregate.Date

In PostgreSQL use:

DELETE FROM Source 
USING  TargetSchema.Target, AggregateSchema.Aggregate 
WHERE  Source.ID = TargetSchema.Target.ID 
       AND TargetSchema.Target.DataDate = AggregateSchema.Aggregate.AggDate

This essentially results in INNER JOINs between Source, Target and Aggregate. The deletion is 
performed on Source when the same IDs exist in Target AND date present in Target for those IDs 
also exists in Aggregate.

Same query may also be written (on MySQL, Oracle, Teradata) as:

DELETE Source 
FROM   Source, TargetSchema.Target, AggregateSchema.Aggregate 
WHERE  Source.ID = TargetSchema.Target.ID 
       AND TargetSchema.Target.DataDate = AggregateSchema.Aggregate.AggDate

Explicit joins may be mentioned in Delete statements on some RDBMS implementations (e.g. 
Oracle, MySQL) but not supported on all platforms (e.g. Teradata does not support them)

Comparisons can be designed to check mismatch scenarios instead of matching ones with all 
syntax styles (observe NOT EXISTS below)

DELETE FROM Source 
WHERE NOT EXISTS ( SELECT 1 -- specific value in SELECT doesn't matter 
               FROM Target 
               Where Source.ID = Target.ID )

Read DELETE online: https://riptutorial.com/sql/topic/1105/delete

https://riptutorial.com/ 40



Chapter 15: DROP or DELETE Database

Syntax

MSSQL Syntax:•
DROP DATABASE [ IF EXISTS ] { database_name | database_snapshot_name } [ ,...n ] [;]•
MySQL Syntax:•
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name•

Remarks

DROP DATABASE is used for dropping a database from SQL. Be sure to create a backup of your 
database before dropping it to prevent accidental loss of information.

Examples

DROP Database

Dropping the database is a simple one-liner statement. Drop database will delete the database, 
hence always ensure to have a backup of the database if required.

Below is the command to drop Employees Database

DROP DATABASE [dbo].[Employees]

Read DROP or DELETE Database online: https://riptutorial.com/sql/topic/3974/drop-or-delete-
database

https://riptutorial.com/ 41



Chapter 16: DROP Table

Remarks

DROP TABLE removes the table definition from the schema along with the rows, indexes, 
permissions, and triggers.

Examples

Simple drop

Drop Table MyTable;

Check for existence before dropping

MySQL3.19

DROP TABLE IF EXISTS MyTable;

PostgreSQL8.x

DROP TABLE IF EXISTS MyTable;

SQL Server2005

If Exists(Select * From Information_Schema.Tables 
          Where Table_Schema = 'dbo' 
            And Table_Name = 'MyTable') 
  Drop Table dbo.MyTable

SQLite3.0

DROP TABLE IF EXISTS MyTable;

Read DROP Table online: https://riptutorial.com/sql/topic/1832/drop-table

https://riptutorial.com/ 42



Chapter 17: Example Databases and Tables

Examples

Auto Shop Database

In the following example - Database for an auto shop business, we have a list of departments, 
employees, customers and customer cars. We are using foreign keys to create relationships 
between the various tables.

Live example: SQL fiddle

Relationships between tables

Each Department may have 0 or more Employees•
Each Employee may have 0 or 1 Manager•
Each Customer may have 0 or more Cars•

Departments

Id Name

1 HR

2 Sales

3 Tech

SQL statements to create the table:

CREATE TABLE Departments ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    Name VARCHAR(25) NOT NULL, 
    PRIMARY KEY(Id) 
); 
 
INSERT INTO Departments 
    ([Id], [Name]) 
VALUES 
    (1, 'HR'), 
    (2, 'Sales'), 
    (3, 'Tech') 
;

https://riptutorial.com/ 43



Employees

Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate

1 James Smith 1234567890 NULL 1 1000
01-01-
2002

2 John Johnson 2468101214 1 1 400
23-03-
2005

3 Michael Williams 1357911131 1 2 600
12-05-
2009

4 Johnathon Smith 1212121212 2 1 500
24-07-
2016

SQL statements to create the table:

CREATE TABLE Employees ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    FName VARCHAR(35) NOT NULL, 
    LName VARCHAR(35) NOT NULL, 
    PhoneNumber VARCHAR(11), 
    ManagerId INT, 
    DepartmentId INT NOT NULL, 
    Salary INT NOT NULL, 
    HireDate DATETIME NOT NULL, 
    PRIMARY KEY(Id), 
    FOREIGN KEY (ManagerId) REFERENCES Employees(Id), 
    FOREIGN KEY (DepartmentId) REFERENCES Departments(Id) 
); 
 
INSERT INTO Employees 
    ([Id], [FName], [LName], [PhoneNumber], [ManagerId], [DepartmentId], [Salary], [HireDate]) 
VALUES 
    (1, 'James', 'Smith', 1234567890, NULL, 1, 1000, '01-01-2002'), 
    (2, 'John', 'Johnson', 2468101214, '1', 1, 400, '23-03-2005'), 
    (3, 'Michael', 'Williams', 1357911131, '1', 2, 600, '12-05-2009'), 
    (4, 'Johnathon', 'Smith', 1212121212, '2', 1, 500, '24-07-2016') 
;

Customers

Id FName LName Email PhoneNumber PreferredContact

1 William Jones william.jones@example.com 3347927472 PHONE

2 David Miller dmiller@example.net 2137921892 EMAIL

3 Richard Davis richard0123@example.com NULL EMAIL

https://riptutorial.com/ 44



SQL statements to create the table:

CREATE TABLE Customers ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    FName VARCHAR(35) NOT NULL, 
    LName VARCHAR(35) NOT NULL, 
    Email varchar(100) NOT NULL, 
    PhoneNumber VARCHAR(11), 
    PreferredContact VARCHAR(5) NOT NULL, 
    PRIMARY KEY(Id) 
); 
 
INSERT INTO Customers 
    ([Id], [FName], [LName], [Email], [PhoneNumber], [PreferredContact]) 
VALUES 
    (1, 'William', 'Jones', 'william.jones@example.com', '3347927472', 'PHONE'), 
    (2, 'David', 'Miller', 'dmiller@example.net', '2137921892', 'EMAIL'), 
    (3, 'Richard', 'Davis', 'richard0123@example.com', NULL, 'EMAIL') 
;

Cars

Id CustomerId EmployeeId Model Status Total Cost

1 1 2 Ford F-150 READY 230

2 1 2 Ford F-150 READY 200

3 2 1 Ford Mustang WAITING 100

4 3 3 Toyota Prius WORKING 1254

SQL statements to create the table:

CREATE TABLE Cars ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    CustomerId INT NOT NULL, 
    EmployeeId INT NOT NULL, 
    Model varchar(50) NOT NULL, 
    Status varchar(25) NOT NULL, 
    TotalCost INT NOT NULL, 
    PRIMARY KEY(Id), 
    FOREIGN KEY (CustomerId) REFERENCES Customers(Id), 
    FOREIGN KEY (EmployeeId) REFERENCES Employees(Id) 
); 
 
INSERT INTO Cars 
    ([Id], [CustomerId], [EmployeeId], [Model], [Status], [TotalCost]) 
VALUES 
    ('1', '1', '2', 'Ford F-150', 'READY', '230'), 
    ('2', '1', '2', 'Ford F-150', 'READY', '200'), 
    ('3', '2', '1', 'Ford Mustang', 'WAITING', '100'), 
    ('4', '3', '3', 'Toyota Prius', 'WORKING', '1254') 
;

https://riptutorial.com/ 45



Library Database

In this example database for a library, we have Authors, Books and BooksAuthors tables.

Live example: SQL fiddle

Authors and Books are known as base tables, since they contain column definition and data for 
the actual entities in the relational model. BooksAuthors is known as the relationship table, since 
this table defines the relationship between the Books and Authors table.

Relationships between tables

Each author can have 1 or more books•
Each book can have 1 or more authors•

Authors

(view table)

Id Name Country

1 J.D. Salinger USA

2 F. Scott. Fitzgerald USA

3 Jane Austen UK

4 Scott Hanselman USA

5 Jason N. Gaylord USA

6 Pranav Rastogi India

7 Todd Miranda USA

8 Christian Wenz USA

SQL to create the table:

CREATE TABLE Authors ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    Name VARCHAR(70) NOT NULL, 
    Country VARCHAR(100) NOT NULL, 
    PRIMARY KEY(Id) 
); 
 
INSERT INTO Authors 

https://riptutorial.com/ 46



    (Name, Country) 
VALUES 
    ('J.D. Salinger', 'USA'), 
    ('F. Scott. Fitzgerald', 'USA'), 
    ('Jane Austen', 'UK'), 
    ('Scott Hanselman', 'USA'), 
    ('Jason N. Gaylord', 'USA'), 
    ('Pranav Rastogi', 'India'), 
    ('Todd Miranda', 'USA'), 
    ('Christian Wenz', 'USA') 
;

Books

(view table)

Id Title

1 The Catcher in the Rye

2 Nine Stories

3 Franny and Zooey

4 The Great Gatsby

5 Tender id the Night

6 Pride and Prejudice

7 Professional ASP.NET 4.5 in C# and VB

SQL to create the table:

CREATE TABLE Books ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    Title VARCHAR(50) NOT NULL, 
    PRIMARY KEY(Id) 
); 
 
INSERT INTO Books 
    (Id, Title) 
VALUES 
    (1, 'The Catcher in the Rye'), 
    (2, 'Nine Stories'), 
    (3, 'Franny and Zooey'), 
    (4, 'The Great Gatsby'), 
    (5, 'Tender id the Night'), 
    (6, 'Pride and Prejudice'), 
    (7, 'Professional ASP.NET 4.5 in C# and VB') 
;

https://riptutorial.com/ 47



BooksAuthors

(view table)

BookId AuthorId

1 1

2 1

3 1

4 2

5 2

6 3

7 4

7 5

7 6

7 7

7 8

SQL to create the table:

CREATE TABLE BooksAuthors ( 
    AuthorId INT NOT NULL, 
    BookId  INT NOT NULL, 
    FOREIGN KEY (AuthorId) REFERENCES Authors(Id), 
    FOREIGN KEY (BookId) REFERENCES Books(Id) 
); 
 
INSERT INTO BooksAuthors 
    (BookId, AuthorId) 
VALUES 
    (1, 1), 
    (2, 1), 
    (3, 1), 
    (4, 2), 
    (5, 2), 
    (6, 3), 
    (7, 4), 
    (7, 5), 
    (7, 6), 
    (7, 7), 
    (7, 8) 
;

https://riptutorial.com/ 48



Examples

View all authors (view live example):

SELECT * FROM Authors;

View all book titles (view live example):

SELECT * FROM Books;

View all books and their authors (view live example):

SELECT 
  ba.AuthorId, 
  a.Name AuthorName, 
  ba.BookId, 
  b.Title BookTitle 
FROM BooksAuthors ba 
  INNER JOIN Authors a ON a.id = ba.authorid 
  INNER JOIN Books b ON b.id = ba.bookid 
;

Countries Table

In this example, we have a Countries table. A table for countries has many uses, especially in 
Financial applications involving currencies and exchange rates.

Live example: SQL fiddle

Some Market data software applications like Bloomberg and Reuters require you to give their API 
either a 2 or 3 character country code along with the currency code. Hence this example table has 
both the 2-character ISO code column and the 3 character ISO3 code columns.

Countries

(view table)

Id ISO ISO3 ISONumeric CountryName Capital ContinentCode CurrencyCode

1 AU AUS 36 Australia Canberra OC AUD

2 DE DEU 276 Germany Berlin EU EUR

2 IN IND 356 India New Delhi AS INR

3 LA LAO 418 Laos Vientiane AS LAK

4 US USA 840 United States Washington NA USD

https://riptutorial.com/ 49



Id ISO ISO3 ISONumeric CountryName Capital ContinentCode CurrencyCode

5 ZW ZWE 716 Zimbabwe Harare AF ZWL

SQL to create the table:

CREATE TABLE Countries ( 
    Id INT NOT NULL AUTO_INCREMENT, 
    ISO VARCHAR(2) NOT NULL, 
    ISO3 VARCHAR(3) NOT NULL, 
    ISONumeric INT NOT NULL, 
    CountryName VARCHAR(64) NOT NULL, 
    Capital VARCHAR(64) NOT NULL, 
    ContinentCode VARCHAR(2) NOT NULL, 
    CurrencyCode VARCHAR(3) NOT NULL, 
    PRIMARY KEY(Id) 
) 
; 
 
INSERT INTO Countries 
    (ISO, ISO3, ISONumeric, CountryName, Capital, ContinentCode, CurrencyCode) 
VALUES 
    ('AU', 'AUS', 36, 'Australia', 'Canberra', 'OC', 'AUD'), 
    ('DE', 'DEU', 276, 'Germany', 'Berlin', 'EU', 'EUR'), 
    ('IN', 'IND', 356, 'India', 'New Delhi', 'AS', 'INR'), 
    ('LA', 'LAO', 418, 'Laos', 'Vientiane', 'AS', 'LAK'), 
    ('US', 'USA', 840, 'United States', 'Washington', 'NA', 'USD'), 
    ('ZW', 'ZWE', 716, 'Zimbabwe', 'Harare', 'AF', 'ZWL') 
;

Read Example Databases and Tables online: https://riptutorial.com/sql/topic/280/example-
databases-and-tables

https://riptutorial.com/ 50



Chapter 18: EXCEPT

Remarks

EXCEPT returns any distinct values from the dataset to the left of the EXCEPT operator that are not 
also returned from the right dataset.

Examples

Select dataset except where values are in this other dataset

--dataset schemas must be identical 
SELECT 'Data1' as 'Column' UNION ALL 
SELECT 'Data2' as 'Column' UNION ALL 
SELECT 'Data3' as 'Column' UNION ALL 
SELECT 'Data4' as 'Column' UNION ALL 
SELECT 'Data5' as 'Column' 
EXCEPT 
SELECT 'Data3' as 'Column' 
--Returns Data1, Data2, Data4, and Data5

Read EXCEPT online: https://riptutorial.com/sql/topic/4082/except

https://riptutorial.com/ 51



Chapter 19: Execution blocks

Examples

Using BEGIN ... END

BEGIN 
  UPDATE Employees SET PhoneNumber = '5551234567' WHERE Id = 1; 
  UPDATE Employees SET Salary = 650 WHERE Id = 3; 
END

Read Execution blocks online: https://riptutorial.com/sql/topic/1632/execution-blocks

https://riptutorial.com/ 52



Chapter 20: EXISTS CLAUSE

Examples

EXISTS CLAUSE

Customer Table

Id FirstName LastName

1 Ozgur Ozturk

2 Youssef Medi

3 Henry Tai

Order Table

Id CustomerId Amount

1 2 123.50

2 3 14.80

Get all customers with a least one order

SELECT * FROM Customer WHERE EXISTS ( 
    SELECT * FROM Order WHERE Order.CustomerId=Customer.Id 
)

Result

Id FirstName LastName

2 Youssef Medi

3 Henry Tai

Get all customers with no order

SELECT * FROM Customer WHERE NOT EXISTS ( 
    SELECT * FROM Order WHERE Order.CustomerId = Customer.Id 
)

https://riptutorial.com/ 53



Result

Id FirstName LastName

1 Ozgur Ozturk

Purpose

EXISTS, IN and JOIN could sometime be used for the same result, however, they are not equals :

EXISTS should be used to check if a value exist in another table•
IN should be used for static list•
JOIN should be used to retrieve data from other(s) table(s)•

Read EXISTS CLAUSE online: https://riptutorial.com/sql/topic/7933/exists-clause

https://riptutorial.com/ 54



Chapter 21: EXPLAIN and DESCRIBE

Examples

DESCRIBE tablename;

DESCRIBE and EXPLAIN are synonyms. DESCRIBE on a tablename returns the definition of the columns.

DESCRIBE tablename;

Exmple Result:

COLUMN_NAME     COLUMN_TYPE     IS_NULLABLE     COLUMN_KEY     COLUMN_DEFAULT    EXTRA 
id              int(11)         NO              PRI            0 
auto_increment 
test            varchar(255)    YES                            (null) 

Here you see the column names, followed by the columns type. It shows if null is allowed in the 
column and if the column uses an Index. the default value is also displayed and if the table 
contains any special behavior like an auto_increment.

EXPLAIN Select query

An Explain infront of a select query shows you how the query will be executed. This way you to 
see if the query uses an index or if you could optimize your query by adding an index.

Example query:

explain select * from user join data on user.test = data.fk_user;

Example result:

id  select_type  table   type    possible_keys  key     key_len ref       rows  Extra 
1   SIMPLE       user    index   test           test    5       (null)    1     Using where; 
Using index 
1   SIMPLE       data    ref     fk_user        fk_user 5       user.test 1     (null)

on type you see if an index was used. In the column possible_keys you see if the execution plan 
can choose from different indexes of if none exists. key tells you the acutal used index. key_len 
shows you the size in bytes for one index item. The lower this value is the more index items fit into 
the same memory size an they can be faster processed. rows shows you the expected number of 
rows the query needs to scan, the lower the better.

Read EXPLAIN and DESCRIBE online: https://riptutorial.com/sql/topic/2928/explain-and-describe

https://riptutorial.com/ 55



Chapter 22: Filter results using WHERE and 

HAVING

Syntax

SELECT column_name
FROM table_name
WHERE column_name operator value

•

SELECT column_name, aggregate_function(column_name)
FROM table_name
GROUP BY column_name
HAVING aggregate_function(column_name) operator value

•

Examples

The WHERE clause only returns rows that match its criteria

Steam has a games under $10 section of their store page. Somewhere deep in the heart of their 
systems, there's probably a query that looks something like:

SELECT * 
FROM Items 
WHERE Price < 10

Use IN to return rows with a value contained in a list

This example uses the Car Table from the Example Databases.

SELECT * 
FROM Cars 
WHERE TotalCost IN (100, 200, 300)

This query will return Car #2 which costs 200 and Car #3 which costs 100. Note that this is 
equivalent to using multiple clauses with OR, e.g.:

SELECT * 
FROM Cars 
WHERE TotalCost = 100 OR TotalCost = 200 OR TotalCost = 300

Use LIKE to find matching strings and substrings

See full documentation on LIKE operator.

This example uses the Employees Table from the Example Databases.

https://riptutorial.com/ 56



SELECT * 
FROM Employees 
WHERE FName LIKE 'John'

This query will only return Employee #1 whose first name matches 'John' exactly.

SELECT * 
FROM Employees 
WHERE FName like 'John%'

Adding % allows you to search for a substring:

John% - will return any Employee whose name begins with 'John', followed by any amount of 
characters

•

%John - will return any Employee whose name ends with 'John', proceeded by any amount of 
characters

•

%John% - will return any Employee whose name contains 'John' anywhere within the value•

In this case, the query will return Employee #2 whose name is 'John' as well as Employee #4 
whose name is 'Johnathon'.

WHERE clause with NULL/NOT NULL values

SELECT * 
FROM Employees 
WHERE ManagerId IS NULL

This statement will return all Employee records where the value of the ManagerId column is NULL.

The result will be:

Id    FName    LName    PhoneNumber    ManagerId    DepartmentId 
1     James    Smith    1234567890     NULL         1

SELECT * 
FROM Employees 
WHERE ManagerId IS NOT NULL

This statement will return all Employee records where the value of the ManagerId is not NULL.

The result will be:

Id    FName       LName     PhoneNumber    ManagerId    DepartmentId 
2     John        Johnson   2468101214     1            1 
3     Michael     Williams  1357911131     1            2 
4     Johnathon   Smith     1212121212     2            1

Note: The same query will not return results if you change the WHERE clause to WHERE ManagerId 
= NULL or WHERE ManagerId <> NULL.

https://riptutorial.com/ 57



Use HAVING with Aggregate Functions

Unlike the WHERE clause, HAVING can be used with aggregate functions.

An aggregate function is a function where the values of multiple rows are grouped 
together as input on certain criteria to form a single value of more significant meaning 
or measurement (Wikipedia).

Common aggregate functions include COUNT(), SUM(), MIN(), and MAX().

This example uses the Car Table from the Example Databases.

SELECT CustomerId, COUNT(Id) AS [Number of Cars] 
FROM Cars 
GROUP BY CustomerId 
HAVING COUNT(Id) > 1

This query will return the CustomerId and Number of Cars count of any customer who has more than 
one car. In this case, the only customer who has more than one car is Customer #1.

The results will look like:

CustomerId Number of Cars

1 2

Use BETWEEN to Filter Results

The following examples use the Item Sales and Customers sample databases.

Note: The BETWEEN operator is inclusive.

Using the BETWEEN operator with Numbers:

SELECT * From ItemSales 
WHERE Quantity BETWEEN 10 AND 17

This query will return all ItemSales records that have a quantity that is greater or equal to 10 and 
less than or equal to 17. The results will look like:

Id SaleDate ItemId Quantity Price

1 2013-07-01 100 10 34.5

4 2013-07-23 100 15 34.5

5 2013-07-24 145 10 34.5

https://riptutorial.com/ 58



Using the BETWEEN operator with Date Values:

SELECT * From ItemSales 
WHERE SaleDate BETWEEN '2013-07-11' AND '2013-05-24'

This query will return all ItemSales records with a SaleDate that is greater than or equal to July 11, 
2013 and less than or equal to May 24, 2013.

Id SaleDate ItemId Quantity Price

3 2013-07-11 100 20 34.5

4 2013-07-23 100 15 34.5

5 2013-07-24 145 10 34.5

When comparing datetime values instead of dates, you may need to convert the 
datetime values into a date values, or add or subtract 24 hours to get the correct 
results.

Using the BETWEEN operator with Text Values:

SELECT Id, FName, LName FROM Customers 
WHERE LName BETWEEN 'D' AND 'L';

Live example: SQL fiddle

This query will return all customers whose name alphabetically falls between the letters 'D' and 'L'. 
In this case, Customer #1 and #3 will be returned. Customer #2, whose name begins with a 'M' will 
not be included.

Id FName LName

1 William Jones

3 Richard Davis

Equality

SELECT * FROM Employees 

This statement will return all the rows from the table Employees.

Id   FName     LName    PhoneNumber   ManagerId   DepartmentId    Salary  Hire_date 
CreatedDate   ModifiedDate 
1    James     Smith    1234567890    NULL        1               1000    01-01-2002    01-01-
2002    01-01-2002 

https://riptutorial.com/ 59



2    John      Johnson  2468101214    1           1               400     23-03-2005    23-03-
2005    01-01-2002 
3    Michael   Williams 1357911131    1           2               600     12-05-2009    12-05-
2009    NULL 
4    Johnathon Smith    1212121212    2           1               500     24-07-2016    24-07-
2016    01-01-2002

Using a WHERE at the end of your SELECT statement allows you to limit the returned rows to a 
condition. In this case, where there is an exact match using the = sign:

SELECT * FROM Employees WHERE DepartmentId = 1

Will only return the rows where the DepartmentId is equal to 1:

Id   FName     LName    PhoneNumber   ManagerId   DepartmentId    Salary  Hire_date 
CreatedDate   ModifiedDate 
1    James     Smith    1234567890    NULL        1               1000    01-01-2002    01-01-
2002    01-01-2002 
2    John      Johnson  2468101214    1           1               400     23-03-2005    23-03-
2005    01-01-2002 
4    Johnathon Smith    1212121212    2           1               500     24-07-2016    24-07-
2016    01-01-2002

AND and OR

You can also combine several operators together to create more complex WHERE conditions. The 
following examples use the Employees table:

Id   FName     LName    PhoneNumber   ManagerId   DepartmentId    Salary  Hire_date 
CreatedDate   ModifiedDate 
1    James     Smith    1234567890    NULL        1               1000    01-01-2002    01-01-
2002    01-01-2002 
2    John      Johnson  2468101214    1           1               400     23-03-2005    23-03-
2005    01-01-2002 
3    Michael   Williams 1357911131    1           2               600     12-05-2009    12-05-
2009    NULL 
4    Johnathon Smith    1212121212    2           1               500     24-07-2016    24-07-
2016    01-01-2002

AND

SELECT * FROM Employees WHERE DepartmentId = 1 AND ManagerId = 1

Will return:

Id   FName     LName    PhoneNumber   ManagerId   DepartmentId    Salary  Hire_date 
CreatedDate   ModifiedDate 
2    John      Johnson  2468101214    1           1               400     23-03-2005    23-03-
2005    01-01-2002

OR

https://riptutorial.com/ 60



SELECT * FROM Employees WHERE DepartmentId = 2 OR ManagerId = 2

Will return:

Id   FName     LName    PhoneNumber   ManagerId   DepartmentId    Salary  Hire_date 
CreatedDate   ModifiedDate 
3    Michael   Williams 1357911131    1           2               600     12-05-2009    12-05-
2009    NULL 
4    Johnathon Smith    1212121212    2           1               500     24-07-2016    24-07-
2016    01-01-2002

Use HAVING to check for multiple conditions in a group

Orders Table

CustomerId ProductId Quantity Price

1 2 5 100

1 3 2 200

1 4 1 500

2 1 4 50

3 5 6 700

To check for customers who have ordered both - ProductID 2 and 3, HAVING can be used

 select customerId 
 from orders 
 where productID in (2,3) 
 group by customerId 
 having count(distinct productID) = 2

Return value:

customerId

1

The query selects only records with the productIDs in questions and with the HAVING clause 
checks for groups having 2 productIds and not just one.

Another possibility would be

 select customerId 
 from orders 
 group by customerId 
 having sum(case when productID = 2 then 1 else 0 end) > 0 

https://riptutorial.com/ 61



    and sum(case when productID = 3 then 1 else 0 end) > 0

This query selects only groups having at least one record with productID 2 and at least one with 
productID 3.

Where EXISTS

Will select records in TableName that have records matching in TableName1.

SELECT * FROM TableName t WHERE EXISTS ( 
    SELECT 1 FROM TableName1 t1 where t.Id = t1.Id)

Read Filter results using WHERE and HAVING online: https://riptutorial.com/sql/topic/636/filter-
results-using-where-and-having

https://riptutorial.com/ 62



Chapter 23: Finding Duplicates on a Column 

Subset with Detail

Remarks

To select rows with out duplicates change the WHERE clause to "RowCnt = 1"•

To select one row from each set use Rank() instead of Sum() and change the outer WHERE 
clause to select rows with Rank() = 1

•

Examples

Students with same name and date of birth

WITH CTE (StudentId, Fname, LName, DOB, RowCnt) 
as ( 
SELECT StudentId, FirstName, LastName, DateOfBirth as DOB, SUM(1) OVER (Partition By 
FirstName, LastName, DateOfBirth) as RowCnt 
FROM tblStudent 
) 
SELECT * from CTE where RowCnt > 1 
ORDER BY DOB, LName

This example uses a Common Table Expression and a Window Function to show all duplicate 
rows (on a subset of columns) side by side.

Read Finding Duplicates on a Column Subset with Detail online: 
https://riptutorial.com/sql/topic/1585/finding-duplicates-on-a-column-subset-with-detail

https://riptutorial.com/ 63



Chapter 24: Foreign Keys

Examples

Creating a table with a foreign key

In this example we have an existing table, SuperHeros.

This table contains a primary key ID.

We will add a new table in order to store the powers of each super hero:

CREATE TABLE HeroPowers 
( 
    ID int NOT NULL PRIMARY KEY, 
    Name nvarchar(MAX) NOT NULL, 
    HeroId int REFERENCES SuperHeros(ID) 
)

The column HeroId is a foreign key to the table SuperHeros.

Foreign Keys explained

Foreign Keys constraints ensure data integrity, by enforcing that values in one table must match 
values in another table.

An example of where a foreign key is required is: In a university, a course must belong to a 
department. Code for the this scenario is:

CREATE TABLE Department ( 
    Dept_Code        CHAR (5)     PRIMARY KEY, 
    Dept_Name        VARCHAR (20) UNIQUE 
);

Insert values with the following statement:

INSERT INTO Department VALUES ('CS205', 'Computer Science');

The following table will contain the information of the subjects offered by the Computer science 
branch:

CREATE TABLE Programming_Courses ( 
    Dept_Code       CHAR(5), 
    Prg_Code        CHAR(9) PRIMARY KEY, 
    Prg_Name        VARCHAR (50) UNIQUE, 
    FOREIGN KEY (Dept_Code) References Department(Dept_Code) 
);

https://riptutorial.com/ 64



(The data type of the Foreign Key must match the datatype of the referenced key.)

The Foreign Key constraint on the column Dept_Code allows values only if they already exist in the 
referenced table, Department. This means that if you try to insert the following values:

INSERT INTO Programming_Courses Values ('CS300', 'FDB-DB001', 'Database Systems');

the database will raise a Foreign Key violation error, because CS300 does not exist in the Department 
table. But when you try a key value that exists:

INSERT INTO Programming_Courses VALUES ('CS205', 'FDB-DB001', 'Database Systems'); 
INSERT INTO Programming_Courses VALUES ('CS205', 'DB2-DB002', 'Database Systems II');

then the database allows these values.

A few tips for using Foreign Keys

A Foreign Key must reference a UNIQUE (or PRIMARY) key in the parent table.•
Entering a NULL value in a Foreign Key column does not raise an error.•
Foreign Key constraints can reference tables within the same database.•
Foreign Key constraints can refer to another column in the same table (self-reference).•

Read Foreign Keys online: https://riptutorial.com/sql/topic/1533/foreign-keys

https://riptutorial.com/ 65



Chapter 25: Functions (Aggregate)

Syntax

Function([DISTINCT] expression) -DISTINCT is an optional parameter•
AVG ( [ ALL | DISTINCT ] expression )•
COUNT( { [ALL | DISTINCT ] expression ] | * } )•
GROUPING(<column_expression>)•
MAX ( [ ALL | DISTINCT ] expression )•
MIN ( [ ALL | DISTINCT ] expression )•
SUM ( [ ALL | DISTINCT ] expression )•
VAR ( [ ALL | DISTINCT ] expression )
OVER ( [ partition_by_clause ] order_by_clause )

•

VARP ( [ ALL | DISTINCT ] expression )
OVER ( [ partition_by_clause ] order_by_clause

•

STDEV ( [ ALL | DISTINCT ] expression )
OVER ( [ partition_by_clause ] order_by_clause )

•

STDEVP ( [ ALL | DISTINCT ] expression )
OVER ( [ partition_by_clause ] order_by_clause )

•

Remarks

In database management an aggregate function is a function where the values of multiple rows 
are grouped together as input on certain criteria to form a single value of more significant meaning 
or measurement such as a set, a bag or a list.

MIN        returns the smallest value in a given column 
MAX        returns the largest value in a given column 
SUM        returns the sum of the numeric values in a given column 
AVG        returns the average value of a given column 
COUNT      returns the total number of values in a given column 
COUNT(*)   returns the number of rows in a table 
GROUPING   Is a column or an expression that contains a column in a GROUP BY clause. 
STDEV      returns the statistical standard deviation of all values in the specified 
expression. 
STDEVP     returns the statistical standard deviation for the population for all values in the 
specified expression. 
VAR        returns the statistical variance of all values in the specified expression. may be 
followed by the OVER clause. 
VARP       returns the statistical variance for the population for all values in the specified 
expression.

Aggregate functions are used to compute against a "returned column of numeric data" 
from your SELECT statement. They basically summarize the results of a particular 
column of selected data. - SQLCourse2.com

All aggregate functions ignore NULL values.

https://riptutorial.com/ 66



Examples

SUM

Sum function sum the value of all the rows in the group. If the group by clause is omitted then sums 
all the rows.

select sum(salary) TotalSalary 
from employees;

TotalSalary

2500

select DepartmentId, sum(salary) TotalSalary 
from employees 
group by DepartmentId;

DepartmentId TotalSalary

1 2000

2 500

Conditional aggregation

Payments Table

Customer Payment_type Amount

Peter Credit 100

Peter Credit 300

John Credit 1000

John Debit 500

select customer, 
       sum(case when payment_type = 'credit' then amount else 0 end) as credit, 
       sum(case when payment_type = 'debit' then amount else 0 end) as debit 
from payments 
group by customer

Result:

https://riptutorial.com/ 67



Customer Credit Debit

Peter 400 0

John 1000 500

select customer, 
       sum(case when payment_type = 'credit' then 1 else 0 end) as credit_transaction_count, 
       sum(case when payment_type = 'debit' then 1 else 0 end) as debit_transaction_count 
from payments 
group by customer

Result:

Customer credit_transaction_count debit_transaction_count

Peter 2 0

John 1 1

AVG()

The aggregate function AVG() returns the average of a given expression, usually numeric values 
in a column. Assume we have a table containing the yearly calculation of population in cities 
across the world. The records for New York City look similar to the ones below:

EXAMPLE TABLE

city_name population year

New York City 8,550,405 2015

New York City ... ...

New York City 8,000,906 2005

To select the average population of the New York City, USA from a table containing city names, 
population measurements, and measurement years for last ten years:

QUERY

select city_name, AVG(population) avg_population 
from city_population 
where city_name = 'NEW YORK CITY';

Notice how measurement year is absent from the query since population is being averaged over 
time.

https://riptutorial.com/ 68



RESULTS

city_name avg_population

New York City 8,250,754

Note: The AVG() function will convert values to numeric types. This is especially 
important to keep in mind when working with dates.

List Concatenation

Partial credit to this SO answer.

List Concatenation aggregates a column or expression by combining the values into a single string 
for each group. A string to delimit each value (either blank or a comma when omitted) and the 
order of the values in the result can be specified. While it is not part of the SQL standard, every 
major relational database vendor supports it in their own way.

MySQL

SELECT ColumnA 
     , GROUP_CONCAT(ColumnB ORDER BY ColumnB SEPARATOR ',') AS ColumnBs 
  FROM TableName 
 GROUP BY ColumnA 
 ORDER BY ColumnA;

Oracle & DB2

SELECT ColumnA 
     , LISTAGG(ColumnB, ',') WITHIN GROUP (ORDER BY ColumnB) AS ColumnBs 
  FROM TableName 
 GROUP BY ColumnA 
 ORDER BY ColumnA;

PostgreSQL

SELECT ColumnA 
     , STRING_AGG(ColumnB, ',' ORDER BY ColumnB) AS ColumnBs 
  FROM TableName 
 GROUP BY ColumnA 
 ORDER BY ColumnA;

SQL Server

https://riptutorial.com/ 69



SQL Server 2016 and earlier

(CTE included to encourage the DRY principle)

  WITH CTE_TableName AS ( 
       SELECT ColumnA, ColumnB 
         FROM TableName) 
SELECT t0.ColumnA 
     , STUFF(( 
       SELECT ',' + t1.ColumnB 
         FROM CTE_TableName t1 
        WHERE t1.ColumnA = t0.ColumnA 
        ORDER BY t1.ColumnB 
          FOR XML PATH('')), 1, 1, '') AS ColumnBs 
  FROM CTE_TableName t0 
 GROUP BY t0.ColumnA 
 ORDER BY ColumnA;

SQL Server 2017 and SQL Azure

SELECT ColumnA 
     , STRING_AGG(ColumnB, ',') WITHIN GROUP (ORDER BY ColumnB) AS ColumnBs 
  FROM TableName 
 GROUP BY ColumnA 
 ORDER BY ColumnA;

SQLite

without ordering:

SELECT ColumnA 
     , GROUP_CONCAT(ColumnB, ',') AS ColumnBs 
  FROM TableName 
 GROUP BY ColumnA 
 ORDER BY ColumnA;

ordering requires a subquery or CTE:

  WITH CTE_TableName AS ( 
       SELECT ColumnA, ColumnB 
         FROM TableName 
        ORDER BY ColumnA, ColumnB) 
SELECT ColumnA 
     , GROUP_CONCAT(ColumnB, ',') AS ColumnBs 
  FROM CTE_TableName 
 GROUP BY ColumnA 
 ORDER BY ColumnA;

Count

https://riptutorial.com/ 70



You can count the number of rows:

SELECT count(*) TotalRows 
FROM employees;

TotalRows

4

Or count the employees per department:

SELECT DepartmentId, count(*) NumEmployees 
FROM employees 
GROUP BY DepartmentId;

DepartmentId NumEmployees

1 3

2 1

You can count over a column/expression with the effect that will not count the NULL values:

SELECT count(ManagerId) mgr 
FROM EMPLOYEES;

mgr

3

(There is one null value managerID column)

You can also use DISTINCT inside of another function such as COUNT to only find the DISTINCT 
members of the set to perform the operation on.

For example:

 SELECT COUNT(ContinentCode) AllCount 
 ,      COUNT(DISTINCT ContinentCode) SingleCount 
 FROM Countries;

Will return different values. The SingleCount will only Count individual Continents once, while the 
AllCount will include duplicates.

ContinentCode

OC

https://riptutorial.com/ 71



ContinentCode

EU

AS

NA

NA

AF

AF

AllCount: 7 SingleCount: 5

Max

Find the maximum value of column:

select max(age) from employee;

Above example will return largest value for column age of employee table.

Syntax:

SELECT MAX(column_name) FROM table_name;

Min

Find the smallest value of column:

 select min(age) from employee;

Above example will return smallest value for column age of employee table.

Syntax:

 SELECT MIN(column_name) FROM table_name;

Read Functions (Aggregate) online: https://riptutorial.com/sql/topic/1002/functions--aggregate-

https://riptutorial.com/ 72



Chapter 26: Functions (Analytic)

Introduction

You use analytic functions to determine values based on groups of values. For example, you can 
use this type of function to determine running totals, percentages, or the top result within a group.

Syntax

FIRST_VALUE ( scalar_expression ) OVER ( [ partition_by_clause ] order_by_clause [ 
rows_range_clause ] )

1. 

LAST_VALUE ( scalar_expression ) OVER ( [ partition_by_clause ] order_by_clause [ 
rows_range_clause ] )

2. 

LAG (scalar_expression [,offset] [,default]) OVER ( [ partition_by_clause ] order_by_clause )3. 
LEAD ( scalar_expression [ ,offset ] , [ default ] )  OVER ( [ partition_by_clause ] 
order_by_clause )

4. 

PERCENT_RANK( ) OVER ( [ partition_by_clause ] order_by_clause )5. 
CUME_DIST( )   OVER ( [ partition_by_clause ] order_by_clause )6. 
PERCENTILE_DISC ( numeric_literal ) WITHIN GROUP ( ORDER BY 
order_by_expression [ ASC | DESC ] ) OVER ( [ <partition_by_clause> ] )

7. 

PERCENTILE_CONT ( numeric_literal ) WITHIN GROUP ( ORDER BY 
order_by_expression [ ASC | DESC ] ) OVER ( [ <partition_by_clause> ] )

8. 

Examples

FIRST_VALUE

You use the FIRST_VALUE function to determine the first value in an ordered result set, which you 
identify using a scalar expression.

SELECT StateProvinceID, Name, TaxRate, 
       FIRST_VALUE(StateProvinceID) 
        OVER(ORDER BY TaxRate ASC) AS FirstValue 
FROM SalesTaxRate;

In this example, the FIRST_VALUE function is used to return the ID of the state or province with the 
lowest tax rate. The OVER clause is used to order the tax rates to obtain the lowest rate.

StateProvinceID Name TaxRate FirstValue

74 Utah State Sales Tax 5.00 74

36 Minnesota State Sales Tax 6.75 74

30 Massachusetts State Sales Tax 7.00 74

https://riptutorial.com/ 73



StateProvinceID Name TaxRate FirstValue

1 Canadian GST 7.00 74

57 Canadian GST 7.00 74

63 Canadian GST 7.00 74

LAST_VALUE

The LAST_VALUE function provides the last value in an ordered result set, which you specify using a 
scalar expression.

SELECT TerritoryID, StartDate, BusinessentityID, 
       LAST_VALUE(BusinessentityID)  
        OVER(ORDER BY TerritoryID) AS LastValue 
FROM SalesTerritoryHistory;

This example uses the LAST_VALUE function to return the last value for each rowset in the ordered 
values.

TerritoryID StartDate BusinessentityID LastValue

1 2005-07-01 00.00.00.000 280 283

1 2006-11-01 00.00.00.000 284 283

1 2005-07-01 00.00.00.000 283 283

2 2007-01-01 00.00.00.000 277 275

2 2005-07-01 00.00.00.000 275 275

3 2007-01-01 00.00.00.000 275 277

LAG and LEAD

The LAG function provides data on rows before the current row in the same result set. For example, 
in a SELECT statement, you can compare values in the current row with values in a previous row.

You use a scalar expression to specify the values that should be compared. The offset parameter 
is the number of rows before the current row that will be used in the comparison. If you don't 
specify the number of rows, the default value of one row is used.

The default parameter specifies the value that should be returned when the expression at offset 
has a NULL value. If you don't specify a value, a value of NULL is returned.

The LEAD function provides data on rows after the current row in the row set. For example, in a 

https://riptutorial.com/ 74



SELECT statement, you can compare values in the current row with values in the following row.

You specify the values that should be compared using a scalar expression. The offset parameter 
is the number of rows after the current row that will be used in the comparison.

You specify the value that should be returned when the expression at offset has a NULL value using 
the default parameter. If you don't specify these parameters, the default of one row is used and a 
value of NULL is returned.

SELECT BusinessEntityID, SalesYTD, 
       LEAD(SalesYTD, 1, 0) OVER(ORDER BY BusinessEntityID) AS "Lead value", 
       LAG(SalesYTD, 1, 0) OVER(ORDER BY BusinessEntityID) AS "Lag value" 
FROM SalesPerson;

This example uses the LEAD and LAG functions to compare the sales values for each employee 
to date with those of the employees listed above and below, with records ordered based on the 
BusinessEntityID column.

BusinessEntityID SalesYTD Lead value Lag value

274 559697.5639 3763178.1787 0.0000

275 3763178.1787 4251368.5497 559697.5639

276 4251368.5497 3189418.3662 3763178.1787

277 3189418.3662 1453719.4653 4251368.5497

278 1453719.4653 2315185.6110 3189418.3662

279 2315185.6110 1352577.1325 1453719.4653

PERCENT_RANK and CUME_DIST

The PERCENT_RANK function calculates the ranking of a row relative to the row set. The percentage is 
based on the number of rows in the group that have a lower value than the current row.

The first value in the result set always has a percent rank of zero. The value for the highest-ranked 
– or last – value in the set is always one.

The CUME_DIST function calculates the relative position of a specified value in a group of values, by 
determining the percentage of values less than or equal to that value. This is called the cumulative 
distribution.

SELECT BusinessEntityID, JobTitle, SickLeaveHours, 
PERCENT_RANK() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours DESC) 
       AS "Percent Rank", 
CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours DESC) 
       AS "Cumulative Distribution" 

https://riptutorial.com/ 75



FROM Employee;

In this example, you use an ORDER clause to partition – or group – the rows retrieved by the SELECT 
statement based on employees' job titles, with the results in each group sorted based on the 
numbers of sick leave hours that employees have used.

BusinessEntityID JobTitle SickLeaveHours Percent Rank
Cumulative 

Distribution

267
Application 
Specialist

57 0 0.25

268
Application 
Specialist

56 0.333333333333333 0.75

269
Application 
Specialist

56 0.333333333333333 0.75

272
Application 
Specialist

55 1 1

262

Assitant to 
the Cheif 
Financial 
Officer

48 0 1

239
Benefits 
Specialist

45 0 1

252 Buyer 50 0 0.111111111111111

251 Buyer 49 0.125 0.333333333333333

256 Buyer 49 0.125 0.333333333333333

253 Buyer 48 0.375 0.555555555555555

254 Buyer 48 0.375 0.555555555555555

The PERCENT_RANK function ranks the entries within each group. For each entry, it returns the 
percentage of entries in the same group that have lower values.

The CUME_DIST function is similar, except that it returns the percentage of values less than or equal 
to the current value.

PERCENTILE_DISC and PERCENTILE_CONT

The PERCENTILE_DISC function lists the value of the first entry where the cumulative distribution is 

https://riptutorial.com/ 76



higher than the percentile that you provide using the numeric_literal parameter.

The values are grouped by rowset or partition, as specified by the WITHIN GROUP clause.

The PERCENTILE_CONT function is similar to the PERCENTILE_DISC function, but returns the average of 
the sum of the first matching entry and the next entry.

SELECT BusinessEntityID, JobTitle, SickLeaveHours, 
       CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours ASC) 
       AS "Cumulative Distribution", 
       PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY SickLeaveHours) 
          OVER(PARTITION BY JobTitle) AS "Percentile Discreet" 
FROM Employee;

To find the exact value from the row that matches or exceeds the 0.5 percentile, you pass the 
percentile as the numeric literal in the PERCENTILE_DISC function. The Percentile Discreet column in 
a result set lists the value of the row at which the cumulative distribution is higher than the 
specified percentile.

BusinessEntityID JobTitle SickLeaveHours
Cumulative 

Distribution

Percentile 

Discreet

272
Application 
Specialist

55 0.25 56

268
Application 
Specialist

56 0.75 56

269
Application 
Specialist

56 0.75 56

267
Application 
Specialist

57 1 56

To base the calculation on a set of values, you use the PERCENTILE_CONT function. The "Percentile 
Continuous" column in the results lists the average value of the sum of the result value and the 
next highest matching value.

SELECT BusinessEntityID, JobTitle, SickLeaveHours, 
       CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours ASC) 
       AS "Cumulative Distribution", 
       PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY SickLeaveHours)  
          OVER(PARTITION BY JobTitle) AS "Percentile Discreet", 
       PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY SickLeaveHours)  
          OVER(PARTITION BY JobTitle) AS "Percentile Continuous" 
FROM Employee;

https://riptutorial.com/ 77



BusinessEntityID JobTitle SickLeaveHours
Cumulative 

Distribution

Percentile 

Discreet

Percentile 

Continuous

272
Application 
Specialist

55 0.25 56 56

268
Application 
Specialist

56 0.75 56 56

269
Application 
Specialist

56 0.75 56 56

267
Application 
Specialist

57 1 56 56

Read Functions (Analytic) online: https://riptutorial.com/sql/topic/8811/functions--analytic-

https://riptutorial.com/ 78



Chapter 27: Functions (Scalar/Single Row)

Introduction

SQL provides several built-in scalar functions. Each scalar function takes one value as input and 
returns one value as output for each row in a result set.

You use scalar functions wherever an expression is allowed within a T-SQL statement.

Syntax

CAST ( expression AS data_type [ ( length ) ] )•
CONVERT ( data_type [ ( length ) ] , expression [ , style ] )•
PARSE ( string_value AS data_type [ USING culture ] )•
DATENAME ( datepart , date )•
GETDATE ( )•
DATEDIFF ( datepart , startdate , enddate )•
DATEADD (datepart , number , date )•
CHOOSE ( index, val_1, val_2 [, val_n ] )•
IIF ( boolean_expression, true_value, false_value )•
SIGN ( numeric_expression )•
POWER ( float_expression , y )•

Remarks

Scalar or Single-Row functions are used to operate each row of data in the result set, as opposed 
to aggregate functions which operate on the entire result set.

There are ten types of scalar functions.

Configuration functions provide information about the configuration of the current SQL 
instance.

1. 

Conversion functions convert data into the correct data type for a given operation. For 
example, these types of functions can reformat information by converting a string to a date or 
number to allow two different types to be compared.

2. 

Date and time functions manipulate fields containing date and time values. They can return 
numeric, date, or string values. For example, you can use a function to retrieve the current 
day of the week or year or to retrieve only the year from the date.

3. 

The values returned by date and time functions depend on the date and time set for the operating 
system of the computer running the SQL instance.

Logical function that performs operations using logical operators. It evaluates a set of 
conditions and returns a single result.

4. 

Mathematical functions perform mathematical operations, or calculations, on numeric 5. 

https://riptutorial.com/ 79



expressions. This type of function returns a single numeric value.
Metadata functions retrieve information about a specified database, such as its name and 
database objects.

6. 

Security functions provide information that you can use to manage the security of a 
database, such as information about database users and roles.

7. 

String functions perform operations on string values and return either numeric or string 
values.

8. 

Using string functions, you can, for example, combine data, extract a substring, compare strings, 
or convert a string to all uppercase or lowercase characters.

System functions perform operations and return information about values, objects, and 
settings for the current SQL instance

9. 

System statistical functions provide various statistics about the current SQL instance – for 
example, so that you can monitor the system's current performance levels.

10. 

Examples

Character modifications

Character modifying functions include converting characters to upper or lower case characters, 
converting numbers to formatted numbers, performing character manipulation, etc.

The lower(char) function converts the given character parameter to be lower-cased characters.

SELECT customer_id, lower(customer_last_name) FROM customer;

would return the customer's last name changed from "SMITH" to "smith".

Date And Time

In SQL, you use date and time data types to store calendar information. These data types include 
the time, date, smalldatetime, datetime, datetime2, and datetimeoffset. Each data type has a 
specific format.

Data type Format

time hh:mm:ss[.nnnnnnn]

date YYYY-MM-DD

smalldatetime YYYY-MM-DD hh:mm:ss

datetime YYYY-MM-DD hh:mm:ss[.nnn]

datetime2 YYYY-MM-DD hh:mm:ss[.nnnnnnn]

datetimeoffset YYYY-MM-DD hh:mm:ss[.nnnnnnn] [+/-]hh:mm

https://riptutorial.com/ 80



The DATENAME function returns the name or value of a specific part of the date.

SELECT DATENAME (weekday,'2017-01-14') as Datename

Datename

Saturday

You use the GETDATE function to determine the current date and time of the computer running the 
current SQL instance. This function doesn't include the time zone difference.

SELECT GETDATE() as Systemdate 

Systemdate

2017-01-14 11:11:47.7230728

The DATEDIFF function returns the difference between two dates.

In the syntax, datepart is the parameter that specifies which part of the date you want to use to 
calculate difference. The datepart can be year, month, week, day, hour, minute, second, or 
millisecond. You then specify the start date in the startdate parameter and the end date in the 
enddate parameter for which you want to find the difference.

SELECT SalesOrderID, DATEDIFF(day, OrderDate, ShipDate) 
AS 'Processing time' 
FROM Sales.SalesOrderHeader

SalesOrderID Processing time

43659 7

43660 7

43661 7

43662 7

The DATEADD function enables you to add an interval to part of a specific date.

SELECT DATEADD (day, 20, '2017-01-14') AS Added20MoreDays

Added20MoreDays

2017-02-03 00:00:00.000

https://riptutorial.com/ 81



Configuration and Conversion Function

An example of a configuration function in SQL is the @@SERVERNAME function. This function provides 
the name of the local server that's running SQL.

SELECT @@SERVERNAME AS 'Server'

Server

SQL064

In SQL, most data conversions occur implicitly, without any user intervention.

To perform any conversions that can't be completed implicitly, you can use the CAST or CONVERT 
functions.

The CAST function syntax is simpler than the CONVERT function syntax, but is limited in what it can do.

In here, we use both the CAST and CONVERT functions to convert the datetime data type to the varchar 
data type.

The CAST function always uses the default style setting. For example, it will represent dates and 
times using the format YYYY-MM-DD.

The CONVERT function uses the date and time style you specify. In this case, 3 specifies the date 
format dd/mm/yy.

USE AdventureWorks2012 
GO 
SELECT FirstName + ' ' + LastName + ' was hired on ' + 
       CAST(HireDate AS varchar(20)) AS 'Cast', 
       FirstName + ' ' + LastName + ' was hired on ' + 
       CONVERT(varchar, HireDate, 3) AS 'Convert' 
FROM Person.Person AS p 
JOIN HumanResources.Employee AS e 
ON p.BusinessEntityID = e.BusinessEntityID 
GO

Cast Convert

David Hamiltion was hired on 2003-02-04 David Hamiltion was hired on 04/02/03

Another example of a conversion function is the PARSE function. This function converts a string to a 
specified data type.

In the syntax for the function, you specify the string that must be converted, the AS keyword, and 
then the required data type. Optionally, you can also specify the culture in which the string value 
should be formatted. If you don't specify this, the language for the session is used.

https://riptutorial.com/ 82



If the string value can't be converted to a numeric, date, or time format, it will result in an error. 
You'll then need to use CAST or CONVERT for the conversion.

SELECT PARSE('Monday, 13 August 2012' AS datetime2 USING 'en-US') AS 'Date in English'

Date in English

2012-08-13 00:00:00.0000000

Logical and Mathmetical Function

SQL has two logical functions – CHOOSE and IIF.

The CHOOSE function returns an item from a list of values, based on its position in the list. This 
position is specified by the index.

In the syntax, the index parameter specifies the item and is a whole number, or integer. The val_1 
… val_n parameter identifies the list of values.

SELECT CHOOSE(2, 'Human Resources', 'Sales', 'Admin', 'Marketing' ) AS Result;

Result

Sales

In this example, you use the CHOOSE function to return the second entry in a list of departments.

The IIF function returns one of two values, based on a particular condition. If the condition is true, 
it will return true value. Otherwise it will return a false value.

In the syntax, the boolean_expression parameter specifies the Boolean expression. The 
true_value parameter specifies the value that should be returned if the boolean_expression 
evaluates to true and the false_value parameter specifies the value that should be returned if the 
boolean_expression evaluates to false.

SELECT BusinessEntityID, SalesYTD, 
       IIF(SalesYTD > 200000, 'Bonus', 'No Bonus') AS 'Bonus?' 
FROM Sales.SalesPerson 
GO

BusinessEntityID SalesYTD Bonus?

274 559697.5639 Bonus

275 3763178.1787 Bonus

285 172524.4512 No Bonus

https://riptutorial.com/ 83



In this example, you use the IIF function to return one of two values. If a sales person's year-to-
date sales are above 200,000, this person will be eligible for a bonus. Values below 200,000 mean 
that employees don't qualify for bonuses.

SQL includes several mathematical functions that you can 

use to perform calculations on input values and return 

numeric results.

One example is the SIGN function, which returns a value indicating the sign of an expression. The 
value of -1 indicates a negative expression, the value of +1 indicates a positive expression, and 0 
indicates zero.

SELECT SIGN(-20) AS 'Sign'

Sign

-1

In the example, the input is a negative number, so the Results pane lists the result -1.

Another mathematical function is the POWER function. This function provides the value of an 
expression raised to a specified power.

In the syntax, the float_expression parameter specifies the expression, and the y parameter 
specifies the power to which you want to raise the expression.

SELECT POWER(50, 3) AS Result

Result

125000

Read Functions (Scalar/Single Row) online: https://riptutorial.com/sql/topic/6898/functions--scalar-
single-row-

https://riptutorial.com/ 84



Chapter 28: GRANT and REVOKE

Syntax

GRANT [privilege1] [, [privilege2] ... ] ON [table] TO [grantee1] [, [grantee2] ... ] [ WITH 
GRANT OPTION ]

•

REVOKE [privilege1] [, [privilege2] ... ] ON [table] FROM [grantee1] [, [grantee2] ... ]•

Remarks

Grant permissions to users. If the WITH GRANT OPTION is specified, the grantee additionally gains the 
privilege to grant the given permission or revoke previously granted permissions.

Examples

Grant/revoke privileges

GRANT SELECT, UPDATE 
ON Employees 
TO User1, User2;

Grant User1 and User2 permission to perform SELECT and UPDATE operations on table Employees.

REVOKE SELECT, UPDATE 
ON Employees 
FROM User1, User2;

Revoke from User1 and User2 the permission to perform SELECT and UPDATE operations on table 
Employees.

Read GRANT and REVOKE online: https://riptutorial.com/sql/topic/5574/grant-and-revoke

https://riptutorial.com/ 85



Chapter 29: GROUP BY

Introduction

Results of a SELECT query can be grouped by one or more columns using the GROUP BY 
statement: all results with the same value in the grouped columns are aggregated together. This 
generates a table of partial results, instead of one result. GROUP BY can be used in conjunction 
with aggregation functions using the HAVING statement to define how non-grouped columns are 
aggregated.

Syntax

GROUP BY { 
      column-expression 
    | ROLLUP ( <group_by_expression> [ ,...n ] ) 
    | CUBE ( <group_by_expression> [ ,...n ] ) 
    | GROUPING SETS ( [ ,...n ] ) 
    | () --calculates the grand total 
} [ ,...n ]

•

<group_by_expression> ::= 
      column-expression 
    | ( column-expression [ ,...n ] )

•

<grouping_set> ::= 
      () --calculates the grand total 
    | <grouping_set_item> 
    | ( <grouping_set_item> [ ,...n ] )

•

<grouping_set_item> ::= 
      <group_by_expression> 
    | ROLLUP ( <group_by_expression> [ ,...n ] ) 
    | CUBE ( <group_by_expression> [ ,...n ] )

•

Examples

USE GROUP BY to COUNT the number of rows for each unique entry in a 

given column

Let's say you want to generate counts or subtotals for a given value in a column.

Given this table, "Westerosians":

https://riptutorial.com/ 86



Name GreatHouseAllegience

Arya Stark

Cercei Lannister

Myrcella Lannister

Yara Greyjoy

Catelyn Stark

Sansa Stark

Without GROUP BY, COUNT will simply return a total number of rows:

SELECT Count(*) Number_of_Westerosians 
FROM Westerosians

returns...

Number_of_Westerosians

6

But by adding GROUP BY, we can COUNT the users for each value in a given column, to return 
the number of people in a given Great House, say:

SELECT GreatHouseAllegience House, Count(*) Number_of_Westerosians 
FROM Westerosians 
GROUP BY GreatHouseAllegience

returns...

House Number_of_Westerosians

Stark 3

Greyjoy 1

Lannister 2

It's common to combine GROUP BY with ORDER BY to sort results by largest or smallest 
category:

SELECT GreatHouseAllegience House, Count(*) Number_of_Westerosians 
FROM Westerosians 
GROUP BY GreatHouseAllegience 
ORDER BY Number_of_Westerosians Desc

https://riptutorial.com/ 87



returns...

House Number_of_Westerosians

Stark 3

Lannister 2

Greyjoy 1

Filter GROUP BY results using a HAVING clause

A HAVING clause filters the results of a GROUP BY expression. Note: The following examples are 
using the Library example database.

Examples:

Return all authors that wrote more than one book (live example).

SELECT 
  a.Id, 
  a.Name, 
  COUNT(*) BooksWritten 
FROM BooksAuthors ba 
  INNER JOIN Authors a ON a.id = ba.authorid 
GROUP BY 
  a.Id, 
  a.Name 
HAVING COUNT(*) > 1    -- equals to HAVING BooksWritten > 1 
;

Return all books that have more than three authors (live example).

SELECT 
  b.Id, 
  b.Title, 
  COUNT(*) NumberOfAuthors 
FROM BooksAuthors ba 
  INNER JOIN Books b ON b.id = ba.bookid 
GROUP BY 
  b.Id, 
  b.Title 
HAVING COUNT(*) > 3    -- equals to HAVING NumberOfAuthors > 3 
;

Basic GROUP BY example

It might be easier if you think of GROUP BY as "for each" for the sake of explanation. The query 
below:

SELECT EmpID, SUM (MonthlySalary) 
FROM Employee 

https://riptutorial.com/ 88



GROUP BY EmpID

is saying:

"Give me the sum of MonthlySalary's for each EmpID"

So if your table looked like this:

+-----+-------------+ 
|EmpID|MonthlySalary| 
+-----+-------------+ 
|1    |200          | 
+-----+-------------+ 
|2    |300          | 
+-----+-------------+

Result:

+-+---+ 
|1|200| 
+-+---+ 
|2|300| 
+-+---+

Sum wouldn't appear to do anything because the sum of one number is that number. On the other 
hand if it looked like this:

+-----+-------------+ 
|EmpID|MonthlySalary| 
+-----+-------------+ 
|1    |200          | 
+-----+-------------+ 
|1    |300          | 
+-----+-------------+ 
|2    |300          | 
+-----+-------------+

Result:

+-+---+ 
|1|500| 
+-+---+ 
|2|300| 
+-+---+

Then it would because there are two EmpID 1's to sum together.

ROLAP aggregation (Data Mining)

Description

The SQL standard provides two additional aggregate operators. These use the polymorphic value 

https://riptutorial.com/ 89



"ALL" to denote the set of all values that an attribute can take. The two operators are:

with data cube that it provides all possible combinations than the argument attributes of the 
clause.

•

with roll up that it provides the aggregates obtained by considering the attributes in order 
from left to right compared how they are listed in the argument of the clause.

•

SQL standard versions that support these features: 1999,2003,2006,2008,2011.

Examples

Consider this table:

Food Brand Total_amount

Pasta Brand1 100

Pasta Brand2 250

Pizza Brand2 300

With cube

select Food,Brand,Total_amount 
from Table 
group by Food,Brand,Total_amount with cube

Food Brand Total_amount

Pasta Brand1 100

Pasta Brand2 250

Pasta ALL 350

Pizza Brand2 300

Pizza ALL 300

ALL Brand1 100

ALL Brand2 550

ALL ALL 650

With roll up

https://riptutorial.com/ 90



select Food,Brand,Total_amount 
from Table 
group by Food,Brand,Total_amount with roll up

Food Brand Total_amount

Pasta Brand1 100

Pasta Brand2 250

Pizza Brand2 300

Pasta ALL 350

Pizza ALL 300

ALL ALL 650

Read GROUP BY online: https://riptutorial.com/sql/topic/627/group-by

https://riptutorial.com/ 91



Chapter 30: Identifier

Introduction

This topic is about identifiers, i.e. syntax rules for names of tables, columns, and other database 
objects.

Where appropriate, the examples should cover variations used by different SQL implementations, 
or identify the SQL implementation of the example.

Examples

Unquoted identifiers

Unquoted identifiers can use letters (a-z), digits (0-9), and underscore (_), and must start with a 
letter.

Depending on SQL implementation, and/or database settings, other characters may be allowed, 
some even as the first character, e.g.

MS SQL: @, $, #, and other Unicode letters (source)•
MySQL: $ (source)•
Oracle: $, #, and other letters from database character set (source)•
PostgreSQL: $, and other Unicode letters (source)•

Unquoted identifiers are case-insensitive. How this is handled depends greatly on SQL 
implementation:

MS SQL: Case-preserving, sensitivity defined by database character set, so can be case-
sensitive.

•

MySQL: Case-preserving, sensitivity depends on database setting and underlying file 
system.

•

Oracle: Converted to uppercase, then handled like quoted identifier.•

PostgreSQL: Converted to lowercase, then handled like quoted identifier.•

SQLite: Case-preserving; case insensitivity only for ASCII characters.•

Read Identifier online: https://riptutorial.com/sql/topic/9677/identifier

https://riptutorial.com/ 92



Chapter 31: IN clause

Examples

Simple IN clause

To get records having any of the given ids

select * 
from products 
where id in (1,8,3)

The query above is equal to

select * 
from products 
where id = 1 
   or id = 8 
   or id = 3

Using IN clause with a subquery

SELECT * 
FROM customers 
WHERE id IN ( 
    SELECT DISTINCT customer_id 
    FROM orders 
);

The above will give you all the customers that have orders in the system.

Read IN clause online: https://riptutorial.com/sql/topic/3169/in-clause

https://riptutorial.com/ 93



Chapter 32: Indexes

Introduction

Indexes are a data structure that contains pointers to the contents of a table arranged in a specific 
order, to help the database optimize queries. They are similar to the index of book, where the 
pages (rows of the table) are indexed by their page number.

Several types of indexes exist, and can be created on a table. When an index exists on the 
columns used in a query's WHERE clause, JOIN clause, or ORDER BY clause, it can substantially 
improve query performance.

Remarks

Indexes are a way of speeding up read queries by sorting the rows of a table according to a 
column.

The effect of an index is not noticeable for small databases like the example, but if there are a 
large number of rows, it can greatly improve performance. Instead of checking every row of the 
table, the server can do a binary search on the index.

The tradeoff for creating an index is write speed and database size. Storing the index takes space. 
Also, every time an INSERT is done or the column is updated, the index must be updated. This is 
not as expensive an operation as scanning the entire table on a SELECT query, but it is still 
something to keep in mind.

Examples

Creating an Index

CREATE INDEX ix_cars_employee_id ON Cars (EmployeeId);

This will create an index for the column EmployeeId in the table Cars. This index will improve the 
speed of queries asking the server to sort or select by values in EmployeeId, such as the 
following:

SELECT * FROM Cars WHERE EmployeeId = 1

The index can contain more than 1 column, as in the following;

CREATE INDEX ix_cars_e_c_o_ids ON Cars (EmployeeId, CarId, OwnerId);

In this case, the index would be useful for queries asking to sort or select by all included columns, 
if the set of conditions is ordered in the same way. That means that when retrieving the data, it can 

https://riptutorial.com/ 94



find the rows to retrieve using the index, instead of looking through the full table.

For example, the following case would utilize the second index;

SELECT * FROM Cars WHERE EmployeeId = 1 Order by CarId DESC

If the order differs, however, the index does not have the same advantages, as in the following;

SELECT * FROM Cars WHERE OwnerId = 17 Order by CarId DESC

The index is not as helpful because the database must retrieve the entire index, across all values 
of EmployeeId and CarID, in order to find which items have OwnerId = 17.

(The index may still be used; it may be the case that the query optimizer finds that retrieving the 
index and filtering on the OwnerId, then retrieving only the needed rows is faster than retrieving the 
full table, especially if the table is large.)

Clustered, Unique, and Sorted Indexes

Indexes can have several characteristics that can be set either at creation, or by altering existing 
indexes.

CREATE CLUSTERED INDEX ix_clust_employee_id ON Employees(EmployeeId, Email); 

The above SQL statement creates a new clustered index on Employees. Clustered indexes are 
indexes that dictate the actual structure of the table; the table itself is sorted to match the structure 
of the index. That means there can be at most one clustered index on a table. If a clustered index 
already exists on the table, the above statement will fail. (Tables with no clustered indexes are 
also called heaps.)

CREATE UNIQUE INDEX uq_customers_email ON Customers(Email);

This will create an unique index for the column Email in the table Customers. This index, along 
with speeding up queries like a normal index, will also force every email address in that column to 
be unique. If a row is inserted or updated with a non-unique Email value, the insertion or update 
will, by default, fail.

CREATE UNIQUE INDEX ix_eid_desc ON Customers(EmployeeID);

This creates an index on Customers which also creates a table constraint that the EmployeeID 
must be unique. (This will fail if the column is not currently unique - in this case, if there are 
employees who share an ID.)

CREATE INDEX ix_eid_desc ON Customers(EmployeeID Desc);

This creates an index that is sorted in descending order. By default, indexes (in MSSQL server, at 
least) are ascending, but that can be changed.

https://riptutorial.com/ 95



Inserting with a Unique Index

UPDATE Customers SET Email = "richard0123@example.com" WHERE id = 1;

This will fail if an unique index is set on the Email column of Customers. However, alternate 
behavior can be defined for this case:

UPDATE Customers SET Email = "richard0123@example.com" WHERE id = 1 ON DUPLICATE KEY; 

SAP ASE: Drop index

This command will drop index in the table. It works on SAP ASE server.

Syntax:

DROP INDEX [table name].[index name]

Example:

DROP INDEX Cars.index_1

Sorted Index

If you use an index that is sorted the way you would retrieve it, the SELECT statement would not do 
additional sorting when in retrieval.

CREATE INDEX ix_scoreboard_score ON scoreboard (score DESC);

When you execute the query

SELECT * FROM scoreboard ORDER BY score DESC;

The database system would not do additional sorting, since it can do an index-lookup in that order.

Dropping an Index, or Disabling and Rebuilding it

DROP INDEX ix_cars_employee_id ON Cars; 

We can use command DROP to delete our index. In this example we will DROP the index called 
ix_cars_employee_id on the table Cars.

This deletes the index entirely, and if the index is clustered, will remove any clustering. It cannot 
be rebuilt without recreating the index, which can be slow and computationally expensive. As an 
alternative, the index can be disabled:

ALTER INDEX ix_cars_employee_id ON Cars DISABLE; 

https://riptutorial.com/ 96



This allows the table to retain the structure, along with the metadata about the index.

Critically, this retains the index statistics, so that it is possible to easily evaluate the change. If 
warranted, the index can then later be rebuilt, instead of being recreated completely;

ALTER INDEX ix_cars_employee_id ON Cars REBUILD;

Unique Index that Allows NULLS

CREATE UNIQUE INDEX idx_license_id 
   ON Person(DrivingLicenseID) WHERE DrivingLicenseID IS NOT NULL 
GO

This schema allows for a 0..1 relationship - people can have zero or one driving licenses and each 
license can only belong to one person

Rebuild index

Over the course of time B-Tree indexes may become fragmented because of 
updating/deleting/inserting data. In SQLServer terminology we can have internal (index page 
which is half empty ) and external (logical page order doesn't correspond physical order). 
Rebuilding index is very similar to dropping and re-creating it.

We can re-build an index with

ALTER INDEX index_name REBUILD; 

By default rebuilding index is offline operation which locks the table and prevents DML against it , 
but many RDBMS allow online rebuilding. Also, some DB vendors offer alternatives to index 
rebuilding such as REORGANIZE (SQLServer) or COALESCE/SHRINK SPACE(Oracle).

Clustered index

When using clustered index, the rows of the table are sorted by the column to which the clustered 
index is applied. Therefore, there can be only one clustered index on the table because you can't 
order the table by two different columns.

Generally, it is best to use clustered index when performing reads on big data tables. The 
donwside of clustered index is when writing to table and data need to be reorganized (resorted).

An example of creating a clustered index on a table Employees on column Employee_Surname:

CREATE CLUSTERED INDEX ix_employees_name ON Employees(Employee_Surname); 

Non clustered index

Nonclustered indexes are stored separately from the table. Each index in this structure contains a 

https://riptutorial.com/ 97



pointer to the row in the table which it represents.

This pointers are called a row locators. The structure of the row locator depends on whether the 
data pages are stored in a heap or a clustered table. For a heap, a row locator is a pointer to the 
row. For a clustered table, the row locator is the clustered index key.

An example of creating a non clustered index on table Employees and column 
Employee_Surname:

CREATE NONCLUSTERED INDEX ix_employees_name ON Employees(Employee_Surname); 

There can be multiple nonclustered indexes on the table. The read operations are generally slower 
with non clustered indexes than with clustered indexes as you have to go first to index and than to 
the table. There are no restrictions in write operations however.

Partial or Filtered Index

SQL Server and SQLite allow to create indexes that contain not only a subset of columns, but also 
a subset of rows.

Consider a constant growing amount of orders with order_state_id equal to finished (2), and a 
stable amount of orders with order_state_id equal to started (1).

If your business make use of queries like this:

SELECT id, comment 
  FROM orders 
 WHERE order_state_id =  1 
   AND product_id = @some_value;

Partial indexing allows you to limit the index, including only the unfinished orders:

CREATE INDEX Started_Orders 
          ON orders(product_id) 
       WHERE order_state_id = 1;

This index will be smaller than an unfiltered index, which saves space and reduces the cost of 
updating the index.

Read Indexes online: https://riptutorial.com/sql/topic/344/indexes

https://riptutorial.com/ 98



Chapter 33: Information Schema

Examples

Basic Information Schema Search

One of the most useful queries for end users of large RDBMS's is a search of an information 
schema.

Such a query allows users to rapidly find database tables containing columns of interest, such as 
when attempting to relate data from 2 tables indirectly through a third table, without existing 
knowledge of which tables may contain keys or other useful columns in common with the target 
tables.

Using T-SQL for this example, a database's information schema may be searched as follows:

SELECT * 
FROM INFORMATION_SCHEMA.COLUMNS 
WHERE COLUMN_NAME LIKE '%Institution%'

The result contains a list of matching columns, their tables' names, and other useful information.

Read Information Schema online: https://riptutorial.com/sql/topic/3151/information-schema

https://riptutorial.com/ 99



Chapter 34: INSERT

Syntax

INSERT INTO table_name (column1,column2,column3,...) VALUES 
(value1,value2,value3,...);

•

INSERT INTO table_name (column1, column2...) SELECT value1, value2... from other_table•

Examples

Insert New Row

INSERT INTO Customers 
VALUES ('Zack', 'Smith', 'zack@example.com', '7049989942', 'EMAIL');

This statement will insert a new row into the Customers table. Note that a value was not specified 
for the Id column, as it will be added automatically. However, all other column values must be 
specified.

Insert Only Specified Columns

INSERT INTO Customers (FName, LName, Email, PreferredContact) 
VALUES ('Zack', 'Smith', 'zack@example.com', 'EMAIL');

This statement will insert a new row into the Customers table. Data will only be inserted into the 
columns specified - note that no value was provided for the PhoneNumber column. Note, however, 
that all columns marked as not null must be included.

INSERT data from another table using SELECT

INSERT INTO Customers (FName, LName, PhoneNumber) 
SELECT FName, LName, PhoneNumber FROM Employees

This example will insert all Employees into the Customers table. Since the two tables have 
different fields and you don't want to move all the fields over, you need to set which fields to insert 
into and which fields to select. The correlating field names don't need to be called the same thing, 
but then need to be the same data type. This example is assuming that the Id field has an Identity 
Specification set and will auto increment.

If you have two tables that have exactly the same field names and just want to move all the 
records over you can use:

INSERT INTO Table1 
SELECT * FROM Table2

https://riptutorial.com/ 100



Insert multiple rows at once

Multiple rows can be inserted with a single insert command:

INSERT INTO tbl_name (field1, field2, field3)

VALUES (1,2,3), (4,5,6), (7,8,9);

For inserting large quantities of data (bulk insert) at the same time, DBMS-specific features and 
recommendations exist.

MySQL - LOAD DATA INFILE

MSSQL - BULK INSERT

Read INSERT online: https://riptutorial.com/sql/topic/465/insert

https://riptutorial.com/ 101



Chapter 35: JOIN

Introduction

JOIN is a method of combining (joining) information from two tables. The result is a stitched set of 
columns from both tables, defined by the join type (INNER/OUTER/CROSS and 
LEFT/RIGHT/FULL, explained below) and join criteria (how rows from both tables relate).

A table may be joined to itself or to any other table. If information from more than two tables needs 
to be accessed, multiple joins can be specified in a FROM clause.

Syntax

[ { INNER | { { LEFT | RIGHT | FULL } [ OUTER ] } } ] JOIN•

Remarks

Joins, as their name suggests, are a way of querying data from several tables in a joint fashion, 
with the rows displaying columns taken from more than one table.

Examples

Basic explicit inner join

A basic join (also called "inner join") queries data from two tables, with their relationship defined in 
a join clause.

The following example will select employees' first names (FName) from the Employees table and 
the name of the department they work for (Name) from the Departments table:

SELECT Employees.FName, Departments.Name 
FROM   Employees 
JOIN   Departments 
ON Employees.DepartmentId = Departments.Id

This would return the following from the example database:

Employees.FName Departments.Name

James HR

John HR

Richard Sales

https://riptutorial.com/ 102



Implicit Join

Joins can also be performed by having several tables in the from clause, separated with commas , 
and defining the relationship between them in the where clause. This technique is called an Implicit 
Join (since it doesn't actually contain a join clause).

All RDBMSs support it, but the syntax is usually advised against. The reasons why it is a bad idea 
to use this syntax are:

It is possible to get accidental cross joins which then return incorrect results, especially if you 
have a lot of joins in the query.

•

If you intended a cross join, then it is not clear from the syntax (write out CROSS JOIN 
instead), and someone is likely to change it during maintenance.

•

The following example will select employee's first names and the name of the departments they 
work for:

SELECT e.FName, d.Name 
FROM   Employee e, Departments d 
WHERE  e.DeptartmentId = d.Id

This would return the following from the example database:

e.FName d.Name

James HR

John HR

Richard Sales

Left Outer Join

A Left Outer Join (also known as a Left Join or Outer Join) is a Join that ensures all rows from the 
left table are represented; if no matching row from the right table exists, its corresponding fields 
are NULL.

The following example will select all departments and the first name of employees that work in that 
department. Departments with no employees are still returned in the results, but will have NULL 
for the employee name:

SELECT          Departments.Name, Employees.FName 
FROM            Departments 
LEFT OUTER JOIN Employees 
ON              Departments.Id = Employees.DepartmentId

This would return the following from the example database:

https://riptutorial.com/ 103



Departments.Name Employees.FName

HR James

HR John

HR Johnathon

Sales Michael

Tech NULL

So how does this work?

There are two tables in the FROM clause:

Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate

1 James Smith 1234567890 NULL 1 1000
01-01-
2002

2 John Johnson 2468101214 1 1 400
23-03-
2005

3 Michael Williams 1357911131 1 2 600
12-05-
2009

4 Johnathon Smith 1212121212 2 1 500
24-07-
2016

and

Id Name

1 HR

2 Sales

3 Tech

First a Cartesian product is created from the two tables giving an intermediate table. 
The records that meet the join criteria (Departments.Id = Employees.DepartmentId) are 
highlighted in bold; these are passed to the next stage of the query.

As this is a LEFT OUTER JOIN all records are returned from the LEFT side of the join 
(Departments), while any records on the RIGHT side are given a NULL marker if they do not 
match the join criteria. In the table below this will return Tech with NULL

https://riptutorial.com/ 104



Id Name Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate

1 HR 1 James Smith 1234567890 NULL 1 1000
01-01-

2002

1 HR 2 John Johnson 2468101214 1 1 400
23-03-

2005

1 HR 3 Michael Williams 1357911131 1 2 600
12-05-
2009

1 HR 4 Johnathon Smith 1212121212 2 1 500
24-07-

2016

2 Sales 1 James Smith 1234567890 NULL 1 1000
01-01-
2002

2 Sales 2 John Johnson 2468101214 1 1 400
23-03-
2005

2 Sales 3 Michael Williams 1357911131 1 2 600
12-05-

2009

2 Sales 4 Johnathon Smith 1212121212 2 1 500
24-07-
2016

3 Tech 1 James Smith 1234567890 NULL 1 1000
01-01-
2002

3 Tech 2 John Johnson 2468101214 1 1 400
23-03-
2005

3 Tech 3 Michael Williams 1357911131 1 2 600
12-05-
2009

3 Tech 4 Johnathon Smith 1212121212 2 1 500
24-07-
2016

Finally each expression used within the SELECT clause is evaluated to return our final table:

Departments.Name Employees.FName

HR James

HR John

Sales Richard

Tech NULL

https://riptutorial.com/ 105



Self Join

A table may be joined to itself, with different rows matching each other by some condition. In this 
use case, aliases must be used in order to distinguish the two occurrences of the table.

In the below example, for each Employee in the example database Employees table, a record is 
returned containing the employee's first name together with the corresponding first name of the 
employee's manager. Since managers are also employees, the table is joined with itself:

SELECT 
    e.FName AS "Employee", 
    m.FName AS "Manager" 
FROM 
    Employees e 
JOIN 
    Employees m 
    ON e.ManagerId = m.Id

This query will return the following data:

Employee Manager

John James

Michael James

Johnathon John

So how does this work?

The original table contains these records:

Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate

1 James Smith 1234567890 NULL 1 1000
01-01-
2002

2 John Johnson 2468101214 1 1 400
23-03-
2005

3 Michael Williams 1357911131 1 2 600
12-05-
2009

4 Johnathon Smith 1212121212 2 1 500
24-07-
2016

The first action is to create a Cartesian product of all records in the tables used in the FROM 

https://riptutorial.com/ 106



clause. In this case it's the Employees table twice, so the intermediate table will look like this (I've 
removed any fields not used in this example):

e.Id e.FName e.ManagerId m.Id m.FName m.ManagerId

1 James NULL 1 James NULL

1 James NULL 2 John 1

1 James NULL 3 Michael 1

1 James NULL 4 Johnathon 2

2 John 1 1 James NULL

2 John 1 2 John 1

2 John 1 3 Michael 1

2 John 1 4 Johnathon 2

3 Michael 1 1 James NULL

3 Michael 1 2 John 1

3 Michael 1 3 Michael 1

3 Michael 1 4 Johnathon 2

4 Johnathon 2 1 James NULL

4 Johnathon 2 2 John 1

4 Johnathon 2 3 Michael 1

4 Johnathon 2 4 Johnathon 2

The next action is to only keep the records that meet the JOIN criteria, so any records where the 
aliased e table ManagerId equals the aliased m table Id:

e.Id e.FName e.ManagerId m.Id m.FName m.ManagerId

2 John 1 1 James NULL

3 Michael 1 1 James NULL

4 Johnathon 2 2 John 1

Then, each expression used within the SELECT clause is evaluated to return this table:

https://riptutorial.com/ 107



e.FName m.FName

John James

Michael James

Johnathon John

Finally, column names e.FName and m.FName are replaced by their alias column names, assigned 
with the AS operator:

Employee Manager

John James

Michael James

Johnathon John

CROSS JOIN

Cross join does a Cartesian product of the two members, A Cartesian product means each row of 
one table is combined with each row of the second table in the join. For example, if TABLEA has 20 
rows and TABLEB has 20 rows, the result would be 20*20 = 400 output rows.

Using example database

SELECT d.Name, e.FName 
FROM   Departments d 
CROSS JOIN Employees e;

Which returns:

d.Name e.FName

HR James

HR John

HR Michael

HR Johnathon

Sales James

Sales John

Sales Michael

Sales Johnathon

https://riptutorial.com/ 108



d.Name e.FName

Tech James

Tech John

Tech Michael

Tech Johnathon

It is recommended to write an explicit CROSS JOIN if you want to do a cartesian join, to highlight 
that this is what you want.

Joining on a Subquery

Joining a subquery is often used when you want to get aggregate data from a child/details table 
and display that along with records from the parent/header table. For example, you might want to 
get a count of child records, an average of some numeric column in child records, or the top or 
bottom row based on a date or numeric field. This example uses aliases, which arguable makes 
queries easier to read when you have multiple tables involved. Here's what a fairly typical 
subquery join looks like. In this case we are retrieving all rows from the parent table Purchase 
Orders and retrieving only the first row for each parent record of the child table 
PurchaseOrderLineItems.

SELECT po.Id, po.PODate, po.VendorName, po.Status, item.ItemNo, 
  item.Description, item.Cost, item.Price 
FROM PurchaseOrders po 
LEFT JOIN 
     ( 
       SELECT l.PurchaseOrderId, l.ItemNo, l.Description, l.Cost, l.Price, Min(l.id) as Id 
       FROM PurchaseOrderLineItems l 
       GROUP BY l.PurchaseOrderId, l.ItemNo, l.Description, l.Cost, l.Price 
     ) AS item ON item.PurchaseOrderId = po.Id

CROSS APPLY & LATERAL JOIN

A very interesting type of JOIN is the LATERAL JOIN (new in PostgreSQL 9.3+),  
which is also known as CROSS APPLY/OUTER APPLY in SQL-Server & Oracle.

The basic idea is that a table-valued function (or inline subquery) gets applied for every row you 
join.

This makes it possible to, for example, only join the first matching entry in another table.  
The difference between a normal and a lateral join lies in the fact that you can use a column that 
you previously joined in the subquery that you "CROSS APPLY".

Syntax:

PostgreSQL 9.3+

https://riptutorial.com/ 109

Steve Nouri
Typewriter
Steve Nouri



left | right | inner JOIN LATERAL

SQL-Server:

CROSS | OUTER APPLY

INNER JOIN LATERAL is the same as CROSS APPLY  
and LEFT JOIN LATERAL is the same as OUTER APPLY

Example usage (PostgreSQL 9.3+):

SELECT * FROM T_Contacts 
 
--LEFT JOIN T_MAP_Contacts_Ref_OrganisationalUnit ON MAP_CTCOU_CT_UID = T_Contacts.CT_UID AND 
MAP_CTCOU_SoftDeleteStatus = 1 
--WHERE T_MAP_Contacts_Ref_OrganisationalUnit.MAP_CTCOU_UID IS NULL -- 989 
 
 
LEFT JOIN LATERAL 
( 
    SELECT 
         --MAP_CTCOU_UID 
         MAP_CTCOU_CT_UID 
        ,MAP_CTCOU_COU_UID 
        ,MAP_CTCOU_DateFrom 
        ,MAP_CTCOU_DateTo 
   FROM T_MAP_Contacts_Ref_OrganisationalUnit 
   WHERE MAP_CTCOU_SoftDeleteStatus = 1 
   AND MAP_CTCOU_CT_UID = T_Contacts.CT_UID 
 
    /* 
    AND 
    ( 
        (__in_DateFrom <= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateTo) 
        AND 
        (__in_DateTo >= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateFrom) 
    ) 
    */ 
   ORDER BY MAP_CTCOU_DateFrom 
   LIMIT 1 
) AS FirstOE 

And for SQL-Server

SELECT * FROM T_Contacts 
 
--LEFT JOIN T_MAP_Contacts_Ref_OrganisationalUnit ON MAP_CTCOU_CT_UID = T_Contacts.CT_UID AND 
MAP_CTCOU_SoftDeleteStatus = 1 
--WHERE T_MAP_Contacts_Ref_OrganisationalUnit.MAP_CTCOU_UID IS NULL -- 989 
 
-- CROSS APPLY -- = INNER JOIN 
OUTER APPLY    -- = LEFT JOIN 
( 
    SELECT TOP 1 
         --MAP_CTCOU_UID 
         MAP_CTCOU_CT_UID 
        ,MAP_CTCOU_COU_UID 
        ,MAP_CTCOU_DateFrom 

https://riptutorial.com/ 110



        ,MAP_CTCOU_DateTo 
   FROM T_MAP_Contacts_Ref_OrganisationalUnit 
   WHERE MAP_CTCOU_SoftDeleteStatus = 1 
   AND MAP_CTCOU_CT_UID = T_Contacts.CT_UID 
 
    /* 
    AND 
    ( 
        (@in_DateFrom <= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateTo) 
        AND 
        (@in_DateTo >= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateFrom) 
    ) 
    */ 
   ORDER BY MAP_CTCOU_DateFrom 
) AS FirstOE 

FULL JOIN

One type of JOIN that is less known, is the FULL JOIN.  
(Note: FULL JOIN is not supported by MySQL as per 2016)

A FULL OUTER JOIN returns all rows from the left table, and all rows from the right table.

If there are rows in the left table that do not have matches in the right table, or if there are rows in 
right table that do not have matches in the left table, then those rows will be listed, too.

Example 1 :

SELECT * FROM Table1 
 
FULL JOIN Table2 
     ON 1 = 2 

Example 2:

SELECT 
     COALESCE(T_Budget.Year, tYear.Year) AS RPT_BudgetInYear 
    ,COALESCE(T_Budget.Value, 0.0) AS RPT_Value 
FROM T_Budget 
 
FULL JOIN tfu_RPT_All_CreateYearInterval(@budget_year_from, @budget_year_to) AS tYear 
      ON tYear.Year = T_Budget.Year 

Note that if you're using soft-deletes, you'll have to check the soft-delete status again in the 
WHERE-clause (because FULL JOIN behaves kind-of like a UNION);  
It's easy to overlook this little fact, since you put AP_SoftDeleteStatus = 1 in the join clause.

Also, if you are doing a FULL JOIN, you'll usually have to allow NULL in the WHERE-clause; 
forgetting to allow NULL on a value will have the same effects as an INNER join, which is 
something you don't want if you're doing a FULL JOIN.

Example:

https://riptutorial.com/ 111



SELECT 
     T_AccountPlan.AP_UID 
    ,T_AccountPlan.AP_Code 
    ,T_AccountPlan.AP_Lang_EN 
    ,T_BudgetPositions.BUP_Budget 
    ,T_BudgetPositions.BUP_UID 
    ,T_BudgetPositions.BUP_Jahr 
FROM T_BudgetPositions 
 
FULL JOIN T_AccountPlan 
    ON T_AccountPlan.AP_UID = T_BudgetPositions.BUP_AP_UID 
    AND T_AccountPlan.AP_SoftDeleteStatus = 1 
 
WHERE (1=1) 
AND (T_BudgetPositions.BUP_SoftDeleteStatus = 1 OR T_BudgetPositions.BUP_SoftDeleteStatus IS 
NULL) 
AND (T_AccountPlan.AP_SoftDeleteStatus = 1 OR T_AccountPlan.AP_SoftDeleteStatus IS NULL) 

Recursive JOINs

Recursive joins are often used to obtain parent-child data. In SQL, they are implemented with 
recursive common table expressions, for example:

WITH RECURSIVE MyDescendants AS ( 
    SELECT Name 
    FROM People 
    WHERE Name = 'John Doe' 
 
    UNION ALL 
 
    SELECT People.Name 
    FROM People 
    JOIN MyDescendants ON People.Name = MyDescendants.Parent 
) 
SELECT * FROM MyDescendants;

Differences between inner/outer joins

SQL has various join types to specify whether (non-)matching rows are included in the result: 
INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN (the INNER and OUTER keywords 
are optional). The figure below underlines the differences between these types of joins: the blue 
area represents the results returned by the join, and the white area represents the results that the 
join will not return.

https://riptutorial.com/ 112



A    B

select * from a INNER JOIN b on a.a = b.b;

select * from a LEFT OUTER JOIN b on a.a = b.b;

select * from a RIGHT OUTER JOIN b on a.a = b.b;

select * from a FULL OUTER JOIN b on a.a = b.b;

CREATE TABLE A (

SELECT * FROM A JOIN B ON X = Y;

SELECT * FROM A LEFT JOIN B ON X = Y;

SELECT * FROM A RIGHT JOIN B ON X = Y;

SELECT * FROM A FULL JOIN B ON X = Y;

SELECT * FROM A WHERE X IN (SELECT Y FROM B);

SELECT * FROM B WHERE Y IN (SELECT X FROM A);

SELECT * FROM A WHERE X NOT IN (SELECT Y FROM B);

https://riptutorial.com/ 113



here.

Right Anti Semi Join

Includes right rows that do not match left rows.

SELECT * FROM B WHERE Y NOT IN (SELECT X FROM A); 
 
Y 
------- 
Tim 
Vincent

As you can see, there is no dedicated NOT IN syntax for left vs. right anti semi join - we achieve 
the effect simply by switching the table positions within SQL text.

Cross Join

A Cartesian product of all left with all right rows.

SELECT * FROM A CROSS JOIN B; 
 
X      Y 
-----  ------- 
Amy    Lisa 

https://riptutorial.com/ 114



John   Lisa 
Lisa   Lisa 
Marco  Lisa 
Phil   Lisa 
Amy    Marco 
John   Marco 
Lisa   Marco 
Marco  Marco 
Phil   Marco 
Amy    Phil 
John   Phil 
Lisa   Phil 
Marco  Phil 
Phil   Phil 
Amy    Tim 
John   Tim 
Lisa   Tim 
Marco  Tim 
Phil   Tim 
Amy    Vincent 
John   Vincent 
Lisa   Vincent 
Marco  Vincent 
Phil   Vincent

Cross join is equivalent to an inner join with join condition which always matches, so the following 
query would have returned the same result:

SELECT * FROM A JOIN B ON 1 = 1;

Self-Join

This simply denotes a table joining with itself. A self-join can be any of the join types discussed 
above. For example, this is a an inner self-join:

SELECT * FROM A A1 JOIN A A2 ON LEN(A1.X) < LEN(A2.X); 
 
X     X 
----  ----- 
Amy   John 
Amy   Lisa 
Amy   Marco 
John  Marco 
Lisa  Marco 
Phil  Marco 
Amy   Phil

Read JOIN online: https://riptutorial.com/sql/topic/261/join

https://riptutorial.com/ 115



Chapter 36: LIKE operator

Syntax

Wild Card with % : SELECT * FROM [table] WHERE [column_name] Like '%Value%'

Wild Card with _ : SELECT * FROM [table] WHERE [column_name] Like 'V_n%'

Wild Card with [charlist] : SELECT * FROM [table] WHERE [column_name] Like 
'V[abc]n%'

•

Remarks

LIKE condition in WHERE clause is used to search for column values that matches the given 
pattern. Patterns are formed using following two wildcard characters

% (Percentage Symbol) - Used for representing zero or more characters•
_ (Underscore) - Used for representing a single character•

Examples

Match open-ended pattern

The % wildcard appended to the beginning or end (or both) of a string will allow 0 or more of any 
character before the beginning or after the end of the pattern to match.

Using '%' in the middle will allow 0 or more characters between the two parts of the pattern to 
match.

We are going to use this Employees Table:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date

1 John Johnson 2468101214 1 1 400
23-03-
2005

2 Sophie Amudsen 2479100211 1 1 400
11-01-
2010

3 Ronny Smith 2462544026 2 1 600
06-08-
2015

4 Jon Sanchez 2454124602 1 1 400
23-03-
2005

01-01-5 Hilde Knag 2468021911 2 1 800

https://riptutorial.com/ 116



Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date

2000

Following statement matches for all records having FName containing string 'on' from Employees 
Table.

SELECT * FROM Employees WHERE FName LIKE '%on%';

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date

3 Ronny Smith 2462544026 2 1 600
06-08-
2015

4 Jon Sanchez 2454124602 1 1 400
23-03-
2005

Following statement matches all records having PhoneNumber starting with string '246' from 
Employees.

SELECT * FROM Employees WHERE PhoneNumber LIKE '246%';

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date

1 John Johnson 2468101214 1 1 400
23-03-
2005

3 Ronny Smith 2462544026 2 1 600
06-08-
2015

5 Hilde Knag 2468021911 2 1 800
01-01-
2000

Following statement matches all records having PhoneNumber ending with string '11' from 
Employees.

SELECT * FROM Employees WHERE PhoneNumber LIKE '%11'

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date

2 Sophie Amudsen 2479100211 1 1 400
11-01-
2010

5 Hilde Knag 2468021911 2 1 800
01-01-
2000

All records where Fname 3rd character is 'n' from Employees.

https://riptutorial.com/ 117



SELECT * FROM Employees WHERE FName LIKE '__n%';

(two underscores are used before 'n' to skip first 2 characters)

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date

3 Ronny Smith 2462544026 2 1 600
06-08-
2015

4 Jon Sanchez 2454124602 1 1 400
23-03-
2005

Single character match

To broaden the selections of a structured query language (SQL-SELECT) statement, wildcard 
characters, the percent sign (%) and the underscore (_), can be used.

The _ (underscore) character can be used as a wildcard for any single character in a pattern 
match.

Find all employees whose Fname start with 'j' and end with 'n' and has exactly 3 characters in 
Fname.

SELECT * FROM Employees WHERE FName LIKE 'j_n'

_ (underscore) character can also be used more than once as a wild card to match patterns.

For example, this pattern would match "jon", "jan", "jen", etc.

These names will not be shown "jn","john","jordan", "justin", "jason", "julian", "jillian", "joann" 
because in our query one underscore is used and it can skip exactly one character, so result must 
be of 3 character Fname.

For example, this pattern would match "LaSt", "LoSt", "HaLt", etc.

SELECT * FROM Employees WHERE FName LIKE '_A_T'

Match by range or set

Match any single character within the specified range (e.g.: [a-f]) or set (e.g.: [abcdef]).

This range pattern would match "gary" but not "mary":

SELECT * FROM Employees WHERE FName LIKE '[a-g]ary'

This set pattern would match "mary" but not "gary":

https://riptutorial.com/ 118



SELECT * FROM Employees WHERE Fname LIKE '[lmnop]ary'

The range or set can also be negated by appending the ^ caret before the range or set:

This range pattern would not match "gary" but will match "mary":

SELECT * FROM Employees WHERE FName LIKE '[^a-g]ary'

This set pattern would not match "mary" but will match"gary":

SELECT * FROM Employees WHERE Fname LIKE '[^lmnop]ary'

Match ANY versus ALL

Match any:  
Must match at least one string. In this example the product type must be either 'electronics', 
'books', or 'video'.

SELECT * 
FROM   purchase_table 
WHERE  product_type LIKE ANY ('electronics', 'books', 'video');

Match all (must meet all requirements).  
In this example both 'united kingdom' and 'london' and 'eastern road' (including variations) must be 
matched.

SELECT * 
FROM   customer_table 
WHERE  full_address LIKE ALL ('%united kingdom%', '%london%', '%eastern road%');

Negative selection:  
Use ALL to exclude all items.  
This example yields all results where the product type is not 'electronics' and not 'books' and not 
'video'.

SELECT * 
FROM   customer_table 
WHERE  product_type NOT LIKE ALL ('electronics', 'books', 'video');

Search for a range of characters

Following statement matches all records having FName that starts with a letter from A to F from 
Employees Table.

SELECT * FROM Employees WHERE FName LIKE '[A-F]%'

ESCAPE statement in the LIKE-query

https://riptutorial.com/ 119



If you implement a text-search as LIKE-query, you usually do it like this:

SELECT * 
FROM T_Whatever 
WHERE SomeField LIKE CONCAT('%', @in_SearchText, '%') 

However, (apart from the fact that you shouldn't necessarely use LIKE when you can use fulltext-
search) this creates a problem when somebody inputs text like "50%" or "a_b".

So (instead of switching to fulltext-search), you can solve that problem using the LIKE-escape 
statement:

SELECT * 
FROM T_Whatever 
WHERE SomeField LIKE CONCAT('%', @in_SearchText, '%') ESCAPE '\'

That means \ will now be treated as ESCAPE character. This means, you can now just prepend \ 
to every character in the string you search, and the results will start to be correct, even when the 
user enters a special character like % or _.

e.g.

string stringToSearch = "abc_def 50%"; 
string newString = ""; 
foreach(char c in stringToSearch) 
     newString += @"\" + c; 
 
sqlCmd.Parameters.Add("@in_SearchText", newString); 
// instead of sqlCmd.Parameters.Add("@in_SearchText", stringToSearch);

Note: The above algorithm is for demonstration purposes only. It will not work in cases where 1 
grapheme consists out of several characters (utf-8). e.g. string stringToSearch = "Les 
Mise\u0301rables"; You'll need to do this for each grapheme, not for each character. You should 
not use the above algorithm if you're dealing with Asian/East-Asian/South-Asian languages. Or 
rather, if you want correct code to begin with, you should just do that for each graphemeCluster.

See also ReverseString, a C# interview-question

Wildcard characters

wildcard characters are used with the SQL LIKE operator. SQL wildcards are used to search for 
data within a table.

Wildcards in SQL are:%, _, [charlist], [^charlist]

% - A substitute for zero or more characters

   Eg:  //selects all customers with a City starting with "Lo" 
        SELECT * FROM Customers 
        WHERE City LIKE 'Lo%'; 
 

https://riptutorial.com/ 120



       //selects all customers with a City containing the pattern "es" 
      SELECT * FROM Customers 
       WHERE City LIKE '%es%';

_ - A substitute for a single character

Eg://selects all customers with a City starting with any character, followed by "erlin" 
SELECT * FROM Customers 
WHERE City LIKE '_erlin';

[charlist] - Sets and ranges of characters to match

Eg://selects all customers with a City starting with "a", "d", or "l" 
SELECT * FROM Customers 
WHERE City LIKE '[adl]%'; 
 
//selects all customers with a City starting with "a", "d", or "l" 
SELECT * FROM Customers 
WHERE City LIKE '[a-c]%';

[^charlist] - Matches only a character NOT specified within the brackets

Eg://selects all customers with a City starting with a character that is not "a", "p", or "l" 
SELECT * FROM Customers 
WHERE City LIKE '[^apl]%'; 
 
or 
 
SELECT * FROM Customers 
WHERE City NOT LIKE '[apl]%' and city like '_%';

Read LIKE operator online: https://riptutorial.com/sql/topic/860/like-operator

https://riptutorial.com/ 121



Chapter 37: Materialized Views

Introduction

A materialized view is a view whose results are physically stored and must be periodically 
refreshed in order to remain current. They are therefore useful for storing the results of complex, 
long-running queries when realtime results are not required. Materialized views can be created in 
Oracle and PostgreSQL. Other database systems offer similar functionality, such as SQL Server's 
indexed views or DB2's materialized query tables.

Examples

PostgreSQL example

CREATE TABLE mytable (number INT); 
INSERT INTO mytable VALUES (1); 
 
CREATE MATERIALIZED VIEW myview AS SELECT * FROM mytable; 
 
SELECT * FROM myview; 
 number 
-------- 
      1 
(1 row) 
 
INSERT INTO mytable VALUES(2); 
 
SELECT * FROM myview; 
 number 
-------- 
      1 
(1 row) 
 
REFRESH MATERIALIZED VIEW myview; 
 
SELECT * FROM myview; 
 number 
-------- 
      1 
      2 
(2 rows)

Read Materialized Views online: https://riptutorial.com/sql/topic/8367/materialized-views

https://riptutorial.com/ 122



Chapter 38: MERGE

Introduction

MERGE (often also called UPSERT for "update or insert") allows to insert new rows or, if a row 
already exists, to update the existing row. The point is to perform the whole set of operations 
atomically (to guarantee that the data remain consistent), and to prevent communication overhead 
for multiple SQL statements in a client/server system.

Examples

MERGE to make Target match Source

MERGE INTO targetTable t 
    USING sourceTable s 
        ON t.PKID = s.PKID 
    WHEN MATCHED AND NOT EXISTS ( 
            SELECT s.ColumnA, s.ColumnB, s.ColumnC 
            INTERSECT 
            SELECT t.ColumnA, t.ColumnB, s.ColumnC 
            ) 
        THEN UPDATE SET 
            t.ColumnA = s.ColumnA 
            ,t.ColumnB = s.ColumnB 
            ,t.ColumnC = s.ColumnC 
    WHEN NOT MATCHED BY TARGET 
        THEN INSERT (PKID, ColumnA, ColumnB, ColumnC) 
        VALUES (s.PKID, s.ColumnA, s.ColumnB, s.ColumnC) 
    WHEN NOT MATCHED BY SOURCE 
        THEN DELETE 
    ;

Note: The AND NOT EXISTS portion prevents updating records that haven't changed. Using the 
INTERSECT construct allows nullable columns to be compared without special handling.

MySQL: counting users by name

Suppose we want to know how many users have the same name. Let us create table users as 
follows:

create table users( 
    id int primary key auto_increment, 
    name varchar(8), 
    count int, 
    unique key name(name) 
);

Now, we just discovered a new user named Joe and would like to take him into account. To 
achieve that, we need to determine whether there is an existing row with his name, and if so, 

https://riptutorial.com/ 123



update it to increment count; on the other hand, if there is no existing row, we should create it.

MySQL uses the following syntax : insert … on duplicate key update …. In this case:

insert into users(name, count) 
       values ('Joe', 1) 
       on duplicate key update count=count+1;

PostgreSQL: counting users by name

Suppose we want to know how many users have the same name. Let us create table users as 
follows:

create table users( 
    id serial, 
    name varchar(8) unique, 
    count int 
);

Now, we just discovered a new user named Joe and would like to take him into account. To 
achieve that, we need to determine whether there is an existing row with his name, and if so, 
update it to increment count; on the other hand, if there is no existing row, we should create it.

PostgreSQL uses the following syntax : insert … on conflict … do update …. In this case:

insert into users(name, count) 
    values('Joe', 1) 
    on conflict (name) do update set count = users.count + 1;

Read MERGE online: https://riptutorial.com/sql/topic/1470/merge

https://riptutorial.com/ 124



Chapter 39: NULL

Introduction

NULL in SQL, as well as programming in general, means literally "nothing". In SQL, it is easier to 
understand as "the absence of any value".

It is important to distinguish it from seemingly empty values, such as the empty string '' or the 
number 0, neither of which are actually NULL.

It is also important to be careful not to enclose NULL in quotes, like 'NULL', which is allowed in 
columns that accept text, but is not NULL and can cause errors and incorrect data sets.

Examples

Filtering for NULL in queries

The syntax for filtering for NULL (i.e. the absence of a value) in WHERE blocks is slightly different than 
filtering for specific values.

SELECT * FROM Employees WHERE ManagerId IS NULL ; 
SELECT * FROM Employees WHERE ManagerId IS NOT NULL ;

Note that because NULL is not equal to anything, not even to itself, using equality operators = NULL 
or <> NULL (or != NULL) will always yield the truth value of UNKNOWN which will be rejected by WHERE.

WHERE filters all rows that the condition is FALSE or UKNOWN and keeps only rows that the condition is 
TRUE.

Nullable columns in tables

When creating tables it is possible to declare a column as nullable or non-nullable.

CREATE TABLE MyTable 
( 
    MyCol1 INT NOT NULL, -- non-nullable 
    MyCol2 INT NULL      -- nullable 
) ;

By default every column (except those in primary key constraint) is nullable unless we explicitly set 
NOT NULL constraint.

Attempting to assign NULL to a non-nullable column will result in an error.

INSERT INTO MyTable (MyCol1, MyCol2) VALUES (1, NULL) ;  -- works fine 
 
INSERT INTO MyTable (MyCol1, MyCol2) VALUES (NULL, 2) ; 

https://riptutorial.com/ 125



        -- cannot insert 
        -- the value NULL into column 'MyCol1', table 'MyTable'; 
        -- column does not allow nulls. INSERT fails.

Updating fields to NULL

Setting a field to NULL works exactly like with any other value:

UPDATE Employees 
SET ManagerId = NULL 
WHERE Id = 4

Inserting rows with NULL fields

For example inserting an employee with no phone number and no manager into the Employees 
example table:

INSERT INTO Employees 
    (Id, FName, LName, PhoneNumber, ManagerId, DepartmentId, Salary, HireDate) 
VALUES 
    (5, 'Jane', 'Doe', NULL, NULL, 2, 800, '2016-07-22') ;

Read NULL online: https://riptutorial.com/sql/topic/3421/null

https://riptutorial.com/ 126



Chapter 40: ORDER BY

Examples

Use ORDER BY with TOP to return the top x rows based on a column's value

In this example, we can use GROUP BY not only determined the sort of the rows returned, but 
also what rows are returned, since we're using TOP to limit the result set.

Let's say we want to return the top 5 highest reputation users from an unnamed popular Q&A site.

Without ORDER BY

This query returns the Top 5 rows ordered by the default, which in this case is "Id", the first column 
in the table (even though it's not a column shown in the results).

SELECT TOP 5 DisplayName, Reputation 
FROM Users

returns...

DisplayName Reputation

Community 1

Geoff Dalgas 12567

Jarrod Dixon 11739

Jeff Atwood 37628

Joel Spolsky 25784

With ORDER BY

SELECT TOP 5 DisplayName, Reputation 
FROM Users 
ORDER BY Reputation desc

returns...

DisplayName Reputation

JonSkeet 865023

Darin Dimitrov 661741

https://riptutorial.com/ 127



DisplayName Reputation

BalusC 650237

Hans Passant 625870

Marc Gravell 601636

Remarks

Some versions of SQL (such as MySQL) use a LIMIT clause at the end of a SELECT, instead of TOP 
at the beginning, for example:

SELECT DisplayName, Reputation 
FROM Users 
ORDER BY Reputation DESC 
LIMIT 5

Sorting by multiple columns

SELECT DisplayName, JoinDate, Reputation 
FROM Users 
ORDER BY JoinDate, Reputation

DisplayName JoinDate Reputation

Community 2008-09-15 1

Jeff Atwood 2008-09-16 25784

Joel Spolsky 2008-09-16 37628

Jarrod Dixon 2008-10-03 11739

Geoff Dalgas 2008-10-03 12567

Sorting by column number (instead of name)

You can use a column's number (where the leftmost column is '1') to indicate which column to 
base the sort on, instead of describing the column by its name.

Pro: If you think it's likely you might change column names later, doing so won't break this code.

Con: This will generally reduce readability of the query (It's instantly clear what 'ORDER BY 
Reputation' means, while 'ORDER BY 14' requires some counting, probably with a finger on the 
screen.)

This query sorts result by the info in relative column position 3 from select statement instead of 
column name Reputation.

https://riptutorial.com/ 128



SELECT DisplayName, JoinDate, Reputation 
FROM Users 
ORDER BY 3

DisplayName JoinDate Reputation

Community 2008-09-15 1

Jarrod Dixon 2008-10-03 11739

Geoff Dalgas 2008-10-03 12567

Joel Spolsky 2008-09-16 25784

Jeff Atwood 2008-09-16 37628

Order by Alias

Due to logical query processing order, alias can be used in order by.

SELECT DisplayName, JoinDate as jd, Reputation as rep 
FROM Users 
ORDER BY jd, rep

And can use relative order of the columns in the select statement .Consider the same example as 
above and instead of using alias use the relative order like for display name it is 1 , for Jd it is 2 
and so on

SELECT DisplayName, JoinDate as jd, Reputation as rep 
FROM Users 
ORDER BY 2, 3

Customizeed sorting order

To sort this table Employee by department, you would use ORDER BY Department. However, if you want 
a different sort order that is not alphabetical, you have to map the Department values into different 
values that sort correctly; this can be done with a CASE expression:

Name Department

Hasan IT

Yusuf HR

Hillary HR

Joe IT

Merry HR

https://riptutorial.com/ 129



Name Department

Ken Accountant

SELECT * 
FROM Employee 
ORDER BY CASE Department 
         WHEN 'HR'         THEN 1 
         WHEN 'Accountant' THEN 2 
         ELSE                   3 
         END;

Name Department

Yusuf HR

Hillary HR

Merry HR

Ken Accountant

Hasan IT

Joe IT

Read ORDER BY online: https://riptutorial.com/sql/topic/620/order-by

https://riptutorial.com/ 130



Chapter 41: Order of Execution

Examples

Logical Order of Query Processing in SQL

/*(8)*/  SELECT /*9*/ DISTINCT /*11*/ TOP 
/*(1)*/  FROM 
/*(3)*/        JOIN 
/*(2)*/       ON 
/*(4)*/  WHERE 
/*(5)*/  GROUP BY 
/*(6)*/  WITH {CUBE | ROLLUP} 
/*(7)*/  HAVING 
/*(10)*/ ORDER BY 
/*(11)*/ LIMIT 

The order in which a query is processed and description of each section.

VT stands for 'Virtual Table' and shows how various data is produced as the query is processed

FROM: A Cartesian product (cross join) is performed between the first two tables in the 
FROM clause, and as a result, virtual table VT1 is generated.

1. 

ON: The ON filter is applied to VT1. Only rows for which the is TRUE are inserted to VT2.2. 

OUTER (join): If an OUTER JOIN is specified (as opposed to a CROSS JOIN or an INNER 
JOIN), rows from the preserved table or tables for which a match was not found are added to 
the rows from VT2 as outer rows, generating VT3. If more than two tables appear in the 
FROM clause, steps 1 through 3 are applied repeatedly between the result of the last join 
and the next table in the FROM clause until all tables are processed.

3. 

WHERE: The WHERE filter is applied to VT3. Only rows for which the is TRUE are inserted 
to VT4.

4. 

GROUP BY: The rows from VT4 are arranged in groups based on the column list specified in 
the GROUP BY clause. VT5 is generated.

5. 

CUBE | ROLLUP: Supergroups (groups of groups) are added to the rows from VT5, 
generating VT6.

6. 

HAVING: The HAVING filter is applied to VT6. Only groups for which the is TRUE are 
inserted to VT7.

7. 

SELECT: The SELECT list is processed, generating VT8.8. 

DISTINCT: Duplicate rows are removed from VT8. VT9 is generated.9. 

ORDER BY: The rows from VT9 are sorted according to the column list specified in the 10. 

https://riptutorial.com/ 131



ORDER BY clause. A cursor is generated (VC10).

TOP: The specified number or percentage of rows is selected from the beginning of VC10. 
Table VT11 is generated and returned to the caller. LIMIT has the same functionality as TOP 
in some SQL dialects such as Postgres and Netezza.

11. 

Read Order of Execution online: https://riptutorial.com/sql/topic/3671/order-of-execution

https://riptutorial.com/ 132



Chapter 42: Primary Keys

Syntax

MySQL: CREATE TABLE Employees ( Id int NOT NULL, PRIMARY KEY (Id), ... );•

Others: CREATE TABLE Employees ( Id int NOT NULL PRIMARY KEY, ... );•

Examples

Creating a Primary Key

CREATE TABLE Employees ( 
    Id int NOT NULL, 
    PRIMARY KEY (Id), 
    ... 
);

This will create the Employees table with 'Id' as its primary key. The primary key can be used to 
uniquely identify the rows of a table. Only one primary key is allowed per table.

A key can also be composed by one or more fields, so called composite key, with the following 
syntax:

CREATE TABLE EMPLOYEE ( 
    e1_id INT, 
    e2_id INT, 
    PRIMARY KEY (e1_id, e2_id) 
) 

Using Auto Increment

Many databases allow to make the primary key value automatically increment when a new key is 
added. This ensures that every key is different.

MySQL

CREATE TABLE Employees ( 
    Id int NOT NULL AUTO_INCREMENT, 
    PRIMARY KEY (Id) 
);

PostgreSQL

CREATE TABLE Employees ( 
    Id SERIAL PRIMARY KEY 
);

https://riptutorial.com/ 133



SQL Server

CREATE TABLE Employees ( 
    Id int NOT NULL IDENTITY, 
    PRIMARY KEY (Id) 
);

SQLite

CREATE TABLE Employees ( 
    Id INTEGER PRIMARY KEY 
);

Read Primary Keys online: https://riptutorial.com/sql/topic/505/primary-keys

https://riptutorial.com/ 134



Chapter 43: Relational Algebra

Examples

Overview

Relational Algebra is not a full-blown SQL language, but rather a way to gain theoretical 
understanding of relational processing. As such it shouldn't make references to physical entities 
such as tables, records and fields; it should make references to abstract constructs such as 
relations, tuples and attributes. Saying that, I won't use the academic terms in this document and 
will stick to the more widely known layman terms - tables, records and fields.

A couple of rules of relational algebra before we get started:

The operators used in relational algebra work on whole tables rather than individual records.•
The result of a relational expression will always be a table (this is called the closure property)•

Throughout this document I will be referring to the follow two tables:

SELECT

The select operator returns a subset of the main table. 
select < table > where < condition >

For example, examine the expression:

select People where DepartmentID = 2

This can be written as: 

This will result in table whose records comprises of all records in the People table where the 
DepartmentID value is equal to 2: 

https://riptutorial.com/ 135



Conditions can also be joined to restrict the expression further:

select People where StartYear > 2005 and DepartmentID = 2

will result in the following table: 

PROJECT

The project operator will return distinct field values from a table. 
project < table > over < field list >

For example, examine the following expression: 
project People over StartYear

This can be written as: 

This will result in a table comprising of the distinct values held within the StartYear field of the 
People table. 

Duplicate values are removed from the resulting table due to the closure property creating a 
relational table: all records in a relational table are required to be distinct.

If the field list comprises more than a single field then the resulting table is a distinct version of 
these fields. 
project People over StartYear, DepartmentID will return: 

 
One record is removed due to the duplication of 2006 StartYear and 1 DepartmentID.

https://riptutorial.com/ 136



GIVING

Relational expressions can be chained together by naming the individual expressions using the 
giving keyword, or by embedding one expression within another.

< relational algebra expression > giving < alias name >

For example, consider the following expressions: 
select People where DepartmentID = 2 giving A 
project A over PersonName giving B

This will result in table B below, with table A being the result of the first expression. 

The first expression is evaluated and the resulting table is given the alias A. This table is then 
used within the second expression to give the final table with an alias of B.

Another way of writing this expression is to replace the table alias name in the second expression 
with the entire text of the first expression enclosed within brackets: 
project (select People where DepartmentID = 2) over PersonName giving B

This is called a nested expression.

NATURAL JOIN

A natural join sticks two tables together using a common field shared between the tables.

join < table 1 > and < table 2 > where < field 1 > = < field 2 > 
assuming that < field 1 > is in < table 1 > and < field 2 > is in < table 2 >.

For example, the following join expression will join People and Departments based on the 
DepartmentID and ID columns in the respective tables: 
join People and Departments where DepartmentID = ID

https://riptutorial.com/ 137



Note that only DepartmentID from the People table is shown and not ID from the Department 
table. Only one of the fields being compared needs to be shown which is generally the field name 
from the first table in the join operation.

Although not shown in this example it is possible that joining tables may result in two fields having 
the same heading. For example, if I had used the heading Name to identify the PersonName and 
Dept fields (i.e. to identify the Person Name and the Department Name). When this situation 
arises we use the table name to qualify the field names using the dot notation: People.Name and 
Departments.Name

join combined with select and project can be used together to pull information:

join People and Departments where DepartmentID = ID giving A 

select A where StartYear = 2005 and Dept = 'Production' giving B 

project B over PersonName giving C

or as a combined expression:

project (select (join People and Departments where DepartmentID = ID) where StartYear = 

2005 and Dept = 'Production') over PersonName giving C

This will result in this table: 

ALIAS

DIVIDE

UNION

INTERSECTION

DIFFERENCE

UPDATE ( := )

TIMES

https://riptutorial.com/ 138



Read Relational Algebra online: https://riptutorial.com/sql/topic/7311/relational-algebra

https://riptutorial.com/ 139



Chapter 44: Row number

Syntax

ROW_NUMBER ( )•
OVER ( [ PARTITION BY value_expression , ... [ n ] ] order_by_clause )•

Examples

Row numbers without partitions

Include a row number according to the order specified.

SELECT 
  ROW_NUMBER() OVER(ORDER BY Fname ASC) AS RowNumber, 
  Fname, 
  LName 
FROM Employees

Row numbers with partitions

Uses a partition criteria to group the row numbering according to it.

SELECT 
  ROW_NUMBER() OVER(PARTITION BY DepartmentId ORDER BY DepartmentId ASC) AS RowNumber, 
  DepartmentId, Fname, LName 
FROM Employees

Delete All But Last Record (1 to Many Table)

WITH cte AS ( 
  SELECT ProjectID, 
         ROW_NUMBER() OVER (PARTITION BY ProjectID ORDER BY InsertDate DESC) AS rn 
  FROM ProjectNotes 
) 
DELETE FROM cte WHERE rn > 1;

Read Row number online: https://riptutorial.com/sql/topic/1977/row-number

https://riptutorial.com/ 140



Chapter 45: SELECT

Introduction

The SELECT statement is at the heart of most SQL queries. It defines what result set should be 
returned by the query, and is almost always used in conjunction with the FROM clause, which 
defines what part(s) of the database should be queried.

Syntax

SELECT [DISTINCT] [column1] [, [column2] ... ] 
FROM [table] 
[ WHERE condition ] 
[ GROUP BY [column1] [, [column2] ... ]

[ HAVING [column1] [, [column2] ... ]

[ ORDER BY ASC | DESC ]

•

Remarks

SELECT determines which columns' data to return and in which order FROM a given table 
(given that they match the other requirements in your query specifically - where and having filters 
and joins).

SELECT Name, SerialNumber 
FROM ArmyInfo

will only return results from the Name and Serial Number columns, but not from the column called 
Rank, for example

SELECT * 
FROM ArmyInfo

indicates that all columns will be returned. However, please note that it is poor practice to SELECT * 
as you are literally returning all columns of a table.

Examples

Using the wildcard character to select all columns in a query.

Consider a database with the following two tables.

Employees table:

https://riptutorial.com/ 141



Id FName LName DeptId

1 James Smith 3

2 John Johnson 4

Departments table:

Id Name

1 Sales

2 Marketing

3 Finance

4 IT

Simple select statement

* is the wildcard character used to select all available columns in a table.

When used as a substitute for explicit column names, it returns all columns in all tables that a 
query is selecting FROM. This effect applies to all tables the query accesses through its JOIN 
clauses.

Consider the following query:

SELECT * FROM Employees

It will return all fields of all rows of the Employees table:

Id FName LName DeptId

1 James Smith 3

2 John Johnson 4

Dot notation

To select all values from a specific table, the wildcard character can be applied to the table with 
dot notation.

Consider the following query:

SELECT 
    Employees.*, 
    Departments.Name 

https://riptutorial.com/ 142



FROM 
    Employees 
JOIN 
    Departments 
    ON Departments.Id = Employees.DeptId

This will return a data set with all fields on the Employee table, followed by just the Name field in the 
Departments table:

Id FName LName DeptId Name

1 James Smith 3 Finance

2 John Johnson 4 IT

Warnings Against Use

It is generally advised that using * is avoided in production code where possible, as it can cause a 
number of potential problems including:

Excess IO, network load, memory use, and so on, due to the database engine reading data 
that is not needed and transmitting it to the front-end code. This is particularly a concern 
where there might be large fields such as those used to store long notes or attached files.

1. 

Further excess IO load if the database needs to spool internal results to disk as part of the 
processing for a query more complex than SELECT <columns> FROM <table>.

2. 

Extra processing (and/or even more IO) if some of the unneeded columns are:
computed columns in databases that support them•
in the case of selecting from a view, columns from a table/view that the query optimiser 
could otherwise optimise out

•

3. 

The potential for unexpected errors if columns are added to tables and views later that 
results ambiguous column names. For example SELECT * FROM orders JOIN people ON 
people.id = orders.personid ORDER BY displayname - if a column column called displayname is 
added to the orders table to allow users to give their orders meaningful names for future 
reference then the column name will appear twice in the output so the ORDER BY clause will be 
ambiguous which may cause errors ("ambiguous column name" in recent MS SQL Server 
versions), and if not in this example your application code might start displaying the order 
name where the person name is intended because the new column is the first of that name 
returned, and so on.

4. 

When Can You Use *, Bearing The Above Warning In Mind?

While best avoided in production code, using * is fine as a shorthand when performing manual 
queries against the database for investigation or prototype work.

Sometimes design decisions in your application make it unavoidable (in such circumstances, 
prefer tablealias.* over just * where possible).

When using EXISTS, such as SELECT A.col1, A.Col2 FROM A WHERE EXISTS (SELECT * FROM B where 
A.ID = B.A_ID)

https://riptutorial.com/ 143



, we are not returning any data from B. Thus a join is unnecessary, and the engine knows no 
values from B are to be returned, thus no performance hit for using *. Similarly COUNT(*) is fine as it 
also doesn't actually return any of the columns, so only needs to read and process those that are 
used for filtering purposes.

Selecting with Condition

The basic syntax of SELECT with WHERE clause is:

SELECT column1, column2, columnN 
FROM table_name 
WHERE [condition]

The [condition] can be any SQL expression, specified using comparison or logical operators like >, 
<, =, <>, >=, <=, LIKE, NOT, IN, BETWEEN etc.

The following statement returns all columns from the table 'Cars' where the status column is 
'READY':

SELECT * FROM Cars WHERE status = 'READY'

See WHERE and HAVING for more examples.

Select Individual Columns

SELECT 
    PhoneNumber, 
    Email, 
    PreferredContact 
FROM Customers

This statement will return the columns PhoneNumber, Email, and PreferredContact from all rows of the 
Customers table. Also the columns will be returned in the sequence in which they appear in the 
SELECT clause.

The result will be:

PhoneNumber Email PreferredContact

3347927472 william.jones@example.com PHONE

2137921892 dmiller@example.net EMAIL

NULL richard0123@example.com EMAIL

If multiple tables are joined together, you can select columns from specific tables by specifying the 
table name before the column name: [table_name].[column_name]

https://riptutorial.com/ 144



SELECT 
    Customers.PhoneNumber, 
    Customers.Email, 
    Customers.PreferredContact, 
    Orders.Id AS OrderId 
FROM 
    Customers 
LEFT JOIN 
    Orders ON Orders.CustomerId = Customers.Id

*AS OrderId means that the Id field of Orders table will be returned as a column named OrderId. See 
selecting with column alias for further information.

To avoid using long table names, you can use table aliases. This mitigates the pain of writing long 
table names for each field that you select in the joins. If you are performing a self join (a join 
between two instances of the same table), then you must use table aliases to distinguish your 
tables. We can write a table alias like Customers c or Customers AS c. Here c works as an alias for 
Customers and we can select let's say Email like this: c.Email.

SELECT 
    c.PhoneNumber, 
    c.Email, 
    c.PreferredContact, 
    o.Id AS OrderId 
FROM 
    Customers c 
LEFT JOIN 
    Orders o ON o.CustomerId = c.Id

SELECT Using Column Aliases

Column aliases are used mainly to shorten code and make column names more readable.

Code becomes shorter as long table names and unnecessary identification of columns (e.g., there 

may be 2 IDs in the table, but only one is used in the statement) can be avoided. Along with table 
aliases this allows you to use longer descriptive names in your database structure while keeping 
queries upon that structure concise.

Furthermore they are sometimes required, for instance in views, in order to name computed 
outputs.

All versions of SQL

Aliases can be created in all versions of SQL using double quotes (").

SELECT 
    FName AS "First Name", 
    MName AS "Middle Name", 
    LName AS "Last Name" 
FROM Employees 

https://riptutorial.com/ 145



Different Versions of SQL

You can use single quotes ('), double quotes (") and square brackets ([]) to create an alias in 
Microsoft SQL Server.

SELECT 
    FName AS "First Name", 
    MName AS 'Middle Name', 
    LName AS [Last Name] 
FROM Employees 

Both will result in:

First Name Middle Name Last Name

James John Smith

John James Johnson

Michael Marcus Williams

This statement will return FName and LName columns with a given name (an alias). This is achieved 
using the AS operator followed by the alias, or simply writing alias directly after the column name. 
This means that the following query has the same outcome as the above.

SELECT 
    FName "First Name", 
    MName "Middle Name", 
    LName "Last Name" 
FROM Employees 

First Name Middle Name Last Name

James John Smith

John James Johnson

Michael Marcus Williams

However, the explicit version (i.e., using the AS operator) is more readable.

If the alias has a single word that is not a reserved word, we can write it without single quotes, 
double quotes or brackets:

SELECT 
    FName AS FirstName, 
    LName AS LastName 
FROM Employees 

https://riptutorial.com/ 146



FirstName LastName

James Smith

John Johnson

Michael Williams

A further variation available in MS SQL Server amongst others is <alias> = <column-or-
calculation>, for instance:

SELECT FullName = FirstName + ' ' + LastName, 
       Addr1    = FullStreetAddress, 
       Addr2    = TownName 
FROM CustomerDetails 

which is equivalent to:

SELECT FirstName + ' ' + LastName As FullName 
       FullStreetAddress          As Addr1, 
       TownName                   As Addr2 
FROM CustomerDetails 

Both will result in:

FullName Addr1 Addr2

James Smith 123 AnyStreet TownVille

John Johnson 668 MyRoad Anytown

Michael Williams 999 High End Dr Williamsburgh

Some find using = instead of As easier to read, though many recommend against this format, 
mainly because it is not standard so not widely supported by all databases. It may cause 
confusion with other uses of the = character.

All Versions of SQL

Also, if you need to use reserved words, you can use brackets or quotes to escape:

SELECT 
    FName as "SELECT", 
    MName as "FROM", 
    LName as "WHERE" 
FROM Employees

Different Versions of SQL

https://riptutorial.com/ 147



Likewise, you can escape keywords in MSSQL with all different approaches:

SELECT 
    FName AS "SELECT", 
    MName AS 'FROM', 
    LName AS [WHERE] 
FROM Employees 

SELECT FROM WHERE

James John Smith

John James Johnson

Michael Marcus Williams

Also, a column alias may be used any of the final clauses of the same query, such as an ORDER BY:

SELECT 
    FName AS FirstName, 
    LName AS LastName 
FROM 
    Employees 
ORDER BY 
    LastName DESC

However, you may not use

SELECT 
    FName AS SELECT, 
    LName AS FROM 
FROM 
    Employees 
ORDER BY 
    LastName DESC

To create an alias from these reserved words (SELECT and FROM).

This will cause numerous errors on execution.

Selection with sorted Results

SELECT * FROM Employees ORDER BY LName

This statement will return all the columns from the table Employees.

Id FName LName PhoneNumber

2 John Johnson 2468101214

1 James Smith 1234567890

https://riptutorial.com/ 148



Id FName LName PhoneNumber

3 Michael Williams 1357911131

SELECT * FROM Employees ORDER BY LName DESC

Or

 SELECT * FROM Employees ORDER BY LName ASC

This statement changes the sorting direction.

One may also specify multiple sorting columns. For example:

SELECT * FROM Employees ORDER BY LName ASC, FName ASC

This example will sort the results first by LName and then, for records that have the same LName, sort 
by FName. This will give you a result similar to what you would find in a telephone book.

In order to save retyping the column name in the ORDER BY clause, it is possible to use instead the 
column's number. Note that column numbers start from 1.

SELECT Id, FName, LName, PhoneNumber FROM Employees ORDER BY 3

You may also embed a CASE statement in the ORDER BY clause.

SELECT Id, FName, LName, PhoneNumber FROM Employees ORDER BY CASE WHEN LName='Jones` THEN 0 
ELSE 1 END ASC

This will sort your results to have all records with the LName of "Jones" at the top.

Select columns which are named after reserved keywords

When a column name matches a reserved keyword, standard SQL requires that you enclose it in 
double quotation marks:

SELECT 
    "ORDER", 
    ID 
FROM ORDERS

Note that it makes the column name case-sensitive.

Some DBMSes have proprietary ways of quoting names. For example, SQL Server uses square 
brackets for this purpose:

SELECT 
    [Order], 
    ID 

https://riptutorial.com/ 149



FROM ORDERS

while MySQL (and MariaDB) by default use backticks:

SELECT 
    `Order`, 
    id 
FROM orders

Selecting specified number of records

The SQL 2008 standard defines the FETCH FIRST clause to limit the number of records returned.

SELECT Id, ProductName, UnitPrice, Package 
FROM Product 
ORDER BY UnitPrice DESC 
FETCH FIRST 10 ROWS ONLY

This standard is only supported in recent versions of some RDMSs. Vendor-specific non-standard 
syntax is provided in other systems. Progress OpenEdge 11.x also supports the FETCH FIRST <n> 
ROWS ONLY syntax.

Additionally, OFFSET <m> ROWS before FETCH FIRST <n> ROWS ONLY allows skipping rows before fetching 
rows.

SELECT Id, ProductName, UnitPrice, Package 
FROM Product 
ORDER BY UnitPrice DESC 
OFFSET 5 ROWS 
FETCH FIRST 10 ROWS ONLY

The following query is supported in SQL Server and MS Access:

SELECT TOP 10 Id, ProductName, UnitPrice, Package 
FROM Product 
ORDER BY UnitPrice DESC

To do the same in MySQL or PostgreSQL the LIMIT keyword must be used:

SELECT Id, ProductName, UnitPrice, Package 
FROM Product 
ORDER BY UnitPrice DESC 
LIMIT 10

In Oracle the same can be done with ROWNUM:

SELECT Id, ProductName, UnitPrice, Package 
FROM Product 
WHERE ROWNUM <= 10 
ORDER BY UnitPrice DESC 

https://riptutorial.com/ 150



Results: 10 records.

Id    ProductName               UnitPrice             Package 
38    Côte de Blaye             263.50                12 - 75 cl bottles 
29    Thüringer Rostbratwurst   123.79                50 bags x 30 sausgs. 
9    Mishi Kobe Niku            97.00                 18 - 500 g pkgs. 
20    Sir Rodney's Marmalade    81.00                 30 gift boxes 
18    Carnarvon Tigers          62.50                 16 kg pkg. 
59    Raclette Courdavault      55.00                 5 kg pkg. 
51    Manjimup Dried Apples     53.00                 50 - 300 g pkgs. 
62    Tarte au sucre            49.30                 48 pies 
43    Ipoh Coffee               46.00                 16 - 500 g tins 
28    Rössle Sauerkraut         45.60                 25 - 825 g cans

Vendor Nuances:

It is important to note that the TOP in Microsoft SQL operates after the WHERE clause and will return 
the specified number of results if they exist anywhere in the table, while ROWNUM works as part of the 
WHERE clause so if other conditions do not exist in the specified number of rows at the beginning of 
the table, you will get zero results when there could be others to be found.

Selecting with table alias

SELECT e.Fname, e.LName 
FROM Employees e

The Employees table is given the alias 'e' directly after the table name. This helps remove 
ambiguity in scenarios where multiple tables have the same field name and you need to be 
specific as to which table you want to return data from.

SELECT e.Fname, e.LName, m.Fname AS ManagerFirstName 
FROM Employees e 
    JOIN Managers m ON e.ManagerId = m.Id

Note that once you define an alias, you can't use the canonical table name anymore. i.e.,

SELECT e.Fname, Employees.LName, m.Fname AS ManagerFirstName 
FROM Employees e 
JOIN Managers m ON e.ManagerId = m.Id

would throw an error.

It is worth noting table aliases -- more formally 'range variables' -- were introduced into the SQL 
language to solve the problem of duplicate columns caused by INNER JOIN. The 1992 SQL 
standard corrected this earlier design flaw by introducing NATURAL JOIN (implemented in mySQL, 
PostgreSQL and Oracle but not yet in SQL Server), the result of which never has duplicate column 
names. The above example is interesting in that the tables are joined on columns with different 
names (Id and ManagerId) but are not supposed to be joined on the columns with the same name (
LName, FName), requiring the renaming of the columns to be performed before the join:

https://riptutorial.com/ 151



SELECT Fname, LName, ManagerFirstName 
FROM Employees 
     NATURAL JOIN 
     ( SELECT Id AS ManagerId, Fname AS ManagerFirstName 
       FROM Managers ) m;

Note that although an alias/range variable must be declared for the dervied table (otherwise SQL 
will throw an error), it never makes sense to actually use it in the query.

Select rows from multiple tables

SELECT * 
FROM 
    table1, 
    table2

SELECT 
    table1.column1, 
    table1.column2, 
    table2.column1 
FROM 
    table1, 
    table2

This is called cross product in SQL it is same as cross product in sets

These statements return the selected columns from multiple tables in one query.

There is no specific relationship between the columns returned from each table.

Selecting with Aggregate functions

Average

The AVG() aggregate function will return the average of values selected.

SELECT AVG(Salary) FROM Employees

Aggregate functions can also be combined with the where clause.

SELECT AVG(Salary) FROM Employees where DepartmentId = 1

Aggregate functions can also be combined with group by clause.

If employee is categorized with multiple department and we want to find avg salary for every 
department then we can use following query.

SELECT AVG(Salary) FROM Employees GROUP BY DepartmentId

https://riptutorial.com/ 152



Minimum

The MIN() aggregate function will return the minimum of values selected.

SELECT MIN(Salary) FROM Employees

Maximum

The MAX() aggregate function will return the maximum of values selected.

SELECT MAX(Salary) FROM Employees

Count

The COUNT() aggregate function will return the count of values selected.

SELECT Count(*) FROM Employees

It can also be combined with where conditions to get the count of rows that satisfy specific 
conditions.

SELECT Count(*) FROM Employees where ManagerId IS NOT NULL

Specific columns can also be specified to get the number of values in the column. Note that NULL 
values are not counted.

Select Count(ManagerId) from Employees

Count can also be combined with the distinct keyword for a distinct count.

Select Count(DISTINCT DepartmentId) from Employees

Sum

The SUM() aggregate function returns the sum of the values selected for all rows.

SELECT SUM(Salary) FROM Employees

Selecting with null

SELECT Name FROM Customers WHERE PhoneNumber IS NULL

https://riptutorial.com/ 153



Selection with nulls take a different syntax. Don't use =, use IS NULL or IS NOT NULL instead.

Selecting with CASE

When results need to have some logic applied 'on the fly' one can use CASE statement to 
implement it.

SELECT CASE WHEN Col1 < 50 THEN 'under' ELSE 'over' END threshold 
FROM TableName 

also can be chained

SELECT 
    CASE WHEN Col1 < 50 THEN 'under' 
         WHEN Col1 > 50 AND Col1 <100 THEN 'between' 
         ELSE 'over' 
    END threshold 
FROM TableName 

one also can have CASE inside another CASE statement

SELECT 
    CASE WHEN Col1 < 50 THEN 'under' 
         ELSE 
            CASE WHEN Col1 > 50 AND Col1 <100 THEN Col1 
            ELSE 'over' END 
    END threshold 
FROM TableName 

Selecting without Locking the table

Sometimes when tables are used mostly (or only) for reads, indexing does not help anymore and 
every little bit counts, one might use selects without LOCK to improve performance.

SQL Server

SELECT * FROM TableName WITH (nolock)

MySQL

SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED; 
SELECT * FROM TableName; 
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Oracle

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED; 
SELECT * FROM TableName;

https://riptutorial.com/ 154



DB2

SELECT * FROM TableName WITH UR;

where UR stands for "uncommitted read".

If used on table that has record modifications going on might have unpredictable results.

Select distinct (unique values only)

SELECT DISTINCT ContinentCode 
FROM Countries;

This query will return all DISTINCT (unique, different) values from ContinentCode column from 
Countries table

ContinentCode

OC

EU

AS

NA

AF

SQLFiddle Demo

Select with condition of multiple values from column

SELECT * FROM Cars  WHERE status IN ( 'Waiting', 'Working' )

This is semantically equivalent to

SELECT * FROM Cars  WHERE ( status = 'Waiting' OR status = 'Working' )

i.e. value IN ( <value list> ) is a shorthand for disjunction (logical OR).

Get aggregated result for row groups

Counting rows based on a specific column value:

SELECT category, COUNT(*) AS item_count 
FROM item 
GROUP BY category;

https://riptutorial.com/ 155



Getting average income by department:

SELECT department, AVG(income) 
FROM employees 
GROUP BY department;

The important thing is to select only columns specified in the GROUP BY clause or used with 
aggregate functions.

There WHERE clause can also be used with GROUP BY, but WHERE filters out records before any 
grouping is done:

SELECT department, AVG(income) 
FROM employees 
WHERE department <> 'ACCOUNTING' 
GROUP BY department;

If you need to filter the results after the grouping has been done, e.g, to see only departments 
whose average income is larger than 1000, you need to use the HAVING clause:

SELECT department, AVG(income) 
FROM employees 
WHERE department <> 'ACCOUNTING' 
GROUP BY department 
HAVING avg(income) > 1000;

Selecting with more than 1 condition.

The AND keyword is used to add more conditions to the query.

Name Age Gender

Sam 18 M

John 21 M

Bob 22 M

Mary 23 F

SELECT name FROM persons WHERE gender = 'M' AND age > 20;

This will return:

Name

John

Bob

https://riptutorial.com/ 156



using OR keyword

SELECT name FROM persons WHERE gender = 'M' OR age < 20;

This will return:

name

Sam

John

Bob

These keywords can be combined to allow for more complex criteria combinations:

SELECT name 
FROM persons 
WHERE (gender = 'M' AND age < 20) 
   OR (gender = 'F' AND age > 20);

This will return:

name

Sam

Mary

Read SELECT online: https://riptutorial.com/sql/topic/222/select

https://riptutorial.com/ 157



Chapter 46: Sequence

Examples

Create Sequence

 CREATE SEQUENCE orders_seq 
 START WITH     1000 
 INCREMENT BY   1;

Creates a sequence with a starting value of 1000 which is incremented by 1.

Using Sequences

a reference to seq_name.NEXTVAL is used to get the next value in a sequence. A single 
statement can only generate a single sequence value. If there are multiple references to 
NEXTVAL in a statement, they use will use the same generated number.

NEXTVAL can be used for INSERTS

INSERT INTO Orders (Order_UID, Customer) 
        VALUES (orders_seq.NEXTVAL, 1032);

It can be used for UPDATES

UPDATE Orders 
SET Order_UID = orders_seq.NEXTVAL 
WHERE Customer = 581;

It can also be used for SELECTS

SELECT Order_seq.NEXTVAL FROM dual;

Read Sequence online: https://riptutorial.com/sql/topic/1586/sequence

https://riptutorial.com/ 158



Chapter 47: SKIP TAKE (Pagination)

Examples

Skipping some rows from result

ISO/ANSI SQL:

SELECT Id, Col1 
FROM TableName 
ORDER BY Id 
OFFSET 20 ROWS

MySQL:

SELECT * FROM TableName LIMIT 20, 42424242424242; 
-- skips 20 for take use very large number that is more than rows in table

Oracle:

SELECT Id, 
   Col1 
FROM (SELECT Id, 
           Col1, 
           row_number() over (order by Id) RowNumber 
      FROM TableName) 
WHERE RowNumber > 20

PostgreSQL:

SELECT * FROM TableName OFFSET 20;

SQLite:

SELECT * FROM TableName LIMIT -1 OFFSET 20;

Limiting amount of results

ISO/ANSI SQL:

SELECT * FROM TableName FETCH FIRST 20 ROWS ONLY;

MySQL; PostgreSQL; SQLite:

SELECT * FROM TableName LIMIT 20; 

Oracle:

https://riptutorial.com/ 159



SELECT Id, 
   Col1 
FROM (SELECT Id, 
           Col1, 
           row_number() over (order by Id) RowNumber 
      FROM TableName) 
WHERE RowNumber <= 20

SQL Server:

SELECT TOP 20 * 
FROM dbo.[Sale]

Skipping then taking some results (Pagination)

ISO/ANSI SQL:

SELECT Id, Col1 
FROM TableName 
ORDER BY Id 
OFFSET 20 ROWS FETCH NEXT 20 ROWS ONLY;

MySQL:

SELECT * FROM TableName LIMIT 20, 20; -- offset, limit

Oracle; SQL Server:

SELECT Id, 
   Col1 
 FROM (SELECT Id, 
           Col1, 
           row_number() over (order by Id) RowNumber 
      FROM TableName) 
WHERE RowNumber BETWEEN 21 AND 40

PostgreSQL; SQLite:

SELECT * FROM TableName LIMIT 20 OFFSET 20;

Read SKIP TAKE (Pagination) online: https://riptutorial.com/sql/topic/2927/skip-take--pagination-

https://riptutorial.com/ 160



Chapter 48: SQL CURSOR

Examples

Example of a cursor that queries all rows by index for each database

Here, a cursor is used to loop through all databases.  
Futhermore, a cursor from dynamic sql is used to query each database returned by the first cursor. 
 
This is to demonstrate the connection-scope of a cursor.

DECLARE @db_name nvarchar(255) 
DECLARE @sql nvarchar(MAX) 
 
DECLARE @schema nvarchar(255) 
DECLARE @table nvarchar(255) 
DECLARE @column nvarchar(255) 
 
 
 
 
DECLARE db_cursor CURSOR FOR 
SELECT name FROM sys.databases 
 
 
OPEN db_cursor 
FETCH NEXT FROM db_cursor INTO @db_name 
 
WHILE @@FETCH_STATUS = 0 
BEGIN 
    SET @sql = 'SELECT * FROM ' + QUOTENAME(@db_name) + '.information_schema.columns' 
    PRINT '' 
    PRINT '' 
    PRINT '' 
    PRINT @sql 
    -- EXECUTE(@sql) 
 
 
 
    -- For each database 
 
    DECLARE @sqlstatement nvarchar(4000) 
    --move declare cursor into sql to be executed 
    SET @sqlstatement = 'DECLARE  columns_cursor CURSOR FOR SELECT TABLE_SCHEMA, TABLE_NAME, 
COLUMN_NAME FROM ' + QUOTENAME(@db_name) + '.information_schema.columns ORDER BY TABLE_SCHEMA, 
TABLE_NAME, ORDINAL_POSITION' 
 
 
 
    EXEC sp_executesql @sqlstatement 
 
 
    OPEN columns_cursor 
    FETCH NEXT FROM columns_cursor 
    INTO @schema, @table, @column 

https://riptutorial.com/ 161



 
    WHILE @@FETCH_STATUS = 0 
    BEGIN 
        PRINT @schema + '.' + @table + '.' + @column 
        --EXEC asp_DoSomethingStoredProc @UserId 
 
    FETCH NEXT FROM columns_cursor --have to fetch again within loop 
    INTO @schema, @table, @column 
 
    END 
    CLOSE columns_cursor 
    DEALLOCATE columns_cursor 
 
    -- End for each database 
 
 
 
 
 
    FETCH NEXT FROM db_cursor INTO @db_name 
END 
 
CLOSE db_cursor 
DEALLOCATE db_cursor

Read SQL CURSOR online: https://riptutorial.com/sql/topic/8895/sql-cursor

https://riptutorial.com/ 162



Chapter 49: SQL Group By vs Distinct

Examples

Difference between GROUP BY and DISTINCT

GROUP BY is used in combination with aggregation functions. Consider the following table:

orderId userId storeName orderValue orderDate

1 43 Store A 25 20-03-2016

2 57 Store B 50 22-03-2016

3 43 Store A 30 25-03-2016

4 82 Store C 10 26-03-2016

5 21 Store A 45 29-03-2016

The query below uses GROUP BY to perform aggregated calculations.

SELECT 
    storeName, 
    COUNT(*) AS total_nr_orders, 
    COUNT(DISTINCT userId) AS nr_unique_customers, 
    AVG(orderValue) AS average_order_value, 
    MIN(orderDate) AS first_order, 
    MAX(orderDate) AS lastOrder 
FROM 
    orders 
GROUP BY 
    storeName;

and will return the following information

storeName total_nr_orders nr_unique_customers average_order_value first_order lastOrder

Store A 3 2 33.3
20-03-
2016

29-03-
2016

Store B 1 1 50
22-03-
2016

22-03-
2016

Store C 1 1 10
26-03-
2016

26-03-
2016

While DISTINCT is used to list a unique combination of distinct values for the specified columns.

https://riptutorial.com/ 163



SELECT DISTINCT 
    storeName, 
    userId 
FROM 
    orders;

storeName userId

Store A 43

Store B 57

Store C 82

Store A 21

Read SQL Group By vs Distinct online: https://riptutorial.com/sql/topic/2499/sql-group-by-vs-
distinct

https://riptutorial.com/ 164



Chapter 50: SQL Injection

Introduction

SQL injection is an attempt to access a website's database tables by injecting SQL into a form 
field. If a web server does not protect against SQL injection attacks, a hacker can trick the 
database into running the additional SQL code. By executing their own SQL code, hackers can 
upgrade their account access, view someone else's private information, or make any other 
modifications to the database.

Examples

SQL injection sample

Assuming the call to your web application's login handler looks like this:

https://somepage.com/ajax/login.ashx?username=admin&password=123

Now in login.ashx, you read these values:

strUserName = getHttpsRequestParameterString("username"); 
strPassword = getHttpsRequestParameterString("password");

and query your database to determine whether a user with that password exists.

So you construct an SQL query string:

txtSQL = "SELECT * FROM Users WHERE username = '" + strUserName + "' AND password = '"+ 
strPassword +"'";

This will work if the username and password do not contain a quote.

However, if one of the parameters does contain a quote, the SQL that gets sent to the database 
will look like this:

-- strUserName = "d'Alambert"; 
txtSQL = "SELECT * FROM Users WHERE username = 'd'Alambert' AND password = '123'";

This will result in a syntax error, because the quote after the d in d'Alambert ends the SQL string.

You could correct this by escaping quotes in username and password, e.g.:

strUserName = strUserName.Replace("'", "''"); 
strPassword = strPassword.Replace("'", "''");

However, it's more appropriate to use parameters:

https://riptutorial.com/ 165



cmd.CommandText = "SELECT * FROM Users WHERE username = @username AND password = @password"; 
 
cmd.Parameters.Add("@username", strUserName); 
cmd.Parameters.Add("@password", strPassword);

If you do not use parameters, and forget to replace quote in even one of the values, then a 
malicious user (aka hacker) can use this to execute SQL commands on your database.

For example, if an attacker is evil, he/she will set the password to

lol'; DROP DATABASE master; -- 

and then the SQL will look like this:

"SELECT * FROM Users WHERE username = 'somebody' AND password = 'lol'; DROP DATABASE master; -
-'";

Unfortunately for you, this is valid SQL, and the DB will execute this!

This type of exploit is called an SQL injection.

There are many other things a malicious user could do, such as stealing every user's email 
address, steal everyone's password, steal credit card numbers, steal any amount of data in your 
database, etc.

This is why you always need to escape your strings. 
And the fact that you'll invariably forget to do so sooner or later is exactly why you should use 
parameters. Because if you use parameters, then your programming language framework will do 
any necessary escaping for you.

simple injection sample

If the SQL statement is constructed like this:

SQL = "SELECT * FROM Users WHERE username = '" + user + "' AND password ='" + pw + "'"; 
db.execute(SQL);

Then a hacker could retrieve your data by giving a password like pw' or '1'='1; the resulting SQL 
statement will be:

SELECT * FROM Users WHERE username = 'somebody' AND password ='pw' or '1'='1'

This one will pass the password check for all rows in the Users table because '1'='1' is always 
true.

To prevent this, use SQL parameters:

SQL = "SELECT * FROM Users WHERE username = ? AND password = ?"; 
db.execute(SQL, [user, pw]);

https://riptutorial.com/ 166



Read SQL Injection online: https://riptutorial.com/sql/topic/3517/sql-injection

https://riptutorial.com/ 167



Chapter 51: Stored Procedures

Remarks

Stored Procedures are SQL statements stored in the database that can be executed or called in 
queries. Using a stored procedure allows encapsulation of complicated or frequently used logic, 
and improves query performance by utilizing cached query plans. They can return any value a 
standard query can return.

Other benefits over dynamic SQL expressions are listed on Wikipeida.

Examples

Create and call a stored procedure

Stored procedures can be created through a database management GUI (SQL Server example), 
or through a SQL statement as follows:

-- Define a name and parameters 
CREATE PROCEDURE Northwind.getEmployee 
    @LastName nvarchar(50), 
    @FirstName nvarchar(50) 
AS 
 
-- Define the query to be run 
SELECT FirstName, LastName, Department 
FROM Northwind.vEmployeeDepartment 
WHERE FirstName = @FirstName AND LastName = @LastName 
AND EndDate IS NULL; 

Calling the procedure:

EXECUTE Northwind.getEmployee N'Ackerman', N'Pilar'; 
 
-- Or 
EXEC Northwind.getEmployee @LastName = N'Ackerman', @FirstName = N'Pilar'; 
GO 
 
-- Or 
EXECUTE Northwind.getEmployee @FirstName = N'Pilar', @LastName = N'Ackerman'; 
GO 

Read Stored Procedures online: https://riptutorial.com/sql/topic/1701/stored-procedures

https://riptutorial.com/ 168



Chapter 52: String Functions

Introduction

String functions perform operations on string values and return either numeric or string values.

Using string functions, you can, for example, combine data, extract a substring, compare strings, 
or convert a string to all uppercase or lowercase characters.

Syntax

CONCAT ( string_value1, string_value2 [, string_valueN ] )•
LTRIM ( character_expression )•
RTRIM ( character_expression )•
SUBSTRING ( expression ,start , length )•
ASCII ( character_expression )•
REPLICATE ( string_expression ,integer_expression )•
REVERSE ( string_expression )•
UPPER ( character_expression )•
TRIM ( [ characters FROM ] string )•
STRING_SPLIT ( string , separator )•
STUFF ( character_expression , start , length , replaceWith_expression )•
REPLACE ( string_expression , string_pattern , string_replacement )•

Remarks

String functions reference for Transact-SQL / Microsoft

String functions reference for MySQL

String functions reference for PostgreSQL

Examples

Trim empty spaces

Trim is used to remove write-space at the beginning or end of selection

In MSSQL there is no single TRIM()

SELECT LTRIM('  Hello  ') --returns 'Hello  ' 
SELECT RTRIM('  Hello  ') --returns '  Hello' 
SELECT LTRIM(RTRIM('  Hello  ')) --returns 'Hello'

MySql and Oracle

https://riptutorial.com/ 169



SELECT TRIM('  Hello  ') --returns 'Hello'

Concatenate

In (standard ANSI/ISO) SQL, the operator for string concatenation is ||. This syntax is supported 
by all major databases except SQL Server:

SELECT 'Hello' || 'World' || '!'; --returns HelloWorld!

Many databases support a CONCAT function to join strings:

SELECT CONCAT('Hello', 'World'); --returns 'HelloWorld'

Some databases support using CONCAT to join more than two strings (Oracle does not):

SELECT CONCAT('Hello', 'World', '!'); --returns 'HelloWorld!'

In some databases, non-string types must be cast or converted:

SELECT CONCAT('Foo', CAST(42 AS VARCHAR(5)), 'Bar'); --returns 'Foo42Bar'

Some databases (e.g., Oracle) perform implicit lossless conversions. For example, a CONCAT on a 
CLOB and NCLOB yields a NCLOB. A CONCAT on a number and a varchar2 results in a varchar2, etc.:

SELECT CONCAT(CONCAT('Foo', 42), 'Bar') FROM dual; --returns Foo42Bar

Some databases can use the non-standard + operator (but in most, + works only for numbers):

SELECT 'Foo' + CAST(42 AS VARCHAR(5)) + 'Bar';

On SQL Server < 2012, where CONCAT is not supported, + is the only way to join strings.

Upper & lower case

SELECT UPPER('HelloWorld') --returns 'HELLOWORLD' 
SELECT LOWER('HelloWorld') --returns 'helloworld'

Substring

Syntax is: SUBSTRING ( string_expression, start, length ). Note that SQL strings are 1-indexed.

SELECT SUBSTRING('Hello', 1, 2) --returns 'He' 
SELECT SUBSTRING('Hello', 3, 3) --returns 'llo'

This is often used in conjunction with the LEN() function to get the last n characters of a string of 
unknown length.

https://riptutorial.com/ 170



DECLARE @str1 VARCHAR(10) = 'Hello', @str2 VARCHAR(10) = 'FooBarBaz'; 
SELECT SUBSTRING(@str1, LEN(@str1) - 2, 3) --returns 'llo' 
SELECT SUBSTRING(@str2, LEN(@str2) - 2, 3) --returns 'Baz'

Split

Splits a string expression using a character separator. Note that STRING_SPLIT() is a table-valued 
function.

SELECT value FROM STRING_SPLIT('Lorem ipsum dolor sit amet.', ' ');

Result:

value 
----- 
Lorem 
ipsum 
dolor 
sit 
amet.

Stuff

Stuff a string into another, replacing 0 or more characters at a certain position.

Note: start position is 1-indexed (you start indexing at 1, not 0).

Syntax:

STUFF ( character_expression , start , length , replaceWith_expression ) 

Example:

SELECT STUFF('FooBarBaz', 4, 3, 'Hello') --returns 'FooHelloBaz'

Length

SQL Server

The LEN doesn't count the trailing space.

SELECT LEN('Hello') -- returns 5 
 
SELECT LEN('Hello '); -- returns 5

The DATALENGTH counts the trailing space.

SELECT DATALENGTH('Hello') -- returns 5 

https://riptutorial.com/ 171



 
SELECT DATALENGTH('Hello '); -- returns 6

It should be noted though, that DATALENGTH returns the length of the underlying byte 
representation of the string, which depends, i.a., on the charset used to store the string.

DECLARE @str varchar(100) = 'Hello ' --varchar is usually an ASCII string, occupying 1 byte 
per char 
SELECT DATALENGTH(@str) -- returns 6 
 
DECLARE @nstr nvarchar(100) = 'Hello ' --nvarchar is a unicode string, occupying 2 bytes per 
char 
SELECT DATALENGTH(@nstr) -- returns 12

Oracle

Syntax: Length ( char )

Examples:

SELECT Length('Bible') FROM dual; --Returns 5 
SELECT Length('righteousness') FROM dual; --Returns 13 
SELECT Length(NULL) FROM dual; --Returns NULL

See Also: LengthB, LengthC, Length2, Length4

Replace

Syntax:

REPLACE( String to search , String to search for and replace , String to place into the original string 
)

Example:

SELECT REPLACE( 'Peter Steve Tom', 'Steve', 'Billy' ) --Return Values: Peter Billy Tom

LEFT - RIGHT

Syntax is:  
LEFT ( string-expression , integer ) 
RIGHT ( string-expression , integer )

SELECT LEFT('Hello',2)  --return He 
SELECT RIGHT('Hello',2) --return lo

Oracle SQL doesn't have LEFT and RIGHT functions. They can be emulated with SUBSTR and 
LENGTH. 
SUBSTR ( string-expression, 1, integer )  

https://riptutorial.com/ 172



SUBSTR ( string-expression, length(string-expression)-integer+1, integer)

SELECT SUBSTR('Hello',1,2)  --return He 
SELECT SUBSTR('Hello',LENGTH('Hello')-2+1,2) --return lo

REVERSE

Syntax is: REVERSE ( string-expression )

SELECT REVERSE('Hello') --returns olleH

REPLICATE

The REPLICATE function concatenates a string with itself a specified number of times.

Syntax is: REPLICATE ( string-expression , integer )

SELECT REPLICATE ('Hello',4) --returns 'HelloHelloHelloHello'

REGEXP

MySQL3.19

Checks if a string matches a regular expression (defined by another string).

SELECT 'bedded' REGEXP '[a-f]' -- returns True 
 
SELECT 'beam' REGEXP '[a-f]' -- returns False

Replace function in sql Select and Update query

The Replace function in SQL is used to update the content of a string. The function call is 
REPLACE( ) for MySQL, Oracle, and SQL Server.  
 
The syntax of the Replace function is:

REPLACE (str, find, repl)

The following example replaces occurrences of South with Southern in Employees table:

FirstName Address

James South New York

John South Boston

Michael South San Diego

https://riptutorial.com/ 173



Select Statement :

If we apply the following Replace function:

SELECT 
    FirstName, 
    REPLACE (Address, 'South', 'Southern') Address 
FROM Employees 
ORDER BY FirstName 

Result:

FirstName Address

James Southern New York

John Southern Boston

Michael Southern San Diego

Update Statement :

We can use a replace function to make permanent changes in our table through following 
approach.

Update Employees 
Set city = (Address, 'South', 'Southern');

A more common approach is to use this in conjunction with a WHERE clause like this:

Update Employees 
Set Address = (Address, 'South', 'Southern') 
Where Address LIKE 'South%';

PARSENAME

DATABASE : SQL Server

PARSENAME function returns the specific part of given string(object name). object name may 
contains string like object name,owner name, database name and server name.

More details MSDN:PARSENAME

Syntax

PARSENAME('NameOfStringToParse',PartIndex)

Example

To get object name use part index 1

https://riptutorial.com/ 174



SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',1)  // returns `ObjectName` 
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',1)     // returns `Student`

To get schema name use part index 2

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',2)  // returns `SchemaName` 
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',2)     // returns `school`

To get database name use part index 3

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',3) // returns `DatabaseName` 
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',3)    // returns `SchoolDatabase` 
 

To get server name use part index 4

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',4)  // returns `ServerName` 
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',4)     // returns `[1012-1111]`

PARSENAME will returns null is specified part is not present in given object name string

INSTR

Return the index of the first occurrence of a substring (zero if not found)

Syntax: INSTR ( string, substring )

SELECT INSTR('FooBarBar', 'Bar') -- return 4 
SELECT INSTR('FooBarBar', 'Xar') -- return 0

Read String Functions online: https://riptutorial.com/sql/topic/1120/string-functions

https://riptutorial.com/ 175



Chapter 53: Subqueries

Remarks

Subqueries can appear in different clauses of an outer query, or in the set operation.

They must be enclosed in parentheses (). If the result of the subquery is compared to something 
else, the number of columns must match. Table aliases are required for subqueries in the FROM 
clause to name the temporary table.

Examples

Subquery in WHERE clause

Use a subquery to filter the result set. For example this will return all employees with a salary 
equal to the highest paid employee.

SELECT * 
FROM Employees 
WHERE Salary = (SELECT MAX(Salary) FROM Employees)

Subquery in FROM clause

A subquery in a FROM clause acts similarly to a temporary table that is generated during the 
execution of a query and lost afterwards.

SELECT Managers.Id, Employees.Salary 
FROM ( 
  SELECT Id 
  FROM Employees 
  WHERE ManagerId IS NULL 
) AS Managers 
JOIN Employees ON Managers.Id = Employees.Id

Subquery in SELECT clause

SELECT 
  Id, 
  FName, 
  LName, 
  (SELECT COUNT(*) FROM Cars WHERE Cars.CustomerId = Customers.Id) AS NumberOfCars 
FROM Customers

Subqueries in FROM clause

You can use subqueries to define a temporary table and use it in the FROM clause of an "outer" 
query.

https://riptutorial.com/ 176



SELECT * FROM (SELECT city, temp_hi - temp_lo AS temp_var FROM weather) AS w 
WHERE temp_var > 20;

The above finds cities from the weather table whose daily temperature variation is greater than 20. 
The result is:

city temp_var

ST LOUIS 21

LOS ANGELES 31

LOS ANGELES 23

LOS ANGELES 31

LOS ANGELES 27

LOS ANGELES 28

LOS ANGELES 28

LOS ANGELES 32

.

Subqueries in WHERE clause

The following example finds cities (from the cities example) whose population is below the 
average temperature (obtained via a sub-qquery):

SELECT name, pop2000 FROM cities 
WHERE pop2000 < (SELECT avg(pop2000)  FROM cities);

Here: the subquery (SELECT avg(pop2000) FROM cities) is used to specify conditions in the 
WHERE clause. The result is:

name pop2000

San Francisco 776733

ST LOUIS 348189

Kansas City 146866

Subqueries in SELECT clause

Subqueries can also be used in the SELECT part of the outer query. The following query shows all 

https://riptutorial.com/ 177



weather table columns with the corresponding states from the cities table.

SELECT w.*,  (SELECT c.state FROM cities AS c WHERE c.name = w.city ) AS state 
FROM weather AS w;

Filter query results using query on different table

This query selects all employees not on the Supervisors table.

SELECT * 
FROM Employees 
WHERE EmployeeID not in (SELECT EmployeeID 
                            FROM Supervisors)

The same results can be achieved using a LEFT JOIN.

SELECT * 
FROM Employees AS e 
LEFT JOIN Supervisors AS s ON s.EmployeeID=e.EmployeeID 
WHERE s.EmployeeID is NULL

Correlated Subqueries

Correlated (also known as Synchronized or Coordinated) Subqueries are nested queries that 
make references to the current row of their outer query:

SELECT EmployeeId 
    FROM Employee AS eOuter 
    WHERE Salary > ( 
       SELECT AVG(Salary) 
       FROM Employee eInner 
       WHERE eInner.DepartmentId = eOuter.DepartmentId 
    )

Subquery SELECT AVG(Salary) ... is correlated because it refers to Employee row eOuter from its 
outer query.

Read Subqueries online: https://riptutorial.com/sql/topic/1606/subqueries

https://riptutorial.com/ 178



Chapter 54: Synonyms

Examples

Create Synonym

CREATE SYNONYM EmployeeData 
FOR MyDatabase.dbo.Employees

Read Synonyms online: https://riptutorial.com/sql/topic/2518/synonyms

https://riptutorial.com/ 179



Chapter 55: Table Design

Remarks

The Open University (1999) Relational Database Systems: Block 2 Relational Theory, Milton 
Keynes, The Open University.

Examples

Properties of a well designed table.

A true relational database must go beyond throwing data into a few tables and writing some SQL 
statements to pull that data out. 
At best a badly designed table structure will slow the execution of queries and could make it 
impossible for the database to function as intended.

A database table should not be considered as just another table; it has to follow a set of rules to 
be considered truly relational. Academically it is referred to as a 'relation' to make the distinction.

The five rules of a relational table are:

Each value is atomic; the value in each field in each row must be a single value.1. 
Each field contains values that are of the same data type.2. 
Each field heading has a unique name.3. 
Each row in the table must have at least one value that makes it unique amongst the other 
records in the table.

4. 

The order of the rows and columns has no significance.5. 

A table conforming to the five rules:

Id Name DOB Manager

1 Fred 11/02/1971 3

2 Fred 11/02/1971 3

3 Sue 08/07/1975 2

Rule 1: Each value is atomic. Id, Name, DOB and Manager only contain a single value.•
Rule 2: Id contains only integers, Name contains text (we could add that it's text of four 
characters or less), DOB contains dates of a valid type and Manager contains integers (we could 
add that corresponds to a Primary Key field in a managers table).

•

Rule 3: Id, Name, DOB and Manager are unique heading names within the table.•
Rule 4: The inclusion of the Id field ensures that each record is distinct from any other record 
within the table.

•

https://riptutorial.com/ 180



A badly designed table:

Id Name DOB Name

1 Fred 11/02/1971 3

1 Fred 11/02/1971 3

3 Sue Friday the 18th July 1975 2, 1

Rule 1: The second name field contains two values - 2 and 1.•
Rule 2: The DOB field contains dates and text.•
Rule 3: There's two fields called 'name'.•
Rule 4: The first and second record are exactly the same.•
Rule 5: This rule isn't broken.•

Read Table Design online: https://riptutorial.com/sql/topic/2515/table-design

https://riptutorial.com/ 181



Chapter 56: Transactions

Remarks

A transaction is a logical unit of work containing one or more steps, each of which must complete 
successfully in order for the transaction to commit to the database. If there are errors, then all of 
the data modifications are erased and the database is rolled back to its initial state at the start of 
the transaction.

Examples

Simple Transaction

BEGIN TRANSACTION 
    INSERT INTO DeletedEmployees(EmployeeID, DateDeleted, User) 
        (SELECT 123, GetDate(), CURRENT_USER); 
    DELETE FROM Employees WHERE EmployeeID = 123; 
COMMIT TRANSACTION

Rollback Transaction

When something fails in your transaction code and you want to undo it, you can rollback your 
transaction:

BEGIN TRY 
    BEGIN TRANSACTION 
        INSERT INTO Users(ID, Name, Age) 
        VALUES(1, 'Bob', 24) 
 
        DELETE FROM Users WHERE Name = 'Todd' 
   COMMIT TRANSACTION 
END TRY 
BEGIN CATCH 
   ROLLBACK TRANSACTION 
END CATCH

Read Transactions online: https://riptutorial.com/sql/topic/2424/transactions

https://riptutorial.com/ 182



Chapter 57: Triggers

Examples

CREATE TRIGGER

This example creates a trigger that inserts a record to a second table (MyAudit) after a record is 
inserted into the table the trigger is defined on (MyTable). Here the "inserted" table is a special 
table used by Microsoft SQL Server to store affected rows during INSERT and UPDATE 
statements; there is also a special "deleted" table that performs the same function for DELETE 
statements.

CREATE TRIGGER MyTrigger 
    ON MyTable 
    AFTER INSERT 
 
AS 
 
BEGIN 
    -- insert audit record to MyAudit table 
    INSERT INTO MyAudit(MyTableId, User) 
    (SELECT MyTableId, CURRENT_USER FROM inserted) 
END

Use Trigger to manage a "Recycle Bin" for deleted items

CREATE TRIGGER BooksDeleteTrigger 
    ON MyBooksDB.Books 
    AFTER DELETE 
AS 
  INSERT INTO BooksRecycleBin 
    SELECT * 
    FROM deleted; 
GO

Read Triggers online: https://riptutorial.com/sql/topic/1432/triggers

https://riptutorial.com/ 183



Chapter 58: TRUNCATE

Introduction

The TRUNCATE statement deletes all data from a table. This is similar to DELETE with no filter, 
but, depending on the database software, has certain restrictions and optimizations.

Syntax

TRUNCATE TABLE table_name;•

Remarks

TRUNCATE is a DDL (Data Definition Language) command, and as such there are significant 
differences between it and DELETE (a Data Manipulation Language, DML, command). While 
TRUNCATE can be a means of quickly removing large volumes of records from a database, these 
differences should be understood in order to decide if using a TRUNCATE command is suitable in 
your particular situation.

TRUNCATE is a data page operation. Therefore DML triggers (ON DELETE) associated with 
the table won't fire when you perform a TRUNCATE operation. While this will save a large 
amount of time for massive delete operations, however you may then need to manually 
delete the related data.

•

TRUNCATE will release the disk space used by the deleted rows, DELETE will release 
space

•

If the table to be truncated uses identity columns (MS SQL Server), then the seed is reset by 
the TRUNCATE command. This may result referential integrity problems

•

Depending the security roles in place and the variant of SQL in use, you may not have the 
necessary permissions to perform a TRUNCATE command

•

Examples

Removing all rows from the Employee table

TRUNCATE TABLE Employee;

Using truncate table is often better then using DELETE TABLE as it ignores all the indexes and 
triggers and just removes everything.

Delete table is a row based operation this means that each row is deleted. Truncate table is a data 
page operation the entire data page is reallocated. If you have a table with a million rows it will be 
much faster to truncate the table than it would be to use a delete table statement.

Though we can delete specific Rows with DELETE, we cannot TRUNCATE specific rows, we can 

https://riptutorial.com/ 184



only TRUNCATE all the records at once. Deleting All rows and then inserting a new record will 
continue to add the Auto incremented Primary key value from the previously inserted value, where 
as in Truncate, the Auto Incremental primary key value will also get reset and starts from 1.

Note that when truncating table, no foreign keys must be present, otherwise you will get an 
error.

Read TRUNCATE online: https://riptutorial.com/sql/topic/1466/truncate

https://riptutorial.com/ 185



Chapter 59: TRY/CATCH

Remarks

TRY/CATCH is a language construct specific to MS SQL Server's T-SQL.

It allows error handling within T-SQL, similar to that seen in .NET code.

Examples

Transaction In a TRY/CATCH

This will rollback both inserts due to an invalid datetime:

BEGIN TRANSACTION 
BEGIN TRY 
    INSERT INTO dbo.Sale(Price, SaleDate, Quantity) 
    VALUES (5.2, GETDATE(), 1) 
    INSERT INTO dbo.Sale(Price, SaleDate, Quantity) 
    VALUES (5.2, 'not a date', 1) 
    COMMIT TRANSACTION 
END TRY 
BEGIN CATCH 
    THROW 
    ROLLBACK TRANSACTION 
END CATCH

This will commit both inserts:

BEGIN TRANSACTION 
BEGIN TRY 
    INSERT INTO dbo.Sale(Price, SaleDate, Quantity) 
    VALUES (5.2, GETDATE(), 1) 
    INSERT INTO dbo.Sale(Price, SaleDate, Quantity) 
    VALUES (5.2, GETDATE(), 1) 
    COMMIT TRANSACTION 
END TRY 
BEGIN CATCH 
    THROW 
    ROLLBACK TRANSACTION 
END CATCH

Read TRY/CATCH online: https://riptutorial.com/sql/topic/4420/try-catch

https://riptutorial.com/ 186



Chapter 60: UNION / UNION ALL

Introduction

UNION keyword in SQL is used to combine to SELECT statement results with out any duplicate. 
In order to use UNION and combine results both SELECT statement should have same number of 
column with same data type in same order, but the length of column can be different.

Syntax

SELECT column_1 [, column_2 ] FROM table_1 [, table_2 ] [WHERE condition]
UNION | UNION ALL

SELECT column_1 [, column_2 ] FROM table_1 [, table_2 ] [WHERE condition]

•

Remarks

UNION and UNION ALL clauses combine the result-set of two or more identically structured SELECT 
statements into a single result / table.

Both the column count and column types for each query have to match in order for a UNION / UNION 
ALL to work.

The difference between a UNION and a UNION ALL query is that the UNION clause will remove any 
duplicate rows in the result where the UNION ALL will not.

This distinct removal of records can significantly slow queries even if there are no distinct rows to 
be removed because of this if you know there wont be any duplicates (or don't care) always 
default to UNION ALL for a more optimised query.

Examples

Basic UNION ALL query

CREATE TABLE HR_EMPLOYEES 
( 
    PersonID int, 
    LastName VARCHAR(30), 
    FirstName VARCHAR(30), 
    Position VARCHAR(30) 
); 
 
CREATE TABLE FINANCE_EMPLOYEES 
( 
    PersonID INT, 
    LastName VARCHAR(30), 
    FirstName VARCHAR(30), 
    Position VARCHAR(30) 

https://riptutorial.com/ 187



);

Let's say we want to extract the names of all the managers from our departments.

Using a UNION we can get all the employees from both HR and Finance departments, which hold 
the position of a manager

SELECT 
    FirstName, LastName 
FROM 
    HR_EMPLOYEES 
WHERE 
    Position = 'manager' 
UNION ALL 
SELECT 
    FirstName, LastName 
FROM 
    FINANCE_EMPLOYEES 
WHERE 
    Position = 'manager' 

The UNION statement removes duplicate rows from the query results. Since it is possible to have 
people having the same Name and position in both departments we are using UNION ALL, in order 
not to remove duplicates.

If you want to use an alias for each output column, you can just put them in the first select 
statement, as follows:

SELECT 
    FirstName as 'First Name', LastName as 'Last Name' 
FROM 
    HR_EMPLOYEES 
WHERE 
    Position = 'manager' 
UNION ALL 
SELECT 
    FirstName, LastName 
FROM 
    FINANCE_EMPLOYEES 
WHERE 
    Position = 'manager' 

Simple explanation and Example

In simple terms:

UNION joins 2 result sets while removing duplicates from the result set•
UNION ALL joins 2 result sets without attempting to remove duplicates•

One mistake many people make is to use a UNION when they do not need to have the 
duplicates removed. The additional performance cost against large results sets can be 
very significant.

https://riptutorial.com/ 188



When you might need UNION

Suppose you need to filter a table against 2 different attributes, and you have created separate 
non-clustered indexes for each column. A UNION enables you to leverage both indexes while still 
preventing duplicates.

SELECT C1, C2, C3 FROM Table1 WHERE C1 = @Param1 
UNION 
SELECT C1, C2, C3 FROM Table1 WHERE C2 = @Param2

This simplifies your performance tuning since only simple indexes are needed to perform these 
queries optimally. You may even be able to get by with quite a bit fewer non-clustered indexes 
improving overall write performance against the source table as well.

When you might need UNION ALL

Suppose you still need to filter a table against 2 attributes, but you do not need to filter duplicate 
records (either because it doesn't matter or your data wouldn't produce any duplicates during the 
union due to your data model design).

SELECT C1 FROM Table1 
UNION ALL 
SELECT C1 FROM Table2

This is especially useful when creating Views that join data that is designed to be physically 
partitioned across multiple tables (maybe for performance reasons, but still wants to roll-up 
records). Since the data is already split, having the database engine remove duplicates adds no 
value and just adds additional processing time to the queries.

Read UNION / UNION ALL online: https://riptutorial.com/sql/topic/349/union---union-all

https://riptutorial.com/ 189



Chapter 61: UPDATE

Syntax

UPDATE table

SET column_name = value, column_name2 = value_2, ..., column_name_n = value_n

WHERE condition (logical operator condition_n)

•

Examples

Updating All Rows

This example uses the Cars Table from the Example Databases.

UPDATE Cars 
SET Status = 'READY'

This statement will set the 'status' column of all rows of the 'Cars' table to "READY" because it 
does not have a WHERE clause to filter the set of rows.

Updating Specified Rows

This example uses the Cars Table from the Example Databases.

UPDATE 
    Cars 
SET 
    Status = 'READY' 
WHERE 
    Id = 4

This statement will set the status of the row of 'Cars' with id 4 to "READY".

WHERE clause contains a logical expression which is evaluated for each row. If a row fulfills the 
criteria, its value is updated. Otherwise, a row remains unchanged.

Modifying existing values

This example uses the Cars Table from the Example Databases.

UPDATE Cars 
SET TotalCost = TotalCost + 100 
WHERE Id = 3 or Id = 4

Update operations can include current values in the updated row. In this simple example the 
TotalCost is incremented by 100 for two rows:

https://riptutorial.com/ 190



The TotalCost of Car #3 is increased from 100 to 200•
The TotalCost of Car #4 is increased from 1254 to 1354•

A column's new value may be derived from its previous value or from any other column's value in 
the same table or a joined table.

UPDATE with data from another table

The examples below fill in a PhoneNumber for any Employee who is also a Customer and currently 
does not have a phone number set in the Employees Table.

(These examples use the Employees and Customers tables from the Example Databases.)

Standard SQL

Update using a correlated subquery:

UPDATE 
    Employees 
SET PhoneNumber = 
    (SELECT 
         c.PhoneNumber 
     FROM 
         Customers c 
     WHERE 
         c.FName = Employees.FName 
         AND c.LName = Employees.LName) 
WHERE Employees.PhoneNumber IS NULL

SQL:2003

Update using MERGE:

MERGE INTO 
    Employees e 
USING 
    Customers c 
ON 
    e.FName = c.Fname 
    AND e.LName = c.LName 
    AND e.PhoneNumber IS NULL 
WHEN MATCHED THEN 
   UPDATE 
      SET PhoneNumber = c.PhoneNumber

SQL Server

Update using INNER JOIN:

https://riptutorial.com/ 191



UPDATE 
    Employees 
SET 
    PhoneNumber = c.PhoneNumber 
FROM 
    Employees e 
INNER JOIN Customers c 
        ON e.FName = c.FName 
        AND e.LName = c.LName 
WHERE 
    PhoneNumber IS NULL

Capturing Updated records

Sometimes one wants to capture the records that have just been updated.

CREATE TABLE #TempUpdated(ID INT) 
 
Update TableName SET Col1 = 42 
    OUTPUT inserted.ID INTO #TempUpdated 
    WHERE Id > 50

Read UPDATE online: https://riptutorial.com/sql/topic/321/update

https://riptutorial.com/ 192



Chapter 62: Views

Examples

Simple views

A view can filter some rows from the base table or project only some columns from it:

CREATE VIEW new_employees_details AS 
SELECT E.id, Fname, Salary, Hire_date 
FROM Employees E 
WHERE hire_date > date '2015-01-01';

If you select form the view:

select * from new_employees_details

Id FName Salary Hire_date

4 Johnathon 500 24-07-2016

Complex views

A view can be a really complex query(aggregations, joins, subqueries, etc). Just be sure you add 
column names for everything you select:

Create VIEW dept_income AS 
SELECT d.Name as DepartmentName, sum(e.salary) as TotalSalary 
FROM Employees e 
JOIN Departments d on e.DepartmentId = d.id 
GROUP BY d.Name;

Now you can select from it as from any table:

SELECT * 
FROM dept_income;

DepartmentName TotalSalary

HR 1900

Sales 600

Read Views online: https://riptutorial.com/sql/topic/766/views

https://riptutorial.com/ 193



Chapter 63: Window Functions

Examples

Adding the total rows selected to every row

SELECT your_columns, COUNT(*) OVER() as Ttl_Rows FROM your_data_set

id name Ttl_Rows

1 example 5

2 foo 5

3 bar 5

4 baz 5

5 quux 5

Instead of using two queries to get a count then the line, you can use an aggregate as a window 
function and use the full result set as the window. 
This can be used as a base for further calculation without the complexity of extra self joins.

Setting up a flag if other rows have a common property

Let's say I have this data:

Table items

id name tag

1 example unique_tag

2 foo simple

42 bar simple

3 baz hello

51 quux world

I'd like to get all those lines and know if a tag is used by other lines

SELECT id, name, tag, COUNT(*) OVER (PARTITION BY tag) > 1 AS flag FROM items

https://riptutorial.com/ 194



The result will be:

id name tag flag

1 example unique_tag false

2 foo simple true

42 bar simple true

3 baz hello false

51 quux world false

In case your database doesn't have OVER and PARTITION you can use this to produce the same 
result:

SELECT id, name, tag, (SELECT COUNT(tag) FROM items B WHERE tag = A.tag) > 1 AS flag FROM 
items A

Getting a running total

Given this data:

date amount

2016-03-12 200

2016-03-11 -50

2016-03-14 100

2016-03-15 100

2016-03-10 -250

SELECT date, amount, SUM(amount) OVER (ORDER BY date ASC) AS running 
FROM operations 
ORDER BY date ASC

will give you

date amount running

2016-03-10 -250 -250

2016-03-11 -50 -300

2016-03-12 200 -100

https://riptutorial.com/ 195



date amount running

2016-03-14 100 0

2016-03-15 100 -100

Getting the N most recent rows over multiple grouping

Given this data

User_ID Completion_Date

1 2016-07-20

1 2016-07-21

2 2016-07-20

2 2016-07-21

2 2016-07-22

;with CTE as 
(SELECT *, 
        ROW_NUMBER() OVER (PARTITION BY User_ID 
                           ORDER BY Completion_Date DESC) Row_Num 
FROM    Data) 
SELECT * FORM CTE WHERE Row_Num <= n

Using n=1, you'll get the one most recent row per user_id:

User_ID Completion_Date Row_Num

1 2016-07-21 1

2 2016-07-22 1

Finding "out-of-sequence" records using the LAG() function

Given these sample data:

ID STATUS STATUS_TIME STATUS_BY

1 ONE 2016-09-28-19.47.52.501398 USER_1

3 ONE 2016-09-28-19.47.52.501511 USER_2

1 THREE 2016-09-28-19.47.52.501517 USER_3

https://riptutorial.com/ 196



ID STATUS STATUS_TIME STATUS_BY

3 TWO 2016-09-28-19.47.52.501521 USER_2

3 THREE 2016-09-28-19.47.52.501524 USER_4

Items identified by ID values must move from STATUS 'ONE' to 'TWO' to 'THREE' in sequence, 
without skipping statuses. The problem is to find users (STATUS_BY) values who violate the rule and 
move from 'ONE' immediately to 'THREE'.

The LAG() analytical function helps to solve the problem by returning for each row the value in the 
preceding row:

SELECT * FROM ( 
 SELECT 
  t.*, 
  LAG(status) OVER (PARTITION BY id ORDER BY status_time) AS prev_status 
  FROM test t 
) t1 WHERE status = 'THREE' AND prev_status != 'TWO'

In case your database doesn't have LAG() you can use this to produce the same result:

SELECT A.id, A.status, B.status as prev_status, A.status_time, B.status_time as 
prev_status_time 
FROM Data A, Data B 
WHERE A.id = B.id 
AND   B.status_time = (SELECT MAX(status_time) FROM Data where status_time < A.status_time and 
id = A.id) 
AND   A.status = 'THREE' AND NOT B.status = 'TWO'

Read Window Functions online: https://riptutorial.com/sql/topic/647/window-functions

https://riptutorial.com/ 197



Chapter 64: XML

Examples

Query from XML Data Type

DECLARE @xmlIN XML = '<TableData> 
<aaa Main="First"> 
  <row name="a" value="1" /> 
  <row name="b" value="2" /> 
  <row name="c" value="3" /> 
</aaa> 
<aaa Main="Second"> 
  <row name="a" value="3" /> 
  <row name="b" value="4" /> 
  <row name="c" value="5" /> 
</aaa> 
<aaa Main="Third"> 
  <row name="a" value="10" /> 
  <row name="b" value="20" /> 
  <row name="c" value="30" /> 
</aaa> 
</TableData>' 
 
SELECT t.col.value('../@Main', 'varchar(10)') [Header], 
t.col.value('@name', 'VARCHAR(25)') [name], 
t.col.value('@value',  'VARCHAR(25)') [Value] 
FROM    @xmlIn.nodes('//TableData/aaa/row') AS t (col)

Results

Header    name    Value 
First      a        1 
First      b        2 
First      c        3 
Second     a        3 
Second     b        4 
Second     c        5 
Third      a        10 
Third      b        20 
Third      c        30

Read XML online: https://riptutorial.com/sql/topic/4421/xml

https://riptutorial.com/ 198



Credits

S. 

No
Chapters Contributors

1
Getting started with 
SQL

Arjan Einbu, brichins, Burkhard, cale_b, CL., Community, 
Devmati Wadikar, Epodax, geeksal, H. Pauwelyn, Hari, Joey, 
JohnLBevan, Jon Ericson, Lankymart, Laurel, Mureinik, Nathan, 
omini data, PeterRing, Phrancis, Prateek, RamenChef, Ray, 
Simone Carletti, SZenC, t1gor, ypercube

2 ALTER TABLE
Aidan, blackbishop, bluefeet, CL., Florin Ghita, Francis Lord, 
guiguiblitz, Joe W, KIRAN KUMAR MATAM, Lexi, mithra chintha
, Ozair Kafray, Simon Foster, Siva Rama Krishna

3
AND & OR 
Operators

guiguiblitz

4 Cascading Delete Stefan Steiger

5 CASE
ɐlǝx, Christos, CL., Dariusz, Fenton, Infinity, Jaydles, Matt, 
MotKohn, Mureinik, Peter Lang, Stanislovas Kalašnikovas

6 Clean Code in SQL CL., Stivan

7 Comments CL., Phrancis

8
Common Table 
Expressions

CL., Daniel, dd4711, fuzzy_logic, Gidil, Luis Lema, ninesided, 
Peter K, Phrancis, Sibeesh Venu

9 CREATE Database Emil Rowland

10
CREATE 
FUNCTION

John Odom, Ricardo Pontual

11 CREATE TABLE
Aidan, alex9311, Almir Vuk, Ares, CL., drunken_monkey, Dylan 
Vander Berg, Franck Dernoncourt, H. Pauwelyn, Jojodmo, 
KIRAN KUMAR MATAM, Matas Vaitkevicius, Prateek

12
cross apply, outer 
apply

Karthikeyan, RamenChef

13 Data Types
bluefeet, Jared Hooper, John Odom, Jon Chan, JonMark Perry, 
Phrancis

14 DELETE
Batsu, Chip, CL., Dylan Vander Berg, fredden, Joel, KIRAN 
KUMAR MATAM, Phrancis, Umesh, xenodevil, Zoyd

https://riptutorial.com/ 199



15
DROP or DELETE 
Database

Abhilash R Vankayala, John Odom

16 DROP Table CL., Joel, KIRAN KUMAR MATAM, Stu

17
Example Databases 
and Tables

Abhilash R Vankayala, Arulkumar, Athafoud, bignose, Bostjan, 
Brad Larson, Christian, CL., Dariusz, Dr. J. Testington, 
enrico.bacis, Florin Ghita, FlyingPiMonster, forsvarir, Franck 
Dernoncourt, hairboat, JavaHopper, Jaydles, Jon Ericson, 
Magisch, Matt, Mureinik, Mzzzzzz, Prateek, rdans, Shiva, tinlyx, 
Tot Zam, WesleyJohnson

18 EXCEPT LCIII

19 Execution blocks Phrancis

20 EXISTS CLAUSE Blag, Özgür Öztürk

21
EXPLAIN and 
DESCRIBE

Simulant

22
Filter results using 
WHERE and 
HAVING

Arulkumar, Bostjan, CL., Community, Franck Dernoncourt, H. 
Pauwelyn, Jon Chan, Jon Ericson, juergen d, Matas 
Vaitkevicius, Mureinik, Phrancis, Tot Zam

23
Finding Duplicates 
on a Column Subset 
with Detail

Darrel Lee, mnoronha

24 Foreign Keys CL., Harjot, Yehuda Shapira

25
Functions 
(Aggregate)

ashja99, CL., Florin Ghita, Ian Kenney, Imran Ali Khan, Jon 
Chan, juergen d, KIRAN KUMAR MATAM, Mark Stewart, 
Maverick, Nathan, omini data, Peter K, Reboot, Tot Zam, 

William Ledbetter, winseybash, Алексей Неудачин

26 Functions (Analytic) CL., omini data

27
Functions 
(Scalar/Single Row)

CL., Kewin Björk Nielsen, Mark Stewart

28
GRANT and 
REVOKE

RamenChef, user2314737

29 GROUP BY
3N1GM4, Abe Miessler, Bostjan, Devmati Wadikar, Filipe 
Manuel, Frank, Gidil, Jaydles, juergen d, Nathaniel Ford, Peter 
Gordon, Simone - Ali One, WesleyJohnson, Zahiro Mor, Zoyd

30 Identifier Andreas, CL.

https://riptutorial.com/ 200



31 IN clause CL., juergen d, walid, Zaga

32 Indexes

a1ex07, Almir Vuk, carlosb, CL., David Manheim, 
FlyingPiMonster, forsvarir, Franck Dernoncourt, Horaciux, 
Jenism, KIRAN KUMAR MATAM, mauris, Parado, Paulo Freitas
, Ryan

33 Information Schema Hack-R

34 INSERT
Ameya Deshpande, CL., Daniel Langemann, Dipesh Poudel, 
inquisitive_mind, KIRAN KUMAR MATAM, rajarshig, Tot Zam, 
zplizzi

35 JOIN

A_Arnold, Akshay Anand, Andy G, bignose, Branko Dimitrijevic, 
Casper Spruit, CL., Daniel Langemann, Darren Bartrup-Cook, 
Dipesh Poudel, enrico.bacis, Florin Ghita, forsvarir, Franck 
Dernoncourt, hairboat, Hari K M, HK1, HLGEM, inquisitive_mind
, John C, John Odom, John Slegers, Mark Iannucci, Marvin, 
Mureinik, Phrancis, raholling, Raidri, Saroj Sasmal, Stefan 

Steiger, sunkuet02, Tot Zam, xenodevil, ypercube, Рахул 
Маквана

36 LIKE operator

Abhilash R Vankayala, Aidan, ashja99, Bart Schuijt, CL., 
Cristian Abelleira, guiguiblitz, Harish Gyanani, hellyale, Jenism, 
Lohitha Palagiri, Mark Perera, Mr. Developer, Ojen, Phrancis, 
RamenChef, Redithion, Stefan Steiger, Tot Zam, Vikrant, 
vmaroli

37 Materialized Views dmfay

38 MERGE Abhilash R Vankayala, CL., Kyle Hale, SQLFox, Zoyd

39 NULL
Bart Schuijt, CL., dd4711, Devmati Wadikar, Phrancis, Saroj 
Sasmal, StanislavL, walid, ypercube

40 ORDER BY
Andi Mohr, CL., Cristian Abelleira, Jaydles, mithra chintha, 
nazark, Özgür Öztürk, Parado, Phrancis, Wolfgang

41 Order of Execution a1ex07, Gallus, Ryan Rockey, ypercube

42 Primary Keys Andrea Montanari, CL., FlyingPiMonster, KjetilNordin

43 Relational Algebra CL., Darren Bartrup-Cook, Martin Smith

44 Row number CL., Phrancis, user1221533

Abhilash R Vankayala, aholmes, Alok Singh, Amnon, Andrii 
Abramov, apomene, Arpit Solanki, Arulkumar, AstraSerg, Brent 
Oliver, Charlie West, Chris, Christian Sagmüller, Christos, CL., 
controller, dariru, Daryl, David Pine, David Spillett, day_dreamer

45 SELECT

https://riptutorial.com/ 201



, Dean Parker, DeepSpace, Dipesh Poudel, Dror, Durgpal Singh
, Epodax, Eric VB, FH-Inway, Florin Ghita, FlyingPiMonster, 
Franck Dernoncourt, geeksal, George Bailey, Hari K M, 
HoangHieu, iliketocode, Imran Ali Khan, Inca, Jared Hooper, 
Jaydles, John Odom, John Slegers, Jojodmo, JonH, Kapep, 
KartikKannapur, Lankymart, Mark Iannucci, Mark Perera, Mark 
Wojciechowicz, Matas Vaitkevicius, Matt, Matt S, Mattew Whitt, 
Matthew Moisen, MegaTom, Mihai-Daniel Virna, Mureinik, 
mustaccio, mxmissile, Oded, Ojen, onedaywhen, Paul Bambury, 

penderi, Peter Gordon, Prateek, Praveen Tiwari, Přemysl 
Šťastný, Preuk, Racil Hilan, Robert Columbia, Ronnie Wang, 
Ryan, Saroj Sasmal, Shiva, SommerEngineering, sqluser, stark, 
sunkuet02, ThisIsImpossible, Timothy, user1336087, 
user1605665, waqasahmed, wintersolider, WMios, xQbert, Yury 
Fedorov, Zahiro Mor, zedfoxus

46 Sequence John Smith

47
SKIP TAKE 
(Pagination)

CL., Karl Blacquiere, Matas Vaitkevicius, RamenChef

48 SQL CURSOR Stefan Steiger

49
SQL Group By vs 
Distinct

carlosb

50 SQL Injection
120196, CL., Clomp, Community, Epodax, Knickerless-Noggins, 
Stefan Steiger

51 Stored Procedures brichins, John Odom, Lamak, Ryan

52 String Functions

ɐlǝx, Allan S. Hansen, Arthur D, Arulkumar, Batsu, Chris, CL., 
Damon Smithies, Franck Dernoncourt, Golden Gate, hatchet, 
Imran Ali Khan, IncrediApp, Jaydip Jadhav, Jones Joseph, 
Kewin Björk Nielsen, Leigh Riffel, Matas Vaitkevicius, Mateusz 
Piotrowski, Neria Nachum, Phrancis, RamenChef, Robert 
Columbia, vmaroli, ypercube

53 Subqueries
CL., dasblinkenlight, KIRAN KUMAR MATAM, Nunie123, 
Phrancis, RamenChef, tinlyx

54 Synonyms Daryl

55 Table Design Darren Bartrup-Cook

56 Transactions Amir Pourmand, CL., Daryl, John Odom

57 Triggers Daryl, IncrediApp

https://riptutorial.com/ 202



58 TRUNCATE
Abhilash R Vankayala, CL., Cristian Abelleira, DaImTo, Hynek 
Bernard, inquisitive_mind, KIRAN KUMAR MATAM, Paul 
Bambury, ss005

59 TRY/CATCH Uberzen1

60 UNION / UNION ALL
Andrea, Athafoud, Daniel Langemann, Jason W, Jim, Joe Taras
, KIRAN KUMAR MATAM, Lankymart, Mihai-Daniel Virna, 
sunkuet02

61 UPDATE

Akshay Anand, CL., Daniel Vérité, Dariusz, Dipesh Poudel, 
FlyingPiMonster, Gidil, H. Pauwelyn, Jon Chan, KIRAN KUMAR 
MATAM, Matas Vaitkevicius, Matt, Phrancis, Sanjay Bharwani, 
sunkuet02, Tot Zam, TriskalJM, vmaroli, WesleyJohnson

62 Views Amir978, CL., Florin Ghita

63 Window Functions Arkh, beercohol, bhs, Gidil, Jerry Jeremiah, Mureinik, mustaccio

64 XML Steven

https://riptutorial.com/ 203

Steve Nouri
Typewriter
Steve Nouri


	About
	Chapter 1: Getting started with SQL
	Remarks
	Versions
	Examples
	Overview


	Chapter 2: ALTER TABLE
	Introduction
	Syntax
	Examples
	Add Column(s)
	Drop Column
	Drop Constraint
	Add Constraint
	Alter Column
	Add Primary Key


	Chapter 3: AND & OR Operators
	Syntax
	Examples
	AND OR Example


	Chapter 4: Cascading Delete
	Examples
	ON DELETE CASCADE


	Chapter 5: CASE
	Introduction
	Syntax
	Remarks
	Examples
	Searched CASE in SELECT (Matches a boolean expression)
	Use CASE to COUNT the number of rows in a column match a condition.
	Shorthand CASE in SELECT
	CASE in a clause ORDER BY
	Using CASE in UPDATE
	CASE use for NULL values ordered last
	CASE in ORDER BY clause to sort records by lowest value of 2 columns


	Sample data
	Query
	Results
	Explanation
	Chapter 6: Clean Code in SQL
	Introduction
	Examples
	Formatting and Spelling of Keywords and Names


	Table/Column Names
	Keywords
	SELECT *
	Indenting
	Joins

	Chapter 7: Comments
	Examples
	Single-line comments
	Multi-line comments


	Chapter 8: Common Table Expressions
	Syntax
	Remarks
	Examples
	Temporary query
	recursively going up in a tree
	generating values
	recursively enumerating a subtree
	Oracle CONNECT BY functionality with recursive CTEs
	Recursively generate dates, extended to include team rostering as example
	Refactoring a query to use Common Table Expressions
	Example of a complex SQL with Common Table Expression


	Chapter 9: CREATE Database
	Syntax
	Examples
	CREATE Database


	Chapter 10: CREATE FUNCTION
	Syntax
	Parameters
	Remarks
	Examples
	Create a new Function


	Chapter 11: CREATE TABLE
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Create a New Table
	Create Table From Select
	Duplicate a table
	CREATE TABLE With FOREIGN KEY
	Create a Temporary or In-Memory Table


	PostgreSQL and SQLite
	SQL Server
	Chapter 12: cross apply, outer apply
	Examples
	CROSS APPLY and OUTER APPLY basics


	Chapter 13: Data Types
	Examples
	DECIMAL and NUMERIC
	FLOAT and REAL
	Integers
	MONEY and SMALLMONEY
	BINARY and VARBINARY
	CHAR and VARCHAR
	NCHAR and NVARCHAR
	UNIQUEIDENTIFIER


	Chapter 14: DELETE
	Introduction
	Syntax
	Examples
	DELETE certain rows with WHERE
	DELETE all rows
	TRUNCATE clause
	DELETE certain rows based upon comparisons with other tables


	Chapter 15: DROP or DELETE Database
	Syntax
	Remarks
	Examples
	DROP Database


	Chapter 16: DROP Table
	Remarks
	Examples
	Simple drop
	Check for existence before dropping


	Chapter 17: Example Databases and Tables
	Examples
	Auto Shop Database

	Relationships between tables
	Departments
	Employees
	Customers
	Cars
	Library Database

	Relationships between tables
	Authors
	Books
	BooksAuthors
	Examples
	Countries Table

	Countries

	Chapter 18: EXCEPT
	Remarks
	Examples
	Select dataset except where values are in this other dataset


	Chapter 19: Execution blocks
	Examples
	Using BEGIN ... END


	Chapter 20: EXISTS CLAUSE
	Examples
	EXISTS CLAUSE


	Get all customers with a least one order
	Get all customers with no order
	Purpose
	Chapter 21: EXPLAIN and DESCRIBE
	Examples
	DESCRIBE tablename;
	EXPLAIN Select query


	Chapter 22: Filter results using WHERE and HAVING
	Syntax
	Examples
	The WHERE clause only returns rows that match its criteria
	Use IN to return rows with a value contained in a list
	Use LIKE to find matching strings and substrings
	WHERE clause with NULL/NOT NULL values
	Use HAVING with Aggregate Functions
	Use BETWEEN to Filter Results
	Equality
	AND and OR
	Use HAVING to check for multiple conditions in a group
	Where EXISTS


	Chapter 23: Finding Duplicates on a Column Subset with Detail
	Remarks
	Examples
	Students with same name and date of birth


	Chapter 24: Foreign Keys
	Examples
	Creating a table with a foreign key
	Foreign Keys explained


	A few tips for using Foreign Keys
	Chapter 25: Functions (Aggregate)
	Syntax
	Remarks
	Examples
	SUM
	Conditional aggregation
	AVG()

	EXAMPLE TABLE
	QUERY
	RESULTS
	List Concatenation


	MySQL
	Oracle & DB2
	PostgreSQL
	SQL Server
	SQL Server 2016 and earlier
	SQL Server 2017 and SQL Azure

	SQLite
	Count
	Max
	Min

	Chapter 26: Functions (Analytic)
	Introduction
	Syntax
	Examples
	FIRST_VALUE
	LAST_VALUE
	LAG and LEAD
	PERCENT_RANK and CUME_DIST
	PERCENTILE_DISC and PERCENTILE_CONT


	Chapter 27: Functions (Scalar/Single Row)
	Introduction
	Syntax
	Remarks
	Examples
	Character modifications
	Date And Time
	Configuration and Conversion Function
	Logical and Mathmetical Function

	SQL has two logical functions – CHOOSE and IIF.
	SQL includes several mathematical functions that you can use to perform calculations on input values and return numeric results.

	Chapter 28: GRANT and REVOKE
	Syntax
	Remarks
	Examples
	Grant/revoke privileges


	Chapter 29: GROUP BY
	Introduction
	Syntax
	Examples
	USE GROUP BY to COUNT the number of rows for each unique entry in a given column
	Filter GROUP BY results using a HAVING clause
	Basic GROUP BY example
	ROLAP aggregation (Data Mining)

	Description
	Examples
	With cube
	With roll up

	Chapter 30: Identifier
	Introduction
	Examples
	Unquoted identifiers


	Chapter 31: IN clause
	Examples
	Simple IN clause
	Using IN clause with a subquery


	Chapter 32: Indexes
	Introduction
	Remarks
	Examples
	Creating an Index
	Clustered, Unique, and Sorted Indexes
	Inserting with a Unique Index
	SAP ASE: Drop index
	Sorted Index
	Dropping an Index, or Disabling and Rebuilding it
	Unique Index that Allows NULLS
	Rebuild index
	Clustered index
	Non clustered index
	Partial or Filtered Index


	Chapter 33: Information Schema
	Examples
	Basic Information Schema Search


	Chapter 34: INSERT
	Syntax
	Examples
	Insert New Row
	Insert Only Specified Columns
	INSERT data from another table using SELECT
	Insert multiple rows at once


	Chapter 35: JOIN
	Introduction
	Syntax
	Remarks
	Examples
	Basic explicit inner join
	Implicit Join
	Left Outer Join


	So how does this work?
	Self Join

	So how does this work?
	CROSS JOIN
	Joining on a Subquery
	CROSS APPLY & LATERAL JOIN
	FULL JOIN
	Recursive JOINs
	Differences between inner/outer joins

	Inner Join
	Left outer join
	Right outer join
	Full outer join
	JOIN Terminology: Inner, Outer, Semi, Anti...

	Inner Join
	Left Outer Join
	Right Outer Join
	Full Outer Join
	Left Semi Join
	Right Semi Join
	Left Anti Semi Join
	Right Anti Semi Join
	Cross Join
	Self-Join
	Chapter 36: LIKE operator
	Syntax
	Remarks
	Examples
	Match open-ended pattern
	Single character match
	Match by range or set
	Match ANY versus ALL
	Search for a range of characters
	ESCAPE statement in the LIKE-query
	Wildcard characters


	Chapter 37: Materialized Views
	Introduction
	Examples
	PostgreSQL example


	Chapter 38: MERGE
	Introduction
	Examples
	MERGE to make Target match Source
	MySQL: counting users by name
	PostgreSQL: counting users by name


	Chapter 39: NULL
	Introduction
	Examples
	Filtering for NULL in queries
	Nullable columns in tables
	Updating fields to NULL
	Inserting rows with NULL fields


	Chapter 40: ORDER BY
	Examples
	Use ORDER BY with TOP to return the top x rows based on a column's value
	Sorting by multiple columns
	Sorting by column number (instead of name)
	Order by Alias
	Customizeed sorting order


	Chapter 41: Order of Execution
	Examples
	Logical Order of Query Processing in SQL


	Chapter 42: Primary Keys
	Syntax
	Examples
	Creating a Primary Key
	Using Auto Increment


	Chapter 43: Relational Algebra
	Examples
	Overview


	SELECT
	PROJECT
	GIVING
	NATURAL JOIN
	ALIAS
	DIVIDE
	UNION
	INTERSECTION
	DIFFERENCE
	UPDATE ( := )
	TIMES
	Chapter 44: Row number
	Syntax
	Examples
	Row numbers without partitions
	Row numbers with partitions
	Delete All But Last Record (1 to Many Table)


	Chapter 45: SELECT
	Introduction
	Syntax
	Remarks
	Examples
	Using the wildcard character to select all columns in a query.
	Simple select statement
	Dot notation
	When Can You Use *, Bearing The Above Warning In Mind?
	Selecting with Condition
	Select Individual Columns
	SELECT Using Column Aliases

	All versions of SQL
	Different Versions of SQL
	All Versions of SQL
	Different Versions of SQL
	Selection with sorted Results
	Select columns which are named after reserved keywords
	Selecting specified number of records
	Selecting with table alias
	Select rows from multiple tables
	Selecting with Aggregate functions


	Average
	Minimum
	Maximum
	Count
	Sum
	Selecting with null
	Selecting with CASE
	Selecting without Locking the table
	Select distinct (unique values only)
	Select with condition of multiple values from column
	Get aggregated result for row groups
	Selecting with more than 1 condition.

	Chapter 46: Sequence
	Examples
	Create Sequence
	Using Sequences


	Chapter 47: SKIP TAKE (Pagination)
	Examples
	Skipping some rows from result
	Limiting amount of results
	Skipping then taking some results (Pagination)


	Chapter 48: SQL CURSOR
	Examples
	Example of a cursor that queries all rows by index for each database


	Chapter 49: SQL Group By vs Distinct
	Examples
	Difference between GROUP BY and DISTINCT


	Chapter 50: SQL Injection
	Introduction
	Examples
	SQL injection sample
	simple injection sample


	Chapter 51: Stored Procedures
	Remarks
	Examples
	Create and call a stored procedure


	Chapter 52: String Functions
	Introduction
	Syntax
	Remarks
	Examples
	Trim empty spaces
	Concatenate
	Upper & lower case
	Substring
	Split
	Stuff
	Length
	Replace
	LEFT - RIGHT
	REVERSE
	REPLICATE
	REGEXP
	Replace function in sql Select and Update query
	PARSENAME
	INSTR


	Chapter 53: Subqueries
	Remarks
	Examples
	Subquery in WHERE clause
	Subquery in FROM clause
	Subquery in SELECT clause
	Subqueries in FROM clause
	Subqueries in WHERE clause
	Subqueries in SELECT clause
	Filter query results using query on different table
	Correlated Subqueries


	Chapter 54: Synonyms
	Examples
	Create Synonym


	Chapter 55: Table Design
	Remarks
	Examples
	Properties of a well designed table.


	Chapter 56: Transactions
	Remarks
	Examples
	Simple Transaction
	Rollback Transaction


	Chapter 57: Triggers
	Examples
	CREATE TRIGGER
	Use Trigger to manage a "Recycle Bin" for deleted items


	Chapter 58: TRUNCATE
	Introduction
	Syntax
	Remarks
	Examples
	Removing all rows from the Employee table


	Chapter 59: TRY/CATCH
	Remarks
	Examples
	Transaction In a TRY/CATCH


	Chapter 60: UNION / UNION ALL
	Introduction
	Syntax
	Remarks
	Examples
	Basic UNION ALL query
	Simple explanation and Example


	Chapter 61: UPDATE
	Syntax
	Examples
	Updating All Rows
	Updating Specified Rows
	Modifying existing values
	UPDATE with data from another table


	Standard SQL
	SQL:2003
	SQL Server
	Capturing Updated records

	Chapter 62: Views
	Examples
	Simple views
	Complex views


	Chapter 63: Window Functions
	Examples
	Adding the total rows selected to every row
	Setting up a flag if other rows have a common property
	Getting a running total
	Getting the N most recent rows over multiple grouping
	Finding "out-of-sequence" records using the LAG() function


	Chapter 64: XML
	Examples
	Query from XML Data Type


	Credits

